Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 440
Filtrar
Más filtros

Intervalo de año de publicación
1.
Water Res ; 254: 121378, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38430758

RESUMEN

This study delved into the efficacy of sludge digestion and the mechanisms involved in sludge destruction during the implementation of forward osmosis process for sludge thickening and digestion (FO-MSTD). Utilizing a lab-scale FO membrane reactor for the thickening and digestion of waste activated sludge (WAS), the investigation explored the effects of sludge thickening and digestion in FO-MSTD processes using draw solutions of varying concentrations. The findings underscored the significance of hydraulic retention time (HRT) as a pivotal parameter influencing the swift thickening or profound digestion of sludge. Consequently, tailoring the HRT to specific processing objectives emerged as a key strategy for achieving desired treatment outcomes. In the investigation, the use of a 1 M NaCl draw solution in the FO-MSTD process showcased enhanced thickening and digestion capabilities. This specific setup raised the concentration of mixed liquor suspended solids (MLSS) to over 30 g/L and achieved a 42.7% digestion efficiency of mixed liquor volatile suspended solids (MLVSS) within an operational timeframe of 18 days. Furthermore, the research unveiled distinct stages in the sludge digestion process of the FO-MSTD system, characterized by fully aerobic digestion and aerobic-local anaerobic co-existing digestion. In the fully aerobic digestion stage, the sludge digestion rate exhibited a steady increase, leading to the breakdown of sludge floc structures and the release of a substantial amount of nutrients into the sludge supernatant. The predominant microorganisms during this stage were typical functional microorganisms found in wastewater treatment systems. Transitioning into the aerobic-local anaerobic co-existing digestion stage, both MLSS concentration and MLVSS digestion efficiency continued to rise, accompanied by a decreasing dissolved oxygen (DO) concentration. More organic matter was released into the supernatant, and sludge microbial flocs tended to reaggregate. The localized anaerobic environment within the FO-MSTD reactor fostered an increase in the relative abundance of bacteria with nitrogen and phosphorus removal functions, thereby positively impacting the mitigation of total nitrogen (TN) and total phosphorus (TP) concentrations in the sludge supernatant. The results of this research enhance comprehension of the advanced FO-MSTD technology in the treatment of WAS.


Asunto(s)
Fósforo , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Ósmosis , Fósforo/metabolismo , Nitrógeno , Digestión , Reactores Biológicos , Eliminación de Residuos Líquidos/métodos
2.
Water Res ; 245: 120595, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37708772

RESUMEN

In order to meet the demand of municipal wastewater for low-carbon treatment and resource recovery, a novel process of anaerobic acidification membrane bioreactor (AAMBR) assisted with a two-stage forward osmosis (FO) (FO-AAMBR-FO) was developed for simultaneously recovering organic matter and nutrients from municipal wastewater. The results indicated that the first FO process concentrated the municipal wastewater to one tenth of the initial volume. The corresponding chemical oxygen demand (COD), ammonia nitrogen (NH4+-N) and total phosphorus (TP) concentration reached up to 2800, 200 and 33 mg/L, respectively. Subsequently, the AAMBR was operated at pH value of 10 for treating the concentration of municipal wastewater, in which the organic matter was successfully converted to acetic acid and propionic acid with a total volatile fatty acids (VFAs) concentration of 1787 mg COD/L and a VFAs production efficiency of 62.36 % during 47 days of stable operation. After that, the NH4+-N and TP concentration in the effluent of the AAMBR were further concentrated to 175 and 36.7 mg/L, respectively, by the second FO process. The struvite was successfully recovered with NH4+-N and TP recovery rate of 94.53 % and 98.59 %, respectively. Correspondingly, the VFAs, NH4+-N and TP concentrations in the residual solution were 2905 mg COD/L, 11.8 and 7.92 mg/L, respectively, which could be used as the raw material for the synthesis of polyhydroxyalkanoate (PHA). Results reported here demonstrated that the FO-AAMBR-FO is a promising wastewater treatment technology for simultaneous recovery of organic matter (in form of VFAs) and nutrients (in form of struvite).


Asunto(s)
Aguas Residuales , Purificación del Agua , Anaerobiosis , Fósforo , Nitrógeno , Estruvita , Ósmosis , Reactores Biológicos , Ácidos Grasos Volátiles , Concentración de Iones de Hidrógeno , Membranas Artificiales , Purificación del Agua/métodos
3.
Environ Sci Pollut Res Int ; 30(42): 95875-95891, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37561306

RESUMEN

The wastewater discharged from crude oil storage tanks (WCOST) contains high concentrations of salt and metal iron ions, and high chemical oxygen demand (COD). It belongs to "3-high" wastewater, which is difficult for purification. In this study, WCOST treatments were comparatively investigated via an advanced pretreatment and the traditional coagulation-microfiltration (CMF) processes. After WCOST was purified through the conventional CMF process, fouling occurred in the microfiltration (MF) membrane, which is rather harmful to the following reverse osmosis (RO) membrane unit, and the effluent featured high COD and UV254 values. The analysis confirmed that the MF fouling was due to the oxidation of ferrous ions, and the high COD and UV254 values were mainly attributable to the organic compounds with small molecular sizes, including aromatic-like and fulvic-like compounds. After the pretreatment of the advanced process consisting of aeration, manganese sand filtration, and activated carbon adsorption in combination with CMF process, the removal efficiencies of organic matter and total iron ions reached 97.3% and 99.8%, respectively. All the water indexes of the effluent, after treatment by the advanced multi-unit process, meet well the corresponding standard. The advanced pretreatment process reported herein displayed a great potential for alleviating the MF membrane fouling and enhanced the lifetime of the RO membrane system in the 3-high WCOST treatment.


Asunto(s)
Petróleo , Purificación del Agua , Aguas Residuales , Eliminación de Residuos Líquidos , Petróleo/análisis , Filtración , Iones/análisis , Hierro/análisis , Ósmosis , Membranas Artificiales
4.
Environ Pollut ; 333: 121989, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37301452

RESUMEN

Electro-osmosis has been well recognized as a technique for the remediation of petroleum-contaminated soil, however seasonally freezing and thawing adds the complexity of petroleum mobility in cold regions. To investigate the influence of freeze-thaw on the electroosmotic removal of petroleum and explore the enhancement of freeze-thaw on the electroosmotic remediation efficiency in remediating the petroleum-contaminated soils, a set of laboratory tests were performed in three types of treatment modes, freeze-thaw (FT), electro-osmosis (EO) and freeze-thaw combined electro-osmosis (FE). The petroleum redistributions as well as the moisture content changes after the treatments were evaluated and compared. The petroleum removal rates of the three treatments were analyzed, and the underlying mechanisms were elaborated. The results indicated that the overall efficiency of the treatment mode regarding petroleum removal from soil followed the order of FE > EO > FT, corresponding to 54%, 36% and 21% in maximum, respectively. A considerable amount of water solution with surfactant was driven into contaminated soil during FT process, but the petroleum mobilization primarily occurred inside of the specimen. A higher remediation efficiency was yield in EO mode, but the induced dehydration and cracks leaded to the dramatical depression in the efficiency in further process. It is proposed that the petroleum removal is closely related to the flow of water solution with surfactant that is favorable to the solubility and mobilization of the petroleum in soil. Thus, the water migration induced by freeze-thaw cycles substantially improved the efficiency of the electroosmotic remediation in FE mode that gave the best performance for the remediation of the petroleum-contaminated soil.


Asunto(s)
Petróleo , Contaminantes del Suelo , Petróleo/metabolismo , Congelación , Contaminantes del Suelo/análisis , Agua , Suelo , Tensoactivos , Ósmosis
5.
Ren Fail ; 44(1): 1595-1603, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36190833

RESUMEN

BACKGROUND: Aluminum accumulation is a well-described complication in dialysis patients. Improvements in hemodialysis technology have possibly eliminated the occurrence of aluminum overload. Limited evidence suggests that aluminum overload may decline in the era of aluminum removal from dialysis fluids, even with the use of aluminum binders. METHODS: We examined the data from January 2014 to June 1, 2020, identified through our electronic records, to evaluate the desferrioxamine (DFO) test results for aluminum overload. The presentation and treatment of aluminum overload were recorded. RESULTS: Ninety-nine dialysis patients were enrolled for the DFO test. Forty-seven patients (47.5%) were identified as DFO test positive for aluminum overload, of which 14 (14/47) patients had symptoms, including one patient with an unexplained fracture, eight patients with unexplained anemia despite high-dose erythropoiesis-stimulating agents, and five patients with hypercalcemia (serum calcium >11 mg dL-1). None of the patients with aluminum overload developed encephalopathy. Only four of the 47 patients had microcytic anemia. Patients requiring longer treatments (>10 months versus <10 months) had similar basal serum aluminum (p = 0.219) but had an increase in serum aluminum after DFO (p = 0.041). Furthermore, the treatments decreased erythropoietin doses in the aluminum overload group, with serum total alkaline phosphatase levels <60 U L-1 (p = 0.028). CONCLUSION: We concluded that aluminum overload existed in the reverse osmosis dialysis era. In light of non-obvious symptoms, such as anemia and bone turnover change, serum aluminum in dialysis patients should be monitored in countries using aluminum-based phosphate binders, despite reverse osmosis dialysis.


Asunto(s)
Anemia , Eritropoyetina , Fosfatasa Alcalina , Aluminio/efectos adversos , Compuestos de Aluminio , Anemia/tratamiento farmacológico , Calcio , Deferoxamina/uso terapéutico , Humanos , Ósmosis , Fosfatos , Diálisis Renal/efectos adversos
6.
Water Res ; 224: 119063, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36122446

RESUMEN

While a variety of chemical cleaning strategies has been studied to control fouling in membrane-based water treatment processes, the removal of irreversible foulants strongly bound on membrane surfaces has not been successful. In this study, we firstly investigated the diluted aqueous solutions of ionic fluid (IF, 1-ethyl-3-methylimidazolium acetate) as a cleaning agent for three model organic foulants (humic acid, HA; bovine serum albumin, BSA; sodium alginate, SA). The real-time monitoring of cleaning progress by optical coherence tomography (OCT) showed that fouling layer was dramatically swelled by introducing IF solution and removed by shear force exerted during cleaning. This phenomenon was induced due to the pre-existing interactions between organic foulants were weakened by the intrusion of IF into the fouling layer, which was analyzed by the measurement of adhesion forces using atomic force microscopy (AFM). In the experiments with model foulants and wastewater effluent, IF was added to alkaline cleaning agents (NaOH) to verify the applicability to be supplemented in commercial cleaning agents, and resulted in the significantly enhanced control of irreversible membrane fouling. Implication of utilizing recyclable IF with negligible volatility is that environmental effects of membrane cleaning solutions could be minimized by decreasing usage of cleaning chemicals, while increasing the cleaning efficiency.


Asunto(s)
Aguas Residuales , Purificación del Agua , Alginatos , Sustancias Húmicas , Membranas Artificiales , Ósmosis , Albúmina Sérica Bovina , Hidróxido de Sodio , Purificación del Agua/métodos
7.
Chemosphere ; 306: 135527, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35780994

RESUMEN

Membrane technology has rapidly gained popularity in wastewater treatment due to its cost-effectiveness, environmentally friendly tools, and elevated productivity. Although membrane performance in wastewater treatment has been reviewed in several past studies, the key techniques for improving membrane performance, as well as their challenges, and solutions associated with the membrane process, were not sufficiently highlighted in those studies. Also, very few studies have addressed hybrid techniques to improve membrane performance. The present review aims to fill those gaps and achieve public health benefits through safe water processing. Despite its higher cost, membrane performance can result in a 36% reduction in flux degradation. The issue with fouling has been identified as one of the key challenges of membrane technology. Chemical cleaning is quite effective in removing accumulated foulant. Fouling mitigation techniques have also been shown to have a positive effect on membrane photobioreactors that handle wastewater effluent, resulting in a 50% and 60% reduction in fouling rates for backwash and nitrogen bubble scouring techniques. Membrane hybrid approaches such as hybrid forward-reverse osmosis show promise in removing high concentrations of phosphorus, ammonium, and salt from wastewater. The incorporation of the forward osmosis process can reject 99% of phosphorus and 97% of ammonium, and the reverse osmosis approach can achieve a 99% salt rejection rate. The control strategies for membrane fouling have not been successfully optimized yet and more research is needed to achieve a realistic, long-term direct membrane filtering operation.


Asunto(s)
Compuestos de Amonio , Purificación del Agua , Membranas Artificiales , Ósmosis , Fósforo , Cloruro de Sodio , Aguas Residuales , Purificación del Agua/métodos
8.
Ultrason Sonochem ; 88: 106083, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35779429

RESUMEN

This study evaluated the effect of mono-frequency ultrasound (MFU, 20 kHz), dual-frequency ultrasound (DFU, 20/40 kHz), and tri-frequency ultrasound (TFU, 20/40/60 kHz) on mass transfer, drying kinetics, and quality properties of infrared-dried pineapple slices. Pretreatments were conducted in distilled water (US), 35 °Brix sucrose solution (US-OD), and 75% (v/v) ethanol solution (US-ET). Results indicated that ultrasound pretreatments modified the microstructure of slices and shortened drying times. Compared to the control group, ultrasound application reduced drying time by 19.01-28.8% for US, 15.33-24.41% for US-OD, and 38.88-42.76% for US-ET. Tri-frequency ultrasound provoked the largest reductions, which exhibited time reductions of 6.36-11.20% and better product quality compared to MFU. Pretreatments increased color changes and loss of bioactive compounds compared to the control but improved the flavor profile and enzyme inactivation. Among pretreated sample groups, US-OD slices had lower browning and rehydration abilities, higher hardness values, and better retention of nutrients and bioactive compounds. Therefore, the combination of TFU and osmotic dehydration could simultaneously improve ultrasound efficacy, reduce drying time, and produce quality products.


Asunto(s)
Ananas , Desecación/métodos , Frutas/química , Ósmosis
9.
Water Sci Technol ; 85(1): 244-256, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35050880

RESUMEN

As a thermally induced membrane separation process, membrane distillation (MD) has drawn more and more attention to the advantages of treating hypersaline wastewaters, especially the concentrate from the reverse osmosis (RO) process. One of the major obstacles in widespread MD application is the membrane fouling. We investigated the feasibility of direct contact membrane distillation (DCMD) for landfill leachate reverse osmosis concentrate (LFLRO) brine treatment and systematically assessed the efficiency of chemical cleaning for DCMD after processing LFLRO brine. The results showed that 80% water recovery rate was achieved when processing the LFLRO brine by DCMD, but membrane fouling occurred during the DCMD process, and manifested as the decreasing of permeate flux and the increasing of permeate conductivity. Analysis revealed that the serious flux reduction was primarily caused by the fouling layer, which consisted of organic matter and inorganic salts. Five cleaning methods were investigated for membrane cleaning, including hydrogen chloride (HCl)-sodium hydroxide (NaOH), ethylene diamine tetraacetic acid (EDTA)-NaOH, citric acid, sodium hypochlorite (NaClO) and sodium dodecyl sulphate (SDS) cleaning. Among the chemical cleaning methods investigated, the 3 wt.% SDS cleaning showed the best efficiency at recovering the performance of fouled membranes.


Asunto(s)
Contaminantes Químicos del Agua , Destilación , Filtración , Membranas Artificiales , Ósmosis , Contaminantes Químicos del Agua/análisis
10.
Chemosphere ; 291(Pt 3): 133027, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34822865

RESUMEN

Amino trimethylene phosphonic acid (ATMP) was widely used as an antiscalant in reverse osmosis (RO) systems to prevent membrane scaling, and entered RO concentrate at elevated levels. However, phosphonate antiscalants in RO concentrate might aggravate phosphorus pollution, remobilize heavy metals, and adversely affect the sedimentation treatment of RO concentrate. Ozonation was found an efficient method for ATMP treatment. The ATMP removal efficiencies with 8 mg/L ozone were 100% and 86.5% for ultrapure water and RO concentrate, respectively. The ATMP mineralization efficiency reached 46.5% with 8 mg/L ozone. The rate constant for the reaction between ATMP and ozone was 1.92 × 106 M-1 s-1. Increasing the pH from 3 to 9 decreased the ATMP removal efficiency from 90% to 30.9% but increased the orthophosphate formation to ATMP removal ratio from 0.11 to 0.48. The ATMP intermediates generated with low ozone dosages exhibited moderate chelation and anti-precipitation capacity, and their chelation and anti-precipitation capacity could be further attenuated by increasing the ozone dosage. Ozonation alone enhanced the growth potential for microalgae in RO concentrate because orthophosphate formed. Combining ozonation and coagulation effectively removed 83.0% of the total phosphorus from RO concentrate. The maximum algal density of Scenedesmus sp. LX1 decreased by 78.7% by ozonation and coagulation.


Asunto(s)
Ozono , Purificación del Agua , Aminoácidos , AMP Cíclico/análogos & derivados , Ósmosis , Ácidos Fosforosos , Fósforo
11.
Sci Total Environ ; 815: 152663, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34971685

RESUMEN

Landfill leachate (LL), especially the reverse osmosis concentrate (ROC), is a societal burden due to high toxicity but may have intrinsic values attributing to copious nutrients and organics. ROC bioremediation by microalgae has attracted much attentions benefiting from its extra advantage of bioenergy production. However, efficient microalgae cultivation with ROC is still a challenging task attributing to notorious ROC characteristics, like high chromaticity and toxicity. To alleviate these negative influences, a technique integrating granular activated carbon (GAC) pretreatment and microalgae bioremediation was proposed, with which nitrogen and phosphorus removal efficiencies achieved 100% along with an optimized microalgal biomass concentration of 1.44 g/L and lipid yield of 482.4 mg/L. Furthermore, a total volumetric energy yield of 33.6 kJ/L was acquired, which was conducive to realize energy valorization. The visualization evidence of three-dimensional fluorescence spectroscopy revealed chromaticity degradation mechanism of ROC as humic acids reduction and transfer to family of soluble microbial by-products. Meanwhile, contributions of GAC adsorption and microalgae assimilation on nutrients removal were analyzed. Together, this work provides a promising method and valuable information for ROC bioremediation with microalgae.


Asunto(s)
Chlorella vulgaris , Microalgas , Biomasa , Carbón Orgánico , Nitrógeno , Nutrientes , Ósmosis , Aguas Residuales
12.
Bioresour Technol ; 342: 125930, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34547711

RESUMEN

This study designed a Dynamic-Osmotic membrane bioreactor/nanofiltration (OsMBR/NF) system for municipal wastewater treatment and reuse. Results indicated that a continuously rotating FO module with 60 RPM in Dynamic-OsMBR system could enhance shear stress and reduce cake layer of foulants, leading to higher flux (50%) compared to Traditional-OsMBR during a 40-operation day. A negligible specific reverse salt flux (0.059 G/L) and a water flux of 2.86 LMH were recorded when a mixture of 0.1 M EDTA-2Na/0.1 M Na2CO3/0.9 mM Triton114 functioned as draw solution (DS). It was found that the Dynamic-OsMBR/NF hybrid system could effectively remove pollutants (∼98% COD, ∼99% PO43-P, ∼93% NH4+-N, > 99% suspended solids) from wastewater. In short, this developed system can be considered a breakthrough technology as it successfully minimizes membrane fouling by shear force, and achieves high water quality for reuse by two membrane- barriers.


Asunto(s)
Membranas Artificiales , Purificación del Agua , Reactores Biológicos , Ósmosis , Aguas Residuales
13.
J Pharmacol Sci ; 147(3): 245-250, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34507633

RESUMEN

Sodium/glucose cotransporter 2 (SGLT2) is a renal low-affinity high-capacity sodium/glucose cotransporter expressed in the apical membrane of the early segment of proximal tubules. SGLT2 reabsorbs filtered glucose in the kidney, and its inhibitors represent a new class of oral medications used for type 2 diabetes mellitus, which act by increasing glucose and sodium excretion in urine, thereby reducing blood glucose levels. However, clinical trials showed marked improvement of renal outcomes, even in nondiabetic kidney diseases, although the underlying mechanism of this renoprotective effect is unclear. We showed that long-term excretion of salt by the kidneys, which predisposes to osmotic diuresis and water loss, induces a systemic body response for water conservation. The energy-intensive nature of water conservation leads to a reprioritization of systemic body energy metabolism. According to current data, use of SGLT2 inhibitors may result in similar reprioritization of energy metabolism to prevent dehydration. In this review article, we discuss the beneficial effects of SGLT2 inhibition from the perspective of energy metabolism and water conservation.


Asunto(s)
Agua Corporal/metabolismo , Metabolismo Energético/efectos de los fármacos , Riñón/metabolismo , Florizina/farmacología , Transportador 2 de Sodio-Glucosa/metabolismo , Transportador 2 de Sodio-Glucosa/fisiología , Administración Oral , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diuresis , Glucosa/metabolismo , Humanos , Hipoglucemiantes , Túbulos Renales Proximales/metabolismo , Malus/química , Ósmosis , Florizina/administración & dosificación , Fitoterapia , Sodio/metabolismo , Sodio/orina
14.
Sci Rep ; 11(1): 15961, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34354211

RESUMEN

Cultivated tomato Solanum lycopersicum (Slyc) is sensitive to water shortages, while its wild relative Solanum peruvianum L. (Sper), an herbaceous perennial small shrub, can grow under water scarcity and soil salinity environments. Plastic Sper modifies the plant architecture when suffering from drought, which is mediated by the replacement of leaf organs, among other changes. The early events that trigger acclimation and improve these morphological traits are unknown. In this study, a physiological and transcriptomic approach was used to understand the processes that differentiate the response in Slyc and Sper in the context of acclimation to stress and future consequences for plant architecture. In this regard, moderate (MD) and severe drought (SD) were imposed, mediating PEG treatments. The results showed a reduction in water and osmotic potential during stress, which correlated with the upregulation of sugar and proline metabolism-related genes. Additionally, the senescence-related genes FTSH6 protease and asparagine synthase were highly induced in both species. However, GO categories such as "protein ubiquitination" or "endopeptidase inhibitor activity" were differentially enriched in Sper and Slyc, respectively. Genes related to polyamine biosynthesis were induced, while several cyclins and kinetin were downregulated in Sper under drought treatments. Repression of photosynthesis-related genes was correlated with a higher reduction in the electron transport rate in Slyc than in Sper. Additionally, transcription factors from the ERF, WRKY and NAC families were commonly induced in Sper. Although some similar responses were induced in both species under drought stress, many important changes were detected to be differentially induced. This suggests that different pathways dictate the strategies to address the early response to drought and the consequent episodes in the acclimation process in both tomato species.


Asunto(s)
Aclimatación/genética , Solanum lycopersicum/genética , Estrés Fisiológico/genética , Aclimatación/fisiología , Sequías , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Solanum lycopersicum/metabolismo , Ósmosis/fisiología , Fotosíntesis/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Salinidad , Solanum/genética , Solanum/metabolismo , Factores de Transcripción/genética , Transcriptoma/genética
15.
Int J Mol Sci ; 22(16)2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34445105

RESUMEN

In grafted plants, the movement of long-distance signals from rootstocks can modulate the development and function of the scion. To understand the mechanisms by which tolerant rootstocks improve scion responses to osmotic stress (OS) conditions, mRNA transport of osmotic responsive genes (ORGs) was evaluated in a tomato/potato heterograft system. In this system, Solanum tuberosum was used as a rootstock and Solanum lycopersicum as a scion. We detected changes in the gene expression levels of 13 out of the 21 ORGs tested in the osmotically stressed plants; of these, only NPR1 transcripts were transported across the graft union under both normal and OS conditions. Importantly, OS increased the abundance of StNPR1 transcripts in the tomato scion. To examine mRNA mobility in transgrafted plants, StNPR1 and StDREB1 genes representing the mobile and non-mobile transcripts, respectively, were overexpressed in tobacco (Nicotiana tabacum). The evaluation of transgenic tobacco plants indicated that overexpression of these genes enhanced the growth and improved the physiological status of transgenic plants growing under OS conditions induced by NaCl, mannitol and polyethylene glycol (PEG). We also found that transgenic tobacco rootstocks increased the OS tolerance of the WT-scion. Indeed, WT scions on transgenic rootstocks had higher ORGs transcript levels than their counterparts on non-transgenic rootstocks. However, neither StNPR1 nor StDREB1 transcripts were transported from the transgenic rootstock to the wild-type (WT) tobacco scion, suggesting that other long-distance signals downstream these transgenes could have moved across the graft union leading to OS tolerance. Overall, our results signify the importance of StNPR1 and StDREB1 as two anticipated candidates for the development of stress-resilient crops through transgrafting technology.


Asunto(s)
Nicotiana/genética , Ósmosis/fisiología , Presión Osmótica/fisiología , Solanum lycopersicum/genética , Solanum tuberosum/genética , Raíces de Plantas/genética , Plantas Modificadas Genéticamente/genética , Transgenes/genética
16.
Sci Total Environ ; 790: 148103, 2021 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34111778

RESUMEN

Water is the main limiting factor for survival and growth for desert plants, and plants can alleviate water deficits under drought by adjusting water potential (Ψ). However, the water potential adjustment capacity and water-sensitivity at the tissue level among shrub species remains unclear. The objective of this study was to evaluate water potential adjustment capacity and water-sensitivity of different tissues in Artemisia ordosica and Caragana korshinskii through calculating the water relation parameters from pressure-volume (P-V) curves. The present study found that the sensitivity coefficients, -1/ß and -1/b, were gradually decreased with increasing degree of lignification in A. ordosica and C. korshinskii, suggesting that younger tissues with low lignification are more sensitive to water deficit. Additionally, the younger tissues with more negative osmotic potential at full turgor (Ψπ, sat), water potential at turgor loss point (Ψtlp), and lower the bulk modulus of elasticity (ε), the relative water deficit at turgor loss point (RWDtlp), apoplastic water fraction (AWF) and total hydraulic capacitance (Ctotal), which indicated that younger tissues have stronger turgor adjustment capacity compared to osmotic adjustment capacity and them were more easily lose water during times of decreased water potential because of higher cell wall elasticity and weaker water storage capacity. Collectively, the present study highlighted that younger tissues are more sensitive to drought due to their weaker water potential adjustment capacity and provided critical insight into water physiological mechanism or sensitivity of species to drought.


Asunto(s)
Artemisia , Caragana , Sequías , Ósmosis , Hojas de la Planta , Agua
17.
Molecules ; 26(9)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066449

RESUMEN

The scope of this work is the study of a combined process including a dipping step into an oregano (Origanum vulgare ssp. hirtum) infusion (OV) followed by osmotic treatment of chicken fillets at 15 °C. Chicken fillets were immersed in an osmotic solution consisting of 40% glycerol and 5% NaCl with (OV/OD) and without (OD) prior antioxidant enrichment in a hypotonic oregano solution. A comparative shelf life study of all the samples (untreated, OD and OV/OD treated) was then conducted at 4 °C in order to assess the impact of this process on the quality and shelf life of chilled chicken fillets. Microbial growth, lipid oxidation and color/texture changes were measured throughout the chilled storage period. Rates of microbial growth of pretreated fillets were significantly reduced, mainly as a result of water activity decrease (OD step). Rancidity development closely related to off odors and sensory rejection was greatly inhibited in treated fillets owing to both inhibitory factors (OD and OV), with water-soluble phenols (OV step) exhibiting the main antioxidant effect. Shelf life of treated chicken fillets exhibited a more than three-fold increase as compared to the untreated samples based on both chemical and microbial spoilage indices, maintaining a positive and pleasant sensory profile throughout the storage period examined.


Asunto(s)
Antioxidantes/química , Análisis de los Alimentos/métodos , Carne/análisis , Aceites Volátiles/química , Origanum/química , Animales , Pollos , Color , Manipulación de Alimentos , Conservación de Alimentos , Tecnología de Alimentos/métodos , Cinética , Peroxidación de Lípido , Lípidos/química , Músculos/metabolismo , Odorantes , Ósmosis , Fenoles/química , Temperatura
18.
Molecules ; 26(11)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071647

RESUMEN

BACKGROUND: Filtration of osmotic solution affects selective penetration during osmotic dehydration (OD), and after drying is finished, this can influence the chemical composition of the material, which is also modified by OD. METHODS: Osmotic dehydration was carried out in filtrated and non-filtrated concentrated chokeberry juice with the addition of mint infusion. Then, this underwent convective drying, vacuum-microwave drying and combined convective pre-drying, followed by vacuum-microwave finishing drying. Drying kinetics were presented and mathematical models were selected. The specific energy consumption for each drying method was calculated and the energy efficiency was determined. RESULTS AND DISCUSSION: The study revealed that filtration of osmotic solution did not have significant effect on drying kinetics; however, it affected selective penetration during OD. The highest specific energy consumption was obtained for the samples treated by convective drying (CD) (around 170 kJ·g-1 fresh weight (fw)) and the lowest for the samples treated by vacuum-microwave drying (VMD) (around 30 kJ·g-1 fw), which is due to the differences in the time of drying and when these methods are applied. CONCLUSIONS: Filtration of the osmotic solution can be used to obtain the desired material after drying and the VMD method is the most appropriate considering both phenolic acid content and the energy aspect of drying.


Asunto(s)
Desecación/métodos , Malus/efectos de los fármacos , Mentha/metabolismo , Ósmosis , Extractos Vegetales/química , Antioxidantes/química , Ácidos Cafeicos/química , Química Física/métodos , Ácido Clorogénico/química , Cromatografía Liquida , Cinamatos/química , Color , Depsidos/química , Metabolismo Energético , Filtración , Manipulación de Alimentos , Frutas/química , Hidroxibenzoatos/análisis , Cinética , Microondas , Modelos Teóricos , Fenol , Espectrometría de Masas en Tándem , Temperatura , Ácido Rosmarínico
19.
Water Res ; 198: 117157, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33933919

RESUMEN

Forward osmosis-membrane distillation (FO-MD) hybrids were recently found suitable for produced water treatment. Exclusion of synthetic chemical draw solutions, typically used for FO, can reduce FO-MD operational costs and ease its onsite application. This study experimentally validates a novel concept for the simultaneous treatment of different produced water streams available at the same industrial site using an FO-MD hybrid system. The water oil separator outlet (WO) stream was selected as FO draw solution and it generated average fluxes ranging between 8.30 LMH and 26.78 LMH with four different feed streams. FO fluxes were found to be governed by the complex composition of the feed streams. On the other hand, with WO stream as MD feed, an average flux of 14.41 LMH was achieved. Calcium ions were found as a main reason for MD flux decline in the form of CaSO4 scaling and stimulating the interaction between the membrane and humic acid molecules to form scale layer causing reduction in heat transfer and decline in MD flux (6%). Emulsified oil solution was responsible for partial pore clogging resulting in further 2% flux decline. Ethylenediaminetetraaceticacid (EDTA) was able to mask a portion of calcium ions and resulted in a complete recovery of the original MD flux. Under hybrid FO-MD experiments MD fluxes between 5.62 LMH and 11.12 LMH were achieved. Therefore, the novel concept is validated to produce fairly stable FO and MD fluxes, with few streams, without severe fouling and producing excellent product water quality.


Asunto(s)
Destilación , Purificación del Agua , Membranas Artificiales , Ósmosis , Agua
20.
Nat Rev Neurosci ; 22(6): 326-344, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33846637

RESUMEN

Our brains consist of 80% water, which is continuously shifted between different compartments and cell types during physiological and pathophysiological processes. Disturbances in brain water homeostasis occur with pathologies such as brain oedema and hydrocephalus, in which fluid accumulation leads to elevated intracranial pressure. Targeted pharmacological treatments do not exist for these conditions owing to our incomplete understanding of the molecular mechanisms governing brain water transport. Historically, the transmembrane movement of brain water was assumed to occur as passive movement of water along the osmotic gradient, greatly accelerated by water channels termed aquaporins. Although aquaporins govern the majority of fluid handling in the kidney, they do not suffice to explain the overall brain water movement: either they are not present in the membranes across which water flows or they appear not to be required for the observed flow of water. Notably, brain fluid can be secreted against an osmotic gradient, suggesting that conventional osmotic water flow may not describe all transmembrane fluid transport in the brain. The cotransport of water is an unconventional molecular mechanism that is introduced in this Review as a missing link to bridge the gap in our understanding of cellular and barrier brain water transport.


Asunto(s)
Encéfalo/metabolismo , Agua/metabolismo , Animales , Acuaporinas/metabolismo , Agua Corporal/metabolismo , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Tamaño de la Célula , Líquido Cefalorraquídeo/metabolismo , Endotelio Vascular/metabolismo , Líquido Extracelular/metabolismo , Sistema Glinfático/fisiología , Humanos , Líquido Intracelular/metabolismo , Transporte Iónico , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/metabolismo , Neuroglía/ultraestructura , Neuronas/metabolismo , Neuronas/ultraestructura , Ósmosis , Potasio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Espacio Subaracnoideo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA