Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 592(7854): 433-437, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33790463

RESUMEN

Upon gamete fusion, animal egg cells secrete proteases from cortical granules to establish a fertilization envelope as a block to polyspermy1-4. Fertilization in flowering plants is more complex and involves the delivery of two non-motile sperm cells by pollen tubes5,6. Simultaneous penetration of ovules by multiple pollen tubes (polytubey) is usually avoided, thus indirectly preventing polyspermy7,8. How plant egg cells regulate the rejection of extra tubes after successful fertilization is not known. Here we report that the aspartic endopeptidases ECS1 and ECS2 are secreted to the extracellular space from a cortical network located at the apical domain of the Arabidopsis egg cell. This reaction is triggered only after successful fertilization. ECS1 and ECS2 are exclusively expressed in the egg cell and transcripts are degraded immediately after gamete fusion. ECS1 and ESC2 specifically cleave the pollen tube attractor LURE1. As a consequence, polytubey is frequent in ecs1 ecs2 double mutants. Ectopic secretion of these endopeptidases from synergid cells led to a decrease in the levels of LURE1 and reduced the rate of pollen tube attraction. Together, these findings demonstrate that plant egg cells sense successful fertilization and elucidate a mechanism as to how a relatively fast post-fertilization block to polytubey is established by fertilization-induced degradation of attraction factors.


Asunto(s)
Arabidopsis/metabolismo , Endopeptidasas/metabolismo , Fertilización , Óvulo Vegetal/metabolismo , Tubo Polínico/metabolismo , Polen/metabolismo , Arabidopsis/citología , Arabidopsis/enzimología , Proteínas de Arabidopsis/metabolismo , Fusión Celular , Óvulo Vegetal/enzimología , Polen/enzimología
2.
Proc Natl Acad Sci U S A ; 116(19): 9652-9657, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31000601

RESUMEN

Epigenetic reprogramming is required for proper regulation of gene expression in eukaryotic organisms. In Arabidopsis, active DNA demethylation is crucial for seed viability, pollen function, and successful reproduction. The DEMETER (DME) DNA glycosylase initiates localized DNA demethylation in vegetative and central cells, so-called companion cells that are adjacent to sperm and egg gametes, respectively. In rice, the central cell genome displays local DNA hypomethylation, suggesting that active DNA demethylation also occurs in rice; however, the enzyme responsible for this process is unknown. One candidate is the rice REPRESSOR OF SILENCING1a (ROS1a) gene, which is related to DME and is essential for rice seed viability and pollen function. Here, we report genome-wide analyses of DNA methylation in wild-type and ros1a mutant sperm and vegetative cells. We find that the rice vegetative cell genome is locally hypomethylated compared with sperm by a process that requires ROS1a activity. We show that many ROS1a target sequences in the vegetative cell are hypomethylated in the rice central cell, suggesting that ROS1a also demethylates the central cell genome. Similar to Arabidopsis, we show that sperm non-CG methylation is indirectly promoted by DNA demethylation in the vegetative cell. These results reveal that DNA glycosylase-mediated DNA demethylation processes are conserved in Arabidopsis and rice, plant species that diverged 150 million years ago. Finally, although global non-CG methylation levels of sperm and egg differ, the maternal and paternal embryo genomes show similar non-CG methylation levels, suggesting that rice gamete genomes undergo dynamic DNA methylation reprogramming after cell fusion.


Asunto(s)
ADN Glicosilasas , Metilación de ADN/fisiología , ADN de Plantas , Oryza , Proteínas de Plantas , Polen , Arabidopsis/enzimología , Arabidopsis/genética , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , ADN de Plantas/genética , ADN de Plantas/metabolismo , Oryza/enzimología , Oryza/genética , Óvulo Vegetal/enzimología , Óvulo Vegetal/genética , Desarrollo de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen/enzimología , Polen/genética
3.
Curr Opin Plant Biol ; 41: 73-82, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28992536

RESUMEN

Successful fertilization depends on active molecular dialogues that the male gametophyte can establish with the pistil and the female gametophyte. Pollen grains and stigmas must recognize each other; pollen tubes need to identify the pistil tissues they will penetrate, follow positional cues to exit the transmitting tract and finally, locate the ovules. These molecular dialogues directly affect pollen tube growth rate and orientation. Receptor-like kinases (RLKs) are natural candidates for the perception and decoding of extracellular signals and their transduction to downstream cytoplasmic interactors. Here, we update knowledge regarding how RLKs are involved in pollen tube growth, cell wall integrity and guidance. In addition, we use public data to build a pollen tube RLK interactome that might help direct experiments to elucidate the function of pollen RLKs and their associated proteins.


Asunto(s)
Arabidopsis/enzimología , Tubo Polínico/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/enzimología , Flores/genética , Flores/crecimiento & desarrollo , Óvulo Vegetal/enzimología , Óvulo Vegetal/genética , Óvulo Vegetal/crecimiento & desarrollo , Polen/enzimología , Polen/genética , Polen/crecimiento & desarrollo , Tubo Polínico/genética , Tubo Polínico/crecimiento & desarrollo , Polinización , Proteínas Serina-Treonina Quinasas/genética , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo
4.
Plant Physiol ; 173(1): 219-239, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27872247

RESUMEN

Aspartic proteases are a class of proteolytic enzymes with conserved aspartate residues, which are implicated in protein processing, maturation, and degradation. Compared with yeast and animals, plants possess a larger aspartic protease family. However, little is known about most of these enzymes. Here, we characterized two Arabidopsis (Arabidopsis thaliana) putative glycosylphosphatidylinositol (GPI)-anchored aspartic protease genes, A36 and A39, which are highly expressed in pollen and pollen tubes. a36 and a36 a39 mutants display significantly reduced pollen activity. Transmission electron microscopy and terminal-deoxynucleotidyl transferase-mediated nick end labeling assays further revealed that the unviable pollen in a36 a39 may undergo unanticipated apoptosis-like programmed cell death. The degeneration of female gametes also occurred in a36 a39 Aniline Blue staining, scanning electron microscopy, and semi in vitro guidance assays indicated that the micropylar guidance of pollen tubes is significantly compromised in a36 a39 A36 and A39 that were fused with green fluorescent protein are localized to the plasma membrane and display punctate cytosolic localization and colocalize with the GPI-anchored protein COBRA-LIKE10. Furthermore, in a36 a39, the abundance of highly methylesterified homogalacturonans and xyloglucans was increased significantly in the apical pollen tube wall. These results indicate that A36 and A39, two putative GPI-anchored aspartic proteases, play important roles in plant reproduction in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Proteasas de Ácido Aspártico/metabolismo , Membrana Celular/enzimología , Óvulo Vegetal/enzimología , Óvulo Vegetal/crecimiento & desarrollo , Polen/enzimología , Polen/crecimiento & desarrollo , Apoptosis , Arabidopsis/crecimiento & desarrollo , Segregación Cromosómica , Cruzamientos Genéticos , Prueba de Complementación Genética , Germinación , Glucanos/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Mutación/genética , Pectinas/metabolismo , Fenotipo , Polen/citología , Polen/ultraestructura , Tubo Polínico/crecimiento & desarrollo , Polinización , Proteolisis , Semillas/metabolismo , Fracciones Subcelulares/enzimología , Xilanos/metabolismo
5.
J Exp Bot ; 66(7): 1833-43, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25576576

RESUMEN

The fertilization-related kinase 1 (ScFRK1), a nuclear-localized mitogen-activated protein kinase kinase kinase (MAPKKK) from the wild potato species Solanum chacoense, belongs to a small group of pMEKKs that do not possess an extended N- or C-terminal regulatory domain. Initially selected based on its highly specific expression profile following fertilization, in situ expression analyses revealed that the ScFRK1 gene is also expressed early on during female gametophyte development in the integument and megaspore mother cell and, later, in the synergid and egg cells of the embryo sac. ScFRK1 mRNAs are also detected in pollen mother cells. Transgenic plants with lower or barely detectable levels of ScFRK1 mRNAs lead to the production of small fruits with severely reduced seed set, resulting from a concomitant decline in the number of normal embryo sacs produced. Megagametogenesis and microgametogenesis were affected, as megaspores did not progress beyond the functional megaspore (FG1) stage and the microspore collapsed around the first pollen mitosis. As for other mutants that affect embryo sac development, pollen tube guidance was severely affected in the ScFRK1 transgenic lines. Gametophyte to sporophyte communication was also affected, as observed from a marked change in the transcriptomic profiles of the sporophytic tissues of the ovule. The ScFRK1 MAPKKK is thus involved in a signalling cascade that regulates both male and female gamete development.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Quinasas Quinasa Quinasa PAM/genética , Solanum/enzimología , Secuencia de Bases , Diferenciación Celular , ADN Complementario/química , ADN Complementario/genética , ADN de Plantas/química , ADN de Plantas/genética , Regulación hacia Abajo , Fertilización , Frutas/citología , Frutas/enzimología , Frutas/genética , Frutas/crecimiento & desarrollo , Quinasas Quinasa Quinasa PAM/metabolismo , Datos de Secuencia Molecular , Óvulo Vegetal/citología , Óvulo Vegetal/enzimología , Óvulo Vegetal/genética , Óvulo Vegetal/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Polen/citología , Polen/enzimología , Polen/genética , Polen/crecimiento & desarrollo , Polinización , Semillas/citología , Semillas/enzimología , Semillas/genética , Semillas/crecimiento & desarrollo , Análisis de Secuencia de ADN , Solanum/citología , Solanum/genética , Solanum/crecimiento & desarrollo
6.
Sex Plant Reprod ; 25(3): 215-25, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22806585

RESUMEN

Pollen of larch (Larix × marschlinsii) and Douglas-fir (Pseudotsuga menziesii) was used in homospecific and heterospecific crosses. Germination of heterospecific pollen in ovulo was reduced in post-pollination prefertilization drops. This provides evidence of selection against foreign pollen by open-pollinated exposed ovules in these two sister taxa, which share the same type of pollination mechanism. Of the other prezygotic stages in pollen-ovule interactions, uptake of pollen by stigmatic hairs did not show any selection. Pollen tube penetration of the nucellus was similar for hetero- and homospecific pollen tubes, but heterospecific tubes only delivered gametes in one cross. To test for differences in the post-pollination prefertilization drops of each species, drops were gathered and analysed. Glucose and fructose were present in similar amounts in Douglas-fir and larch, while sucrose was found in larch only. Other carbohydrates such as xylose and melezitose were species-specific. In P. menziesii, sucrose is absent due to its conversion to glucose and fructose by apoplastic invertases. In contrast, Larix × marschlinsii drops have sucrose because they lack apoplastic invertases. The presence of invertase activity shows that the composition of gymnosperm post-pollination prefertilization drops is not static but dynamic. Drops of these two species also differed in their calcium concentrations.


Asunto(s)
Germinación/fisiología , Larix/fisiología , Polen/fisiología , Polinización/fisiología , Pseudotsuga/fisiología , Calcio/análisis , Calcio/metabolismo , Carbohidratos/análisis , Cruzamientos Genéticos , Hibridación Genética , Larix/enzimología , Larix/ultraestructura , Óvulo Vegetal/enzimología , Óvulo Vegetal/fisiología , Óvulo Vegetal/ultraestructura , Polen/enzimología , Polen/ultraestructura , Tubo Polínico/enzimología , Tubo Polínico/fisiología , Tubo Polínico/ultraestructura , Pseudotsuga/enzimología , Pseudotsuga/ultraestructura , beta-Fructofuranosidasa/metabolismo
7.
Mol Plant ; 1(4): 659-66, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19825570

RESUMEN

Angiosperms sexual reproduction involves interactions between the two female gametes in the embryo sac and the two male gametes released by the pollen tube. The two synergids of the embryo sac express the FERONIA/SIRENE receptor-like kinase, which controls the discharge of the two sperm cells from the pollen tube. FER/SRN may respond to a ligand from the pollen tube. Alternatively, the interaction between FER/SRN and a ligand from the embryo sac may lead to a state of competence of the synergids allowing pollen tube discharge. Here, we report the new mutant scylla (syl) impaired in the control of pollen tube discharge. This mutant also produces autonomous endosperm development in absence of fertilization-a trait associated with the FERTILIZATION INDEPENDENT SEED (FIS) mutant class. This led us to identify autonomous endosperm in srn mutants and to demonstrate synergistic interactions between srn and the fis mutants. In addition, the fis mutants display defects in pollen tube discharge as in srn and syl mutants, confirming the interaction between the two pathways. Our findings suggest that pollen tube discharge is controlled by an interaction between the synergids expressing SRN/FER and the central cell expressing FIS genes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Fertilización/fisiología , Óvulo Vegetal/citología , Óvulo Vegetal/enzimología , Fosfotransferasas/metabolismo , Polen/citología , Semillas/fisiología , Arabidopsis/citología , Arabidopsis/enzimología , Endospermo/citología , Mutación/genética , Fenotipo , Tubo Polínico/citología , Tubo Polínico/enzimología , Tubo Polínico/fisiología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA