Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.317
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Nature ; 629(8011): 335-340, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38658759

RESUMEN

Flexible and large-area electronics rely on thin-film transistors (TFTs) to make displays1-3, large-area image sensors4-6, microprocessors7-11, wearable healthcare patches12-15, digital microfluidics16,17 and more. Although silicon-based complementary metal-oxide-semiconductor (CMOS) chips are manufactured using several dies on a single wafer and the multi-project wafer concept enables the aggregation of various CMOS chip designs within the same die, TFT fabrication is currently lacking a fully verified, universal design approach. This increases the cost and complexity of manufacturing TFT-based flexible electronics, slowing down their integration into more mature applications and limiting the design complexity achievable by foundries. Here we show a stable and high-yield TFT platform for the fabless manufacturing of two mainstream TFT technologies, wafer-based amorphous indium-gallium-zinc oxide and panel-based low-temperature polycrystalline silicon, two key TFT technologies applicable to flexible substrates. We have designed the iconic 6502 microprocessor in both technologies as a use case to demonstrate and expand the multi-project wafer approach. Enabling the foundry model for TFTs, as an analogy of silicon CMOS technologies, can accelerate the growth and development of applications and technologies based on these devices.


Asunto(s)
Silicio , Transistores Electrónicos , Silicio/química , Electrónica/instrumentación , Indio/química , Galio/química , Óxido de Zinc/química , Diseño de Equipo , Semiconductores
2.
Molecules ; 29(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38611744

RESUMEN

The green synthesis of zinc oxide nanoparticles (ZnO NPs) using plants has grown in significance in recent years. ZnO NPs were synthesized in this work via a chemical precipitation method with Jasminum sambac (JS) leaf extract serving as a capping agent. These NPs were characterized using UV-vis spectroscopy, FT-IR, XRD, SEM, TEM, TGA, and DTA. The results from UV-vis and FT-IR confirmed the band gap energies (3.37 eV and 3.50 eV) and the presence of the following functional groups: CN, OH, C=O, and NH. A spherical structure and an average grain size of 26 nm were confirmed via XRD. The size and surface morphology of the ZnO NPs were confirmed through the use of SEM analysis. According to the TEM images, the ZnO NPs had an average mean size of 26 nm and were spherical in shape. The TGA curve indicated that the weight loss starts at 100 °C, rising to 900 °C, as a result of the evaporation of water molecules. An exothermic peak was seen during the DTA analysis at 480 °C. Effective antibacterial activity was found at 7.32 ± 0.44 mm in Gram-positive bacteria (S. aureus) and at 15.54 ± 0.031 mm in Gram-negative (E. coli) bacteria against the ZnO NPs. Antispasmodic activity: the 0.3 mL/mL sample solution demonstrated significant reductions in stimulant effects induced by histamine (at a concentration of 1 µg/mL) by (78.19%), acetylcholine (at a concentration of 1 µM) by (67.57%), and nicotine (at a concentration of 2 µg/mL) by (84.35%). The antipyretic activity was identified using the specific Shodhan vidhi method, and their anti-inflammatory properties were effectively evaluated with a denaturation test. A 0.3 mL/mL sample solution demonstrated significant reductions in stimulant effects induced by histamine (at a concentration of 1 µg/mL) by 78.19%, acetylcholine (at a concentration of 1 µM) by 67.57%, and nicotine (at a concentration of 2 µg/mL) by 84.35%. These results underscore the sample solution's potential as an effective therapeutic agent, showcasing its notable antispasmodic activity. Among the administered doses, the 150 mg/kg sample dose exhibited the most potent antipyretic effects. The anti-inflammatory activity of the synthesized NPs showed a remarkable inhibition percentage of (97.14 ± 0.005) at higher concentrations (250 µg/mL). Furthermore, a cytotoxic effect was noted when the biologically synthesized ZnO NPs were introduced to treated cells.


Asunto(s)
Antipiréticos , Jasminum , Nanopartículas , Óxido de Zinc , Óxido de Zinc/farmacología , Parasimpatolíticos , Acetilcolina , Escherichia coli , Histamina , Nicotina , Espectroscopía Infrarroja por Transformada de Fourier , Staphylococcus aureus , Antiinflamatorios/farmacología , Antibacterianos/farmacología , Extractos Vegetales/farmacología
3.
J Hazard Mater ; 470: 134245, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38603910

RESUMEN

This study delved into the physiological and molecular mechanisms underlying the mitigation of cadmium (Cd) stress in the model medicinal plant Salvia miltiorrhiza through the application of ZnO quantum dots (ZnO QDs, 3.84 nm). A pot experiment was conducted, wherein S. miltiorrhiza was subjected to Cd stress for six weeks with foliar application of 100 mg/L ZnO QDs. Physiological analyses demonstrated that compared to Cd stress alone, ZnO QDs improved biomass, reduced Cd accumulation, increased the content of photosynthetic pigments (chlorophyll and carotenoids), and enhanced the levels of essential nutrient elements (Ca, Mn, and Cu) under Cd stress. Furthermore, ZnO QDs significantly lowered Cd-induced reactive oxygen species (ROS) content, including H2O2, O2-, and MDA, while enhancing the activity of antioxidant enzymes (SOD, POD, APX, and GSH-PX). Additionally, ZnO QDs promoted the biosynthesis of primary and secondary metabolites, such as total protein, soluble sugars, terpenoids, and phenols, thereby mitigating Cd stress in S. miltiorrhiza. At the molecular level, ZnO QDs were found to activate the expression of stress signal transduction-related genes, subsequently regulating the expression of downstream target genes associated with metal transport, cell wall synthesis, and secondary metabolite synthesis via transcription factors. This activation mechanism contributed to enhancing Cd tolerance in S. miltiorrhiza. In summary, these findings shed light on the mechanisms underlying the mitigation of Cd stress by ZnO QDs, offering a potential nanomaterial-based strategy for enhancing Cd tolerance in medicinal plants.


Asunto(s)
Cadmio , Puntos Cuánticos , Especies Reactivas de Oxígeno , Salvia miltiorrhiza , Óxido de Zinc , Puntos Cuánticos/química , Óxido de Zinc/química , Óxido de Zinc/toxicidad , Salvia miltiorrhiza/efectos de los fármacos , Salvia miltiorrhiza/metabolismo , Cadmio/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/efectos de los fármacos , Antioxidantes/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos
4.
Cryo Letters ; 45(2): 100-105, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38557988

RESUMEN

BACKGROUND: Nanotechnology can benefit livestock industries, especially through postharvest semen manipulation. Zinc oxide nanoparticles (Np-ZnO) are potentially an example. OBJECTIVE: To investigate how the addition of zinc oxide nanoparticles (Np-ZnO) affected the characteristics of post-thawed goat semen. MATERIALS AND METHODS: Seminal pools from four Saanen bucks were used. Semen was diluted in Tris-egg yolk extender, supplemented with Np-ZnO (0, 50, 100 or 200 ug/mL), frozen and stored in liquid nitrogen (-196 degree C), and thawed in a water bath (37 degree C / 30 s). Semen samples were evaluated for sperm kinetics by computer-assisted sperm analysis (CASA), and assessed for other functional properties by epifluorescence microscopy, such as plasma membrane integrity (PMi), acrosomal membrane integrity (ACi) and mitochondrial membrane potential (MMP). RESULTS: For total motility (TM), the group treated with 200 ug/mL Np-ZnO was superior to the control. In straight-line velocity (VSL), the control was better than the group containing 200 ug/mL of Np-ZnO. For average path velocity (VAP), the control was higher than with 100 ug/mL Np-ZnO. For linearity (LIN), the control was higher than with 200 µg/mL Np-ZnO. In straightness (STR), the control and 100 µg/mL Np-ZnO were higher than with 200 ug/mL Np-ZnO. In wobble (WOB), the control was better than the 50 µg/mL Np-ZnO treatment. In PMi, ACi and MMP no significant differences were found. CONCLUSION: The addition of Np-ZnO (200 ug/mL) to the goat semen freezing extender improved the total motility of cells, whilst negatively affecting sperm kinetics. https://doi.org/10.54680/fr24210110512.


Asunto(s)
Preservación de Semen , Óxido de Zinc , Animales , Masculino , Congelación , Semen , Óxido de Zinc/farmacología , Cabras , Crioprotectores/farmacología , Criopreservación/veterinaria , Motilidad Espermática , Preservación de Semen/veterinaria , Espermatozoides
5.
Int J Nanomedicine ; 19: 3045-3070, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38559447

RESUMEN

Background: Diabetes Mellitus is a multisystem chronic pandemic, wound inflammation, and healing are still major issues for diabetic patients who may suffer from ulcers, gangrene, and other wounds from uncontrolled chronic hyperglycemia. Marshmallows or Althaea officinalis (A.O.) contain bioactive compounds such as flavonoids and phenolics that support wound healing via antioxidant, anti-inflammatory, and antibacterial properties. Our study aimed to develop a combination of eco-friendly formulations of green synthesis of ZnO-NPs by Althaea officinalis extract and further incorporate them into 2% chitosan (CS) gel. Method and Results: First, develop eco-friendly green Zinc Oxide Nanoparticles (ZnO-NPs) and incorporate them into a 2% chitosan (CS) gel. In-vitro study performed by UV-visible spectrum analysis showed a sharp peak at 390 nm, and Energy-dispersive X-ray (EDX) spectrometry showed a peak of zinc and oxygen. Besides, Fourier transforms infrared (FTIR) was used to qualitatively validate biosynthesized ZnO-NPs, and transmission electron microscope (TEM) showed spherical nanoparticles with mean sizes of 76 nm and Zeta potential +30mV. The antibacterial potential of A.O.-ZnO-NPs-Cs was examined by the diffusion agar method against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). Based on the zone of inhibition and minimal inhibitory indices (MIC). In addition, an in-silico study investigated the binding affinity of A.O. major components to the expected biological targets that may aid wound healing. Althaea Officinalis, A.O-ZnO-NPs group showed reduced downregulation of IL-6, IL-1ß, and TNF-α and increased IL-10 levels compared to the control group signaling pathway expression levels confirming the improved anti-inflammatory effect of the self-assembly method. In-vivo study and histopathological analysis revealed the superiority of the nanoparticles in reducing signs of inflammation and wound incision in rat models. Conclusion: These biocompatible green zinc oxide nanoparticles, by using Althaea Officinalis chitosan gel ensure an excellent new therapeutic approach for quickening diabetic wound healing.


Asunto(s)
Althaea , Quitosano , Diabetes Mellitus , Nanopartículas del Metal , Óxido de Zinc , Humanos , Animales , Ratas , Óxido de Zinc/química , Quitosano/química , Althaea/metabolismo , Interleucina-6 , Factor de Necrosis Tumoral alfa , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/química , Cicatrización de Heridas , Antiinflamatorios/farmacología , Inflamación , Flores , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/farmacología , Extractos Vegetales/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
6.
Environ Monit Assess ; 196(5): 428, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573523

RESUMEN

Carbonaceous materials produced from agricultural waste (palm kernel shell) by pyrolysis can be a proper type of low-cost adsorbent for wide uses in radioactive effluent treatment. In this context, the as-produced bio-char (labeled as PBC) and its sub-driven sulfuric acid and zinc oxide activated carbons (labeled as PBC-SA, and PBC-Zn respectively) were employed as adsorbents for uranium sorption from aqueous solution. Various analytical techniques, including SEM (Scanning Electron Microscopy), EXD (X-ray Diffraction), BET (Brunauer-Emmett-Teller), FTIR (Fourier Transform Infrared Spectroscopy), and Zeta potential, provide insights into the material characteristics. Kinetic and isotherm investigations illuminated that the sorption process using the three sorbents is nicely fitted with Pseudo-second-order-kinetic and Langmuir isotherm models. The picked data display that the equilibrium time was 60 min, and the maximum sorption capacity was 9.89, 16.8, and 21.9 mg/g for PBC, PBC-SA, and PBC-Zn respectively, which reflects the highest affinity for zinc oxide, activated bio-char, among the three adsorbents, for uranium taking out from radioactive wastewater. Sorption thermodynamics declare that the sorption of U(VI) is an exothermic, spontaneous, and feasible process. About 92% of the uranium-loaded PBC-Zn sorbent was eluted using 1.0 M CH3COONa sodium ethanoate solution, and the sorbent demonstrated proper stability for 5 consecutive sorption/desorption cycles.


Asunto(s)
Uranio , Óxido de Zinc , Carbón Orgánico , Monitoreo del Ambiente , Termodinámica
7.
Plant Physiol Biochem ; 210: 108624, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636254

RESUMEN

Heavy metals are one of the most damaging environmental toxins that hamper growth of plants. These noxious chemicals include lead (Pb), arsenic (As), nickel (Ni), cadmium (Cd) and chromium (Cr). Chromium is one of the toxic metal which induces various oxidative processes in plants. The emerging role of nanoparticles as pesticides, fertilizers and growth regulators have attracted the attention of various scientists. Current study was conducted to explore the potential of zinc oxide nanoparticles (ZnONPs) alone and in combination with plant growth promoting rhizobacteria (PGPR) Klebsiella sp. SBP-8 in Cr stress alleviation in Brassica juncea (L.). Chromium stress reduced shoot fresh weight (40%), root fresh weight (28%), shoot dry weight (28%) and root dry weight (34%) in B. juncea seedlings. Chromium stressed B. juncea plants showed enhanced levels of malondialdehyde (MDA), electrolyte leakage (EL), hydrogen peroxide (H2O2) and superoxide ion (O2• -). However, co-supplementation of ZnONPs and Klebsiella sp. SBP-8 escalated the activity of antioxidant enzymes i.e., superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) in B. juncea grown in normal and Cr-toxic soil. It is further proposed that combined treatment of ZnONPs and Klebsiella sp. SBP-8 may be useful for alleviation of other abiotic stresses in plants.


Asunto(s)
Antioxidantes , Cromo , Klebsiella , Planta de la Mostaza , Óxido de Zinc , Planta de la Mostaza/efectos de los fármacos , Planta de la Mostaza/microbiología , Planta de la Mostaza/metabolismo , Cromo/toxicidad , Cromo/metabolismo , Antioxidantes/metabolismo , Klebsiella/metabolismo , Klebsiella/efectos de los fármacos , Óxido de Zinc/farmacología , Adsorción , Nanopartículas del Metal/química , Nanopartículas/química , Contaminantes del Suelo/toxicidad
8.
J Oleo Sci ; 73(5): 683-693, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38522941

RESUMEN

In this study, we outlined the green synthesis of Zinc oxide nanoparticles (ZnO NPs) using the plant-mediated method. Employing the nitrate derivative of Zinc and the extract from the native medicinal plant, Ottonia anisum, the nanoparticles were effectively produced. After obtaining a yellow-colored paste, it was meticulously dried, gathered, and set aside for subsequent examination. The UV-visible spectrometry analysis indicated an absorption peak at 320 nm, which is indicative of ZnO NPs. Characterization techniques, such as XRD and HR-TEM, confirmed the existence of agglomerated ZnO NPs with an average diameter of 40 nm. Through EDS analysis, distinct energy signals for both Zinc and Oxygen were observed, confirming their composition. Furthermore, FT-IR spectroscopy highlighted an absorption peak for Zn-O bonding in the range of 400 to 600 cm -1 . Further, we employed three distinct pain models in mice to evaluate the influence of ZnO NPs on the nociceptive threshold. Our findings revealed that, when orally administered, ZnO NPs at concentrations ranging from 5-20 mg/kg exerted a dose-dependent analgesic effect in both the hot-plate and the acetic acid-induced writhing tests. Moreover, when ZnO NPs were administered at doses between 2.5-10 mg/kg, there was a notable reduction in pain responses during both the initial and subsequent phases of the formalin test, but no change in PGE 2 production within the mice's hind paw was found. On the other hand, acute lung injury studies revealed that the administration of ZnO NPs orally 90 minutes prior to HCl instillation decreased the neutrophil infiltration into the lungs in a doseresponsive manner. This reduction in pulmonary inflammation was paralleled by a significant decrease in lung edema, as evidenced by the reduced total protein content in the BALF. Additionally, the ZnO NPs appeared to recalibrate the lung's redox equilibrium following HCl exposure, which was determined through measurements of ROS, malondialdehyde, glutathione, and catalase activity. All these results further indicated the potential of biofabricated ZnO NPs for future applications in analgesics and acute lung injury treatments.


Asunto(s)
Lesión Pulmonar Aguda , Analgésicos , Extractos Vegetales , Óxido de Zinc , Animales , Extractos Vegetales/química , Extractos Vegetales/farmacología , Analgésicos/síntesis química , Analgésicos/farmacología , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/inducido químicamente , Ratones , Masculino , Nanopartículas del Metal/química , Tecnología Química Verde , Relación Dosis-Respuesta a Droga , Modelos Animales de Enfermedad , Dolor/tratamiento farmacológico , Dolor/inducido químicamente , Ácido Acético
9.
Vet Rec ; 194(6): 213, 2024 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-38488608

Asunto(s)
Óxido de Zinc , Animales , Zinc
10.
Int J Biol Macromol ; 263(Pt 1): 130694, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38458284

RESUMEN

Zinc oxide (ZnO) has attracted a substantial interest in cancer research owing to their promising utility in cancer imaging and therapy. This study aimed to synthesized ZnO nanoflowers coated with albumin to actively target and the inhibit skin melanoma cells. We synthesized bovine serum albumin (BSA)-coated ZnO nanoflowers (BSA@ZnO NFs) and evaluated it's in vitro and in vivo therapeutic efficacy for skin cancer cells. BSA@ZnO NFs were prepared via single-step reduction method in the presence of plant extract (Heliotropium indicum) act as a capping agent, and further the successful fabrication was established by various physico-chemical characterizations, such as scanning electron microscopy (SEM), Fourier transform infra-red (FT-IR) spectroscopy, and x-rays diffraction (XRD) analysis. The fabricated BSA@ZnO NFs appeared flower like with multiple cone-shaped wings and average hydration size of 220.8 ± 12.6 nm. Further, BSA@ZnO NFs showed enhanced cellular uptake and cytocidal effects against skin cancer cells by inhibiting their growth via oxidative stress compared uncoated ZnO NFs. Moreover, BSA@ZnO NFs showed enhance biosafety, blood circulation time, tumor accumulation and in vivo tumor growth inhibition compared to ZnO NFs. In short, our findings suggesting BSA@ZnO NFs as a promising candidate for various types of cancer treatment along with chemotherapy.


Asunto(s)
Melanoma , Nanopartículas del Metal , Neoplasias Cutáneas , Óxido de Zinc , Animales , Humanos , Óxido de Zinc/farmacología , Óxido de Zinc/química , Espectroscopía Infrarroja por Transformada de Fourier , Melanoma/tratamiento farmacológico , Albúmina Sérica Bovina/química , Neoplasias Cutáneas/tratamiento farmacológico , Estrés Oxidativo , Antibacterianos/farmacología , Nanopartículas del Metal/química , Extractos Vegetales/química
11.
Microb Cell Fact ; 23(1): 92, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38539154

RESUMEN

Excessive consumption of antibiotics is considered one of the top public health threats, this necessitates the development of new compounds that can hamper the spread of infections. A facile green technology for the biosynthesis of Zinc oxide nanoparticles (ZnO NPs) using the methanol extract of Spirulina platensis as a reducing and stabilizing agent has been developed. A bunch of spectroscopic and microscopic investigations confirmed the biogenic generation of nano-scaled ZnO with a mean size of 19.103 ± 5.66 nm. The prepared ZnO NPs were scrutinized for their antibacterial and antibiofilm potentiality, the inhibition zone diameters ranged from 12.57 ± 0.006 mm to 17.33 ± 0.006 mm (at 20 µg/mL) for a variety of Gram-positive and Gram-negative pathogens, also significant eradication of the biofilms formed by Staphylococcus aureus and Klebsiella pneumoniae by 96.7% and 94.8% respectively was detected. The free radical scavenging test showed a promising antioxidant capacity of the biogenic ZnO NPs (IC50=78.35 µg/mL). Furthermore, the anti-inflammatory role detected using the HRBCs-MSM technique revealed an efficient stabilization of red blood cells in a concentration-dependent manner. In addition, the biogenic ZnO NPs have significant anticoagulant and antitumor activities as well as minimal cytotoxicity against Vero cells. Thus, this study offered green ZnO NPs that can act as a secure substitute for synthetic antimicrobials and could be applied in numerous biomedical applications.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Spirulina , Óxido de Zinc , Animales , Chlorocebus aethiops , Óxido de Zinc/farmacología , Óxido de Zinc/química , Células Vero , Nanopartículas/química , Antibacterianos/farmacología , Antibacterianos/química , Biopelículas , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/farmacología , Extractos Vegetales/química
12.
Mol Biol Rep ; 51(1): 423, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489102

RESUMEN

BACKGROUND: Oral health remains a significant global concern with the prevalence of oral pathogens and the increasing incidence of oral cancer posing formidable challenges. Additionally, the emergence of antibiotic-resistant strains has complicated treatment strategies, emphasizing the urgent need for alternative therapeutic approaches. Recent research has explored the application of plant compounds mediated with nanotechnology in oral health, focusing on the antimicrobial and anticancer properties. METHODS: In this study, curcumin (Cu)-mediated zinc oxide nanoparticles (ZnO NPs) were synthesized and characterized using SEM, EDAX, UV spectroscopy, FTIR, and XRD to validate their composition and structural features. The antioxidant and antimicrobial activity of ZnO-CU NPs was investigated through DPPH, ABTS, and zone of inhibition assays. Apoptotic assays and gene expression analysis were performed in KB oral squamous carcinoma cells to identify their anticancer activity. RESULTS: ZnO-CU NPs showcased formidable antioxidant prowess in both DPPH and ABTS assays, signifying their potential as robust scavengers of free radicals. The determined minimal inhibitory concentration of 40 µg/mL against dental pathogens underscored the compelling antimicrobial attributes of ZnO-CU NPs. Furthermore, the interaction analysis revealed the superior binding affinity and intricate amino acid interactions of ZnO-CU NPs with receptors on dental pathogens. Moreover, in the realm of anticancer activity, ZnO-CU NPs exhibited a dose-dependent response against Human Oral Epidermal Carcinoma KB cells at concentrations of 10 µg/mL, 20 µg/mL, 40 µg/mL, and 80 µg/mL. Unraveling the intricate mechanism of apoptotic activity, ZnO-CU NPs orchestrated the upregulation of pivotal genes, including BCL2, BAX, and P53, within the KB cells. CONCLUSIONS: This multifaceted approach, addressing both antimicrobial and anticancer activity, positions ZnO-CU NPs as a compelling avenue for advancing oral health, offering a comprehensive strategy for tackling both oral infections and cancer.


Asunto(s)
Antiinfecciosos , Benzotiazoles , Carcinoma de Células Escamosas , Curcumina , Nanopartículas del Metal , Neoplasias de la Boca , Ácidos Sulfónicos , Óxido de Zinc , Humanos , Óxido de Zinc/farmacología , Óxido de Zinc/química , Curcumina/farmacología , Nanopartículas del Metal/química , Antioxidantes/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Carcinoma de Células Escamosas/tratamiento farmacológico , Neoplasias de la Boca/tratamiento farmacológico , Biopelículas , Extractos Vegetales/química , Pruebas de Sensibilidad Microbiana
13.
ACS Appl Bio Mater ; 7(4): 2519-2532, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38530961

RESUMEN

A fascinating problem in the fields of nanoscience and nanobiotechnology has recently emerged, and to tackle this, the production of metal oxide nanoparticles using plant extracts offers numerous benefits over traditional physicochemical methods. In the present investigation, ZnO nanoparticles were fabricated from Bauhinia racemosa Lam. (BR) leaves extract with various transition metal (TM) dopants (Ni, Mn, and Co). Plant leaves extract containing metal nitrate solutions were utilized as a precursor to synthesize the pristine and TM-doped ZnO nanoparticles. Structural, functional, optical, and surface properties of the fabricated samples were studied by using physicochemical and photoelectrochemical measurements. The organic pollutants tetracycline (TC), ampicillin (AMP), and amoxicillin (AMX) were used in the photocatalytic degradation assessment of the fabricated samples. Through X-ray diffraction (XRD) and transmission electron microscopy (TEM) investigation, the fabricated nanoparticles wurtzite crystal structure was verified. Moreover, Fourier transform infrared (FT-IR) analysis verified the existence of functional groups in the fabricated nanoparticles. The migration of electrons from the deep donor level and zinc interstitial to the Zn-defect and O-defect is related to the emission peaks seen at 468, 480, 534, and 450 nm in photoluminescence (PL) spectra. Co-ZnO nanoparticles demonstrated potent and excellent photocatalytic degradation performance for TC (91.09%), AMP (87.97%), and AMX (92.42%) antibiotics within 210, 180, and 150 min of visible light irradiation. Co-ZnO nanoparticles also demonstrated strong antimicrobial performance against Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Aspergillus flavus, Aspergillus niger, and Bacillus subtilis. Further investigation of in vitro cytotoxic potential against the A549 cell line (IC50 = 24 ± 0.5 µg/mL) utilizing MTT assay and the free radical scavenging performance of Co-ZnO nanoparticles estimated by DPPH assay utilizing l-ascorbic acid as a reference was also performed. Anti-inflammatory potential is also reviewed by comparing it with the standard drug Diclofenac, and the maximum activity was obtained for Ni-ZnO nanoparticles (IC50 = 72.4 µg/mL).


Asunto(s)
Bauhinia , Nanopartículas del Metal , Óxido de Zinc , Óxido de Zinc/farmacología , Óxido de Zinc/química , Bauhinia/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Nanopartículas del Metal/uso terapéutico , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/química , Amoxicilina , Tetraciclina , Extractos Vegetales/farmacología , Extractos Vegetales/química
14.
Sci Rep ; 14(1): 5789, 2024 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461344

RESUMEN

The production of surface compounds coated with active substances has gained significant attention in recent years. This study investigated the physical, mechanical, antioxidant, and antimicrobial properties of a composite made of starch and zinc oxide nanoparticles (ZnO NPs) containing various concentrations of Ferula gummosa essential oil (0.5%, 1%, and 1.5%). The addition of ZnO NPs improved the thickness, mechanical and microbial properties, and reduced the water vapor permeability of the starch active film. The addition of F. gummosa essential oil to the starch nanocomposite decreased the water vapor permeability from 6.25 to 5.63 g mm-2 d-1 kPa-1, but this decrease was significant only at the concentration of 1.5% of essential oils (p < 0.05). Adding 1.5% of F. gummosa essential oil to starch nanocomposite led to a decrease in Tensile Strength value, while an increase in Elongation at Break values was observed. The results of the antimicrobial activity of the nanocomposite revealed that the pure starch film did not show any lack of growth zone. The addition of ZnO NPs to the starch matrix resulted in antimicrobial activity on both studied bacteria (Staphylococcus aureus and Escherichia coli). The highest antimicrobial activity was observed in the starch/ZnO NPs film containing 1.5% essential oil with an inhibition zone of 340 mm2 on S. aureus. Antioxidant activity increased significantly with increasing concentration of F. gummosa essential oil (P < 0.05). The film containing 1.5% essential oil had the highest (50.5%) antioxidant activity. Coating also improved the chemical characteristics of fish fillet. In conclusion, the starch nanocomposite containing ZnO NPs and F. gummosa essential oil has the potential to be used in the aquatic packaging industry.


Asunto(s)
Antiinfecciosos , Ferula , Nanopartículas , Aceites Volátiles , Óxido de Zinc , Animales , Aceites Volátiles/farmacología , Aceites Volátiles/química , Óxido de Zinc/farmacología , Óxido de Zinc/química , Antioxidantes/farmacología , Antioxidantes/química , Staphylococcus aureus , Vapor , Antiinfecciosos/farmacología , Antiinfecciosos/química , Almidón/química , Escherichia coli , Nanopartículas/química
15.
Nanotechnology ; 35(26)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38527365

RESUMEN

The fruit extract ofBuchanania obovataand the eutectic-based ionic liquid were utilized, in an eco-friendly, inexpensive, simple method, for synthesizing zinc oxide nanoparticles (ZnO NPs). The influence of the reducing, capping and stabilizing agents, in both mediums, on the structure, optical, and morphological properties of ZnO NPs was extensively investigated. The surface plasmon resonance peaks were observed at 340 nm and 320 nm for the fruit-based and the eutectic-based ionic liquid mediums, respectively, indicating the formation of ZnO NPs. XRD results confirmed the wurtzite structure of the ZnO NPs, exhibiting hexagonal phases in the diffraction patterns. The SEM and TEM images display that the biosynthesized ZnO NPs exhibit crystalline and hexagonal shape, with an average size of 40 nm for the fruit-based and 25 nm for the eutectic-based ionic liquid. The Brunauer-Emmett-Teller (BET) surface area analysis, revealed a value ∼13 m2g-1for ZnO NPs synthesized using the fruit extract and ∼29 m2g-1for those synthesized using the eutectic-based ionic liquid. The antibacterial activity of the biosynthesized ZnO NPs was assessed against clinically isolated Gram-negative (E. coli) and Gram-positive (S. aureus) bacterial strains using the inhibition zone method. The ZnO NPs produced from the eutectic-based ionic liquids confirmed superior antibacterial activity against bothS. aureusandE. colicompared to those mediated by the utilized fruit extract. At a concentration of 1000, the eutectic-based ionic liquid mediated ZnO NPs displayed a maximum inhibition zone of 16 mm againstS. aureus, while againstE. coli, a maximum inhibition zone of 15 mm was observed using the fruit extract mediated ZnO NPs. The results of this study showed that the biosynthesized ZnO NPs can be utilized as an efficient substitute to the frequently used chemical drugs and covering drug resistance matters resulted from continual usage of chemical drugs by users.


Asunto(s)
Líquidos Iónicos , Nanopartículas del Metal , Nanopartículas , Óxido de Zinc , Óxido de Zinc/farmacología , Óxido de Zinc/química , Líquidos Iónicos/farmacología , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacología , Antibacterianos/química , Nanopartículas/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Pruebas de Sensibilidad Microbiana , Nanopartículas del Metal/química
16.
Environ Sci Pollut Res Int ; 31(18): 26806-26823, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38453761

RESUMEN

Toxic organic dyes-containing wastewater treatment by adsorption and photocatalytic techniques is widely applied, but adsorbents and photocatalysts are often synthesized through chemical methods, leading to secondary pollution by released chemicals. Here, we report a benign method using Tecoma stans floral extract to produce MgFe2O4/ZnO (MGFOZ) nanoparticles for adsorption and photocatalytic degradation of coomassie brilliant blue (CBB) dye. Green MGFOZ owned a surface area of 9.65 m2/g and an average grain size of 54 nm. This bio-based nanomaterial showed higher removal percentage and better recyclability (up to five cycles) than green MgFe2O4 and ZnO nanoparticles. CBB adsorption by MGFOZ was examined by kinetic and isotherm models with better fittings of Bangham and Langmuir or Temkin. RSM-based optimization was conducted to reach an actual adsorption capacity of 147.68 mg/g. Moreover, MGFOZ/visible light system showed a degradation efficiency of 89% CBB dye after 120 min. CBB adsorption can be controlled by both physisorption and chemisorption while •O2- and •OH radicals are responsible for photo-degradation of CBB dye. This study suggested that MGFOZ can be a promising adsorbent and catalyst for removal of organic dyes in water.


Asunto(s)
Colorantes de Rosanilina , Contaminantes Químicos del Agua , Óxido de Zinc , Adsorción , Colorantes de Rosanilina/química , Óxido de Zinc/química , Contaminantes Químicos del Agua/química , Catálisis , Nanopartículas/química , Extractos Vegetales/química , Colorantes/química , Flores/química , Compuestos Férricos/química
17.
Int J Biol Macromol ; 263(Pt 2): 130391, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417746

RESUMEN

The textiles for medical use and the purification of textile factory effluents have become the most crucial part of the human healthcare sector. In this study bioactive compounds produced by four distinct plant extracts were used for the synthesis of zinc oxide nanoparticles. The four different ZnO nanoparticles were comprehensively characterized by different analytical techniques. XRD analysis revealed the crystalline nature and phase purity of the ZnO nanoparticles. FTIR spectra provided information on the function of plant extracts in the stabilization or capping process. The size distribution and morphological diversity of the nanoparticles were further clarified by SEM and TEM images. The photocatalytic degradation activity of the four ZnO nanoparticles on two different dyes showed that ZnO nanoparticles prepared from A. indica were most effective for the degradation of 98 % and 91 % of Rhodamine B and Alizarin red dye respectively. The selected ZnO nanoparticles from A. indica were used to prepare ZnO-chitosan nanocomposites before coating on cotton fabrics. The hydrophobicity, UV protection factor, and antibacterial activity of ZnO-chitosan nanocomposites, when coated on cotton fabrics, were also examined. The overall results demonstrated the ZnO and ZnO-chitosan nanocomposite prepared in the present study as a promising material for environmental remediation application.


Asunto(s)
Quitosano , Nanocompuestos , Óxido de Zinc , Humanos , Óxido de Zinc/química , Quitosano/química , Antibacterianos/farmacología , Antibacterianos/química , Textiles , Colorantes , Nanocompuestos/química , Extractos Vegetales/química
18.
Eur J Pharm Biopharm ; 197: 114237, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38408710

RESUMEN

Antler removal in deer is a common practice for various purposes, including meat production and traditional medicine. However, the current industry practice using lidocaine as a local anesthetic has limitations, such as short duration of action and the potential for postoperative infections. In this study, we investigated the performance of a ZnO collagen nanocomposites loaded with local anesthetics to improve wound management and alleviate pain associated with antler removal in red deer. The research involved the preparation of collagen nanocomposites with local anesthetics and testing the drug release rates using in vitro drug release tests. Pharmacokinetic analysis was performed to evaluate the total drug release from the collagen matrix in red deer after velvet removal. Additionally, the analgesic efficacy of these collagen nanocomposite dressings was assessed after antler removal in red deer. Functionalized ZnO nanoparticles were incorporated into collagen fibers to enhance their mechanical stability and prolong drug release. The developed collagen nanocomposites aimed to slowly release local anesthetics and promote wound healing. The findings of this research could have significant implications for improving the pain management and wound healing associated with antler removal in deer. The results obtained from the in vitro drug release tests, pharmacokinetic analysis, and analgesic efficacy evaluations provide valuable insights into the understanding and development of novel approaches for antler removal procedures in red deer. The findings contribute to the advancement of knowledge in this field and lay the foundation for future implementation of improved techniques and protocols for antler removal.


Asunto(s)
Cuernos de Venado , Ciervos , Óxido de Zinc , Animales , Anestésicos Locales , Manejo del Dolor , Colágeno , Dolor/tratamiento farmacológico , Vendajes , Analgésicos
19.
Environ Sci Pollut Res Int ; 31(13): 19123-19147, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38379040

RESUMEN

The sustainable synthesis of zinc oxide nanoparticles (ZnO-NPs) using plant extracts has gained significant attention in recent years due to its eco-friendly nature and potential applications in numerous fields. This synthetic approach reduces the reliance on non-renewable resources and eliminates the need for hazardous chemicals, minimizing environmental pollution and human health risks. These ZnO-NPs can be used in environmental remediation applications, such as wastewater treatment or soil remediation, effectively removing pollutants and improving overall ecosystem health. These NPs possess a high surface area and band gap of 3.2 eV, can produce both OH° (hydroxide) and O2-° (superoxide) radicals for the generation of holes (h+) and electrons (e-), resulting in oxidation and reduction of the pollutants in their valence band (VB) and conduction band (CB) resulting in degradation of dyes (95-100% degradation of MB, MO, and RhB dyes), reduction and removal of heavy metal ions (Cu2+, Pb2+, Cr6+, etc.), degradation of pharmaceutical compounds (paracetamol, urea, fluoroquinolone (ciprofloxacin)) using photocatalysis. Here, we review an overview of various plant extracts used for the green synthesis of ZnO NPs and their potential applications in environmental remediation including photocatalysis, adsorption, and heavy metal remediation. This review summarizes the most recent studies and further research perspectives to explore their applications in various fields.


Asunto(s)
Contaminantes Ambientales , Restauración y Remediación Ambiental , Nanopartículas del Metal , Metales Pesados , Nanopartículas , Óxido de Zinc , Humanos , Óxido de Zinc/química , Ecosistema , Nanopartículas/química , Colorantes/química , Extractos Vegetales/química , Nanopartículas del Metal/química , Antibacterianos
20.
Sci Rep ; 14(1): 4689, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409460

RESUMEN

Antimicrobial resistance is a worldwide health problem that demands alternative antibacterial strategies. Modified nano-composites can be an effective strategy as compared to traditional medicine. The current study was designed to develop a biocompatible nano-drug delivery system with increased efficacy of current therapeutics for biomedical applications. Zinc oxide nanoparticles (ZnO-NPs) were synthesized by chemical and green methods by mediating with Moringa olifera root extract. The ZnO-NPs were further modified by drug conjugation and coating with PEG (CIP-PEG-ZnO-NPs) to enhance their therapeutic potential. PEGylated ZnO-ciprofloxacin nano-conjugates were characterized by Fourier Transform Infrared spectroscopy, X-ray diffractometry, and Scanning Electron Microscopy. During antibacterial screenings chemically and green synthesized CIP-PEG-ZnO-NPs revealed significant activity against clinically isolated Gram-positive and Gram-negative bacterial strains. The sustainable and prolonged release of antibiotics was noted from the CIP-PEG conjugated ZnO-NPs. The synthesized nanoparticles were found compatible with RBCs and Baby hamster kidney cell lines (BHK21) during hemolytic and MTT assays respectively. Based on initial findings a broad-spectrum nano-material was developed and tested for biomedical applications that eradicated Staphylococcus aureus from the infectious site and showed wound-healing effects during in vivo applications. ZnO-based nano-drug carrier can offer targeted drug delivery, and improved drug stability and efficacy resulting in better drug penetration.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Óxido de Zinc , Ciprofloxacina/farmacología , Óxido de Zinc/química , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/química , Nanopartículas/química , Microscopía Electrónica de Rastreo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Espectroscopía Infrarroja por Transformada de Fourier , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA