Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Trace Elem Med Biol ; 79: 127208, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37269647

RESUMEN

OBJECTIVE: Parkinson's disease (PD) is a neurodegenerative disease that is associated with oxidative stress. Due to the anti-inflammatory and antioxidant functions of Selenium (Se), this molecule may have neuroprotective functions in PD; however, the involvement of Se in such a protective function is unclear. METHODS: 1-methyl-4-phenylpyridinium (MPP+), which inhibits mitochondrial respiration, is generally used to produce a reliable cellular model of PD. In this study, a MPP+-induced PD model was used to test if Se could modulate cytotoxicity, and we further capture gene expression profiles following PC12 cell treatment with MPP+ with or without Se by genome wide high-throughput sequencing. RESULTS: We identified 351 differentially expressed genes (DEGs) and 14 differentially expressed long non-coding RNAs (DELs) in MPP+-treated cells when compared to controls. We further document 244 DEGs and 27 DELs in cells treated with MPP+ and Se vs. cells treated with MPP+ only. Functional annotation analysis of DEGs and DELs revealed that these groups were enriched in genes that respond to reactive oxygen species (ROS), metabolic processes, and mitochondrial control of apoptosis. Thioredoxin reductase 1 (Txnrd1) was also identified as a biomarker of Se treatment. CONCLUSIONS: Our data suggests that the DEGs Txnrd1, Siglec1 and Klf2, and the DEL AABR07044454.1 which we hypothesize to function in cis on the target gene Cdkn1a, may modulate the underlying neurodegenerative process, and act a protective function in the PC12 cell PD model. This study further systematically demonstrated that mRNAs and lncRNAs induced by Se are involved in neuroprotection in PD, and provides novel insight into how Se modulates cytotoxicity in the MPP+-induced PD model.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Selenio , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , 1-Metil-4-fenilpiridinio/toxicidad , Selenio/farmacología , Estrés Oxidativo/genética , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/genética
2.
Phytomedicine ; 104: 154250, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35752074

RESUMEN

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative disorder involving the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Cellular clearance mechanisms, including the autophagy-lysosome pathway, are commonly affected in the pathogenesis of PD. The lysosomal Ca2+ channel mucolipin TRP channel 1 (TRPML1) is one of the most important proteins involved in the regulation of autophagy. Artemisia argyi Lev. et Vant., is a traditional Chinese herb, that has diverse therapeutic properties and is used to treat patients with skin diseases and oral ulcers. However, the neuroprotective effects of A. argyi are not explored yet. HYPOTHESIS: This study aims is to investigate the neuroprotective effects of A. argyi in promoting the TRPML1-mediated autophagy/mitophagy-enhancing effect METHODS: In this study, we used 1-methyl-4-phenyl-pyridinium (MPP+)-induced PD model established in an SH-SY5Y human neuroblastoma cell line as well as in a 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine (MPTP)-induced PD model in C57BL/6 J mice. MTT assay was conducted to measure the cell viability and further MitoSoX and DCFDA assay were used to measure the ROS. Western blot analysis was used to access levels of TRPML1, p-DRP1 (ser616), p-AKT, PI3K, and ß-catenin, Additionally, IF and IHC analysis to investigate the expression of TRPML1, LC3B, ß-catenin, TH+, α-synuclein. Mitotracker stain was used to check mitophagy levels and a lysosomal intracellular activity kit was used to measure the lysosomal dysfunction. Behavioral studies were conducted by rotarod and grip strength experiments to check motor functions. RESULTS: In our in vitro study, A. argyi rescued the MPP+-induced loss of cell viability and reduced the accumulation of mitochondrial and total reactive oxygen species (ROS). Subsequently, it increased the expression of TRPML1 protein, thereby inducing autophagy, which facilitated the clearance of toxic accumulation of α-synuclein. Furthermore, A. argyi played a neuroprotective role by activating the PI3K/AKT/ß-catenin cell survival pathway. MPP+-mediated mitochondrial damage was overcome by upregulation of mitophagy and downregulation of the mitochondrial fission regulator p-DRP1 (ser616) in SH-SY5Y cells. In the in vivo study, A. argyi ameliorated impaired motor function and rescued TH+ neurons in the SNpc region. Similar to the results of the in vitro study, TRPML1, LC3B, and ß-catenin expression was enhanced in the SNpc region in the A. argyi-treated mice brain. CONCLUSION: Thus, our results first demonstrate that A. argyi can exert neuroprotective effects by stimulating TRPML1 and rescuing neuronal cells by boosting autophagy/mitophagy and upregulating a survival pathway, suggesting that A. argyi can further be exploited to slow the progression of PD.


Asunto(s)
Artemisia , Neuroblastoma , Fármacos Neuroprotectores , Enfermedad de Parkinson , Canales de Potencial de Receptor Transitorio/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/uso terapéutico , 1-Metil-4-fenilpiridinio/toxicidad , Animales , Autofagia , Neuronas Dopaminérgicas , Humanos , Ratones , Ratones Endogámicos C57BL , Mitofagia , Neuroblastoma/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Extractos Vegetales/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , alfa-Sinucleína/metabolismo , beta Catenina/metabolismo
3.
Pak J Pharm Sci ; 34(3): 861-867, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34602407

RESUMEN

This experiment proposed to study the efficiency omega 3 fatty acid on behavioural phenotype of Parkinson's disease (PD) in mice. Totally 7 groups (each group 6 mice) were used in this assessment, each groups were treated with saline (control), MPP+, L-DOPA, Omega 3 oil, Omega 3 oil (three different concentrations) +MPP+ separately. The behavioral assessments such as bar test, open field test, maze test, hang test were noted on 7th, 14th, 21st and 28th day. After the examination period, the tested animals' midbrains and frontal cortex were dissected to analyze TBARS, GSH, Catalase, Superoxide Dismutase and Glutathione Peroxidase assay. In the bar test, 500mg omega 3 fatty acid administrated mice showed a high cataleptic scores. In open field Test, significant reductions in behavior analysis were observed from the tested mice group. Maze test and hang test doesn't show much difference. In biochemical test, tested groups showed promising results compared to control group. The result strongly proved that the omega 3 fatty acid has remarkable abilities to control the neurodegenerative diseases.


Asunto(s)
Antiparkinsonianos/farmacología , Conducta Animal/efectos de los fármacos , Ácidos Grasos Omega-3/farmacología , Estrés Oxidativo/efectos de los fármacos , Trastornos Parkinsonianos/fisiopatología , 1-Metil-4-fenilpiridinio/toxicidad , Animales , Catalasa/efectos de los fármacos , Catalasa/metabolismo , Reacción Cataléptica de Congelación , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/metabolismo , Glutatión/efectos de los fármacos , Glutatión/metabolismo , Glutatión Peroxidasa/efectos de los fármacos , Glutatión Peroxidasa/metabolismo , Levodopa/farmacología , Masculino , Mesencéfalo/efectos de los fármacos , Mesencéfalo/metabolismo , Ratones , Prueba de Campo Abierto , Trastornos Parkinsonianos/inducido químicamente , Superóxido Dismutasa/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
4.
J Integr Med ; 19(6): 537-544, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34580047

RESUMEN

OBJECTIVE: Mitophagy is known to contribute towards progression of Parkinson's disease. Korean red ginseng (KRG) is a widely used medicinal herb in East Asia, and recent studies have reported that KRG prevents 1-methyl-4-phenylpyridinium ion (MPP+)-induced cell death. This study was undertaken to investigate whether KRG suppresses MPP+-induced apoptosis and mitophagy. METHODS: SH-SY5Y cells were incubated with KRG for 24 h, and subsequently exposed to MPP+. The MPP+-induced cell death was confirmed with the 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, and the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay. Changes in the structure and function of mitochondria were confirmed using mitotracker, MitoSOX red mitochondrial superoxide indicator, parkin, and phosphatase and tensin homolog deleted on chromosome ten-induced putative kinase 1 (PINK1) immunofluorescent staining. Western blotting was performed to evaluate the expression of apoptosis-related factors in whole cells, including Bax, Bcl-2 and cleaved caspase-3, and mitophagy-related factors in the mitochondrial fraction, including cytochrome c, parkin, PINK1, translocase of the outer membrane 20 (TOM20), p62 and Beclin 1. RESULTS: MPP+ induced cell death by cytochrome c release and caspase-3 activation; however, this effect was suppressed by KRG's regulation of the expressions of Bcl-2 and Bax. Moreover, MPP+ exposure increased the mitochondrial expressions of parkin, PINK1, Beclin 1 and p62, and decreased TOM20, cytochrome c and Bcl-2 expressions. These MPP+-induced changes in the mitochondrial fraction were attenuated by treatment with KRG. CONCLUSION: KRG effectively prevents MPP+-induced SH-SY5Y cell death by regulating cytochrome c release from mitochondria and PINK1/parkin-mediated mitophagy, through regulation of the Bcl-2 family.


Asunto(s)
1-Metil-4-fenilpiridinio , Mitofagia , Panax , 1-Metil-4-fenilpiridinio/toxicidad , Apoptosis , Línea Celular Tumoral , Humanos , Mitocondrias , Panax/química , Especies Reactivas de Oxígeno
5.
Zhongguo Zhong Yao Za Zhi ; 46(2): 420-425, 2021 Jan.
Artículo en Chino | MEDLINE | ID: mdl-33645131

RESUMEN

Gastrodiae Rhizoma-Uncariae Ramulus cum Uncis is the most frequently used herbal pair in the treatment of Parkinson's disease(PD). Gastrodin and isorhynchophylline are important components of Gastrodiae Rhizoma-Uncariae Ramulus cum Uncis herb pair with anti-Parkinson mechanism. This study aimed to investigate the effect of gastrodin combined with isorhynchophylline on 1-methyl-4-phenylpyridinium(MPP~+)-induced apoptosis of PC12 cells and their antioxidant mechanism. The leakage of lactate dehydrogenase(LDH) from cells to media was analyzed by spectrophotometry. Apoptotic cells were labeled with Annexin V-fluorescein isothiocyanate(FITC) and propidium iodide(PI) and analyzed by flow cytometry. The cell cycle was analyzed using propidium iodide(PI) staining. Lipid peroxidation(LPO) level was analyzed by spectrophotometry. The mRNA expression of caspase-3 was examined by Real-time RT-PCR. The protein expressions of heme oxygenase 1(HO-1) and NADPH: quinoneoxidore-ductase 1(NQO-1) were determined by Western blot. Gastrodin combined with isorhynchophylline reduced the percentage of Annexin V-positive cells and cell cycle arrest in MPP~+-induced PC12 cells. Gastrodin combined with isorhynchophylline down-regulated the mRNA expression of caspase-3, up-regulated the protein expressions of HO-1 and NQO-1, and reduced LPO content in MPP~+-induced PC12 cells. PD98059, LY294002 or LiCl could partially reverse these changes pretreated with gastrodin combined with isorhynchophylline, suggesting that gastrodin combined with isorhynchophylline inhibited MPP~+-induced apoptosis of PC12 cells and oxidative stress through ERK1/2 and PI3 K/GSK-3ß signal pathways. Our experiments showed that gastrodin combined with isorhynchophylline could down-re-gulate the mRNA expression of caspase-3 and up-regulate the protein expressions of HO-1 and NQO-1, so as to reduce oxidative stress and inhibit apoptosis.


Asunto(s)
1-Metil-4-fenilpiridinio , Antioxidantes , 1-Metil-4-fenilpiridinio/toxicidad , Animales , Apoptosis , Alcoholes Bencílicos , Supervivencia Celular , Glucósidos , Glucógeno Sintasa Quinasa 3 beta , Oxindoles , Células PC12 , Ratas
6.
J Ethnopharmacol ; 268: 113568, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33188898

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Isolated from Uncaria rhynchophylla (U. rhynchophylla), rhynchophylline (Rhy) has been applied for treating diseases related to central nervous system such as Parkinson's disease. Nevertheless, the molecular mechanism of the neuroprotective effect has not been well interpreted. AIM OF THE STUDY: To investigate the effects of Rhy on MPTP/MPP + -induced neurotoxicity in C57BL/6 mice or PC12 cells and study the mechanisms involved. MATERIALS AND METHODS: The neuroprotective effect of Rhy on MPTP-induced neurotoxicity was evaluated by spontaneous motor activity test, as well as a test of rota-rod on a rat model of Parkinson's disease. The numbers of TH-positive neurons in the substantia nigra pars compacta (SNpc) was assessed by immunohistological. CCK-8, lactate dehydrogenase (LDH), reactive oxygen species (ROS), the concentration of intracellular calcium ([Ca2+]i) and flow cytometry analysis were performed to evaluate the pharmacological property of Rhy on 1-methyl-4-phenylpyridinium (MPP+) induced neurotoxicity in PC12 cells. Besides, LY294002, a PI3K inhibitor was employed to determine the underlying molecular signaling pathway revealing the effect of Rhy by western-blot analysis. RESULTS: The results showed that Rhy exhibited a protective effect against the MPTP-induced decrease in tyrosine hydroxylase (TH)-positive fibers in the substantia nigra at 30 mg/kg, demonstrated by the immunohistological and behavioral outcomes. Furthermore, it has been indicated that cell viability was improved and the MPP+-induced apoptosis was inhibited after the treatment of Rhy at 20 µM, which were severally analyzed by the CCK-8 and the Annexin V/propidium iodide staining method. In addition, Rhy treatment attenuated MPP+-induced up-regulation of LDH, ([Ca2+]i), and the levels of ROS. Besides, it can be revealed from the Western blot assay that LY294002, as a selective Phosphatidylinositol 3-Kinase (PI3K) inhibitor, effectively inhibited the Akt phosphorylation caused by Rhy, which suggested that Rhy showed its protective property through the activated the PI3K/Akt signaling pathway. Moreover, the Rhy-induced decreases of Bax and caspase-3 as the proapoptotic markers and the increase of Bcl-2 as the antiapoptotic marker, were blocked by LY294002 in the MPP+-treated PC12 cells. CONCLUSIONS: Rhy exerts a neuroprotective effect is partly mediated by activating the PI3K/Akt signaling pathway.


Asunto(s)
1-Metil-4-fenilpiridinio/toxicidad , Intoxicación por MPTP/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Oxindoles/uso terapéutico , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Herbicidas/toxicidad , Intoxicación por MPTP/inducido químicamente , Intoxicación por MPTP/prevención & control , Masculino , Ratones , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/aislamiento & purificación , Fármacos Neuroprotectores/farmacología , Neurotoxinas/toxicidad , Oxindoles/aislamiento & purificación , Oxindoles/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Uncaria
7.
Journal of Integrative Medicine ; (12): 537-544, 2021.
Artículo en Inglés | WPRIM | ID: wpr-922525

RESUMEN

OBJECTIVE@#Mitophagy is known to contribute towards progression of Parkinson's disease. Korean red ginseng (KRG) is a widely used medicinal herb in East Asia, and recent studies have reported that KRG prevents 1-methyl-4-phenylpyridinium ion (MPP@*METHODS@#SH-SY5Y cells were incubated with KRG for 24 h, and subsequently exposed to MPP@*RESULTS@#MPP@*CONCLUSION@#KRG effectively prevents MPP


Asunto(s)
1-Metil-4-fenilpiridinio/toxicidad , Apoptosis , Línea Celular Tumoral , Mitocondrias , Mitofagia , Panax , Especies Reactivas de Oxígeno
8.
Nutrients ; 12(12)2020 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-33260513

RESUMEN

The prevalence and incidence of Parkinson's disease (PD), an age-related neurodegenerative disease, are higher among elderly people. Independent of etiology, dysfunction and loss of dopaminergic neurons are common pathophysiological changes in PD patients with impaired motor and non-motor function. Currently, preventive or therapeutic treatment for combating PD is limited. The ghrelin axis and ghrelin receptor have been implicated in the preservation of dopaminergic neurons and have potential implications in PD treatment. Teaghrelin, a compound originating from Chin-Shin Oolong tea, exhibits ghrelin agonist activity. In this study, the neuroprotective potential of teaghrelin against PD was explored in a cell model in which human neuroblastoma SH-SY5Y cells were treated with the mitochondrial toxin 1-methyl-4-phenylpyridinium (MPP+). Upon MPP+ exposure, SH-SY5Y cells exhibited decreased mitochondrial complex I activity and apoptotic cell death. Teaghrelin activated AMP-activated protein kinase (AMPK)/sirtuin 1(SIRT1)/peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1α (PGC-1α) and extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathways to antagonize MPP+-induced cell death. Herein, we propose that teaghrelin is a potential candidate for the therapeutic treatment of PD.


Asunto(s)
1-Metil-4-fenilpiridinio/toxicidad , Adenilato Quinasa/metabolismo , Camellia sinensis/química , Supervivencia Celular/efectos de los fármacos , Ghrelina/agonistas , Sirtuina 1/metabolismo , Adenilato Quinasa/genética , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Sirtuina 1/genética
9.
Carbohydr Polym ; 249: 116894, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32933702

RESUMEN

Regeneration of neurites network constitutes a neurotrophic and therapeutic strategy for Parkinson's disease (PD). Increasing evidence is supporting the potential application of natural polysaccharides in prevention or treatment of PD. In this study, an acidic heteropolysaccharide LFP-1 was isolated from Lycii fructus, and purified by ion-exchange and gel filtration chromatography. Structural features of LFP-1 were analyzed with molecular weight (MW) distribution, monosaccharide composition, methylation and nuclear magnetic resonance (NMR) spectra. LFP-1 was a complicated structured polysaccharide with an average MW of 1.78 × 104 Da and composed of highly branched arabinogalactans, homogalacturonan and rhamnogalacturonan moieties. LFP-1 promoted neuronal differentiation and neurite outgrowth in vitro in PC12 cell models. Furthermore, LFP-1 had a significantly protective effect against 1-methyl-4-phenylpyridiniumion (MPP+)-induced neurotoxicity in PD model PC12 cells. These observations unambiguously indicated the neurotrophic and neuroprotective activities of LFP-1, which may be developed for prevention or treatment of neurodegeneration in PD.


Asunto(s)
1-Metil-4-fenilpiridinio/toxicidad , Ácidos/química , Lycium/química , Fármacos Neuroprotectores/farmacología , Síndromes de Neurotoxicidad/tratamiento farmacológico , Trastornos Parkinsonianos/tratamiento farmacológico , Polisacáridos/farmacología , Animales , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/patología , Células PC12 , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/patología , Extractos Vegetales/farmacología , Polisacáridos/aislamiento & purificación , Ratas
10.
Neurotox Res ; 36(4): 764-776, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31055769

RESUMEN

Parkinson's disease (PD) is a common neurodegenerative disorder that affects approximately 1% of the population over the age of 65 years. While treatment options for PD are limited, reports show that plant-derived bioactive compounds such as rutin possess numerous pharmacological benefits, including antioxidant and antiapoptotic activities. This study aimed to investigate the potential role of rutin in MPP+-treated SH-SY5Y neuroblastoma cells, an established cell model of PD. Our findings reveal increased concentrations of Ca2+ and endoplasmic reticulum (ER) stress as well as impaired mitochondrial membrane potential and bioenergetic status in SH-SY5Y cells treated with MPP+ only. This is demonstrated by a significant reduction in the expression levels of BiP, significantly reduced basal respiration, maximal respiration, and spare respiratory capacity as well as a significant increase in the expression levels of CHOP; however, these effects were significantly attenuated following pretreatment with rutin. Also, rutin significantly improved basal and compensatory glycolysis as a response to an impaired oxidative phosphorylation system triggered by MPP+, characterized by deficient ATP production. In conclusion, our findings provide the first evidence on the ability of rutin to maintain Ca2+ homeostasis, inhibit ER stress, and protect the mitochondria in MPP+-treated SH-SY5Y cells.


Asunto(s)
1-Metil-4-fenilpiridinio/toxicidad , Antioxidantes/administración & dosificación , Calcio/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Enfermedad de Parkinson Secundaria/metabolismo , Rutina/administración & dosificación , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Homeostasis/efectos de los fármacos , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Enfermedad de Parkinson Secundaria/tratamiento farmacológico
11.
Bioelectromagnetics ; 40(1): 33-41, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30537234

RESUMEN

Exposure to extremely low frequency magnetic fields (ELF-MFs) has been associated with an increased risk of neurodegenerative disorders. The underlying mechanisms, however, are still debated. Since epigenetics play a key role in the neurodegenerative process, we investigated whether exposure to ELF-MF (50 Hz, 1 mT) might affect global DNA methylation of SH-SY5Y dopaminergic-like neuroblastoma cells. We assessed the percentage of 5-methylcytosine (5-mC) of three repetitive interspersed sequences (ALU, LINE-1, or SATα), through pyrosequencing analysis. We demonstrated that ELF exposure (up to 72 h) does not induce any change in the methylation pattern of ALU, LINE-1, and SATα in both proliferating and differentiated SH-SY5Y cells. Furthermore, when administered in combination with 1-methyl-4-phenylpyridinium (MPP+ ), a neurotoxin mimicking the Parkinson's Disease (PD) phenotype, ELF-MF exposure does not trigger any modulation in the percentage of 5-mC of the repetitive elements. Our findings demonstrate that exposure to 50-Hz MF does not affect global DNA methylation in proliferating and dopaminergic differentiated SH-SY5Y cells, either under basal culture conditions or under neurotoxic stress. Bioelectromagnetics. 40:33-41, 2019. © 2018 Bioelectromagnetics Society.


Asunto(s)
1-Metil-4-fenilpiridinio/toxicidad , Metilación de ADN/efectos de los fármacos , Campos Magnéticos , Neurotoxinas/toxicidad , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Campos Magnéticos/efectos adversos
12.
Phytother Res ; 33(3): 690-701, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30556245

RESUMEN

Loganin, a major iridoid glycoside obtained from fruits of Cornus officinalis, possesses anti-inflammatory, antitumor, antidiabetic, and osteoporosis prevention effects. Loganin has been linked to neuroprotection in several models of neurodegeneration, including Parkinson's disease (PD). However, mechanisms underlying the neuroprotective effects of loganin are still mostly unknown. Here, we demonstrated the protective effects of loganin against PD mimetic toxin 1-methyl-4-phenylpyridinium (MPP+ ) and the important roles of insulin-like growth factor 1 receptor (IGF-1R) and glucagon-like peptide 1 receptor (GLP-1R) in the neuroprotective mechanisms of loganin. In primary mesencephalic neuronal cultures treated with or without MPP+ , loganin up-regulated expressions of neurotrophic signals including IGF-1R, GLP-1R, p-Akt, BDNF, and tyrosine hydroxylase. Loganin protected against MPP+ -induced apoptosis by up-regulating antiapoptotic protein and down-regulating proapoptotic protein. Moreover, loganin attenuated MPP+ -induced neurite damage via up-regulation of GAP43 and down-regulation of membrane-RhoA/ROCK2/p-LIMK/p-cofilin. Loganin also attenuated MPP+ -induced reactive oxygen species (ROS) production. However, both AG1024, an IGF-1R antagonist, and exendin 9-39, a GLP-1R antagonist, attenuated the protective effects of loganin on MPP+ -induced cytotoxicity, apoptosis, neurite length decrease, and ROS production. Our results suggest that loganin attenuates MPP+ -induced apoptotic death, neurite damage, and oxidative stress through enhancement of neurotrophic signaling, activation of IGF-1R/GLP-1R, and inhibition of RhoA/ROCK pathway, providing the evidence that loganin possesses novel neuroprotective effects.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón/fisiología , Iridoides/farmacología , Fármacos Neuroprotectores/farmacología , Síndromes de Neurotoxicidad/prevención & control , Receptor IGF Tipo 1/fisiología , Transducción de Señal/efectos de los fármacos , Quinasas Asociadas a rho/antagonistas & inhibidores , Proteína de Unión al GTP rhoA/antagonistas & inhibidores , 1-Metil-4-fenilpiridinio/toxicidad , Animales , Células Cultivadas , Humanos , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
13.
Nutrients ; 10(9)2018 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-30131460

RESUMEN

Mucuna pruriens (Mucuna) has been prescribed in Ayurveda for various brain ailments including 'kampavata' (tremors) or Parkinson's disease (PD). While Mucuna is a well-known natural source of levodopa (L-dopa), published studies suggest that other bioactive compounds may also be responsible for its anti-PD effects. To investigate this hypothesis, an L-dopa reduced (<0.1%) M. pruriens seeds extract (MPE) was prepared and evaluated for its anti-PD effects in cellular (murine BV-2 microglia and human SH-SY5Y neuroblastoma cells), Caenorhabditis elegans, and Drosophila melanogaster models. In BV-2 cells, MPE (12.5⁻50 µg/mL) reduced hydrogen peroxide-induced cytotoxicity (15.7-18.6%), decreased reactive oxygen species production (29.1-61.6%), and lowered lipopolysaccharide (LPS)-induced nitric oxide species release by 8.9⁻60%. MPE (12.5-50 µg/mL) mitigated SH-SY5Y cell apoptosis by 6.9-40.0% in a non-contact co-culture assay with cell-free supernatants from LPS-treated BV-2 cells. MPE (12.5-50 µg/mL) reduced 6-hydroxydopamine (6-OHDA)-induced cell death of SH-SY5Y cells by 11.85⁻38.5%. Furthermore, MPE (12.5-50 µg/mL) increased median (25%) and maximum survival (47.8%) of C. elegans exposed to the dopaminergic neurotoxin, methyl-4-phenylpyridinium. MPE (40 µg/mL) ameliorated dopaminergic neurotoxin (6-OHDA and rotenone) induced precipitation of innate negative geotaxis behavior of D. melanogaster by 35.3 and 32.8%, respectively. Therefore, MPE contains bioactive compounds, beyond L-dopa, which may impart neuroprotective effects against PD.


Asunto(s)
Levodopa/farmacología , Microglía/efectos de los fármacos , Mucuna/química , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , 1-Metil-4-fenilpiridinio/toxicidad , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Dopaminérgicos/toxicidad , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/metabolismo , Humanos , Masculino , Microglía/metabolismo , Neuroblastoma/metabolismo , Oxidopamina/toxicidad , Enfermedad de Parkinson/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Semillas/química
14.
Mol Neurobiol ; 54(8): 6356-6377, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27722926

RESUMEN

The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induces motor and nonmotor dysfunctions resembling Parkinson's disease (PD); however, studies investigating the effects of 1-methyl-4-phenylpyridinium (MPP+), an active oxidative product of MPTP, are scarce. This study investigated the behavioral and striatal neurochemical changes (related to oxidative damage, glial markers, and neurotrophic factors) 24 h after intracerebroventricular administration of MPP+ (1.8-18 µg/mouse) in C57BL6 mice. MPP+ administration at high dose (18 µg/mouse) altered motor parameters, since it increased the latency to leave the first quadrant and reduced crossing, rearing, and grooming responses in the open-field test and decreased rotarod latency time. MPP+ administration at low dose (1.8 µg/mouse) caused specific nonmotor dysfunctions as it produced a depressive-like effect in the forced swim test and tail suspension test, loss of motivational and self-care behavior in the splash test, anxiety-like effect in the elevated plus maze test, and short-term memory deficit in the step-down inhibitory avoidance task, without altering ambulation. MPP+ at doses of 1.8-18 µg/mouse increased tyrosine hydroxylase (TH) immunocontent and at 18 µg/mouse increased α-synuclein and decreased parkin immunocontent. The astrocytic calcium-binding protein S100B and glial fibrillary acidic protein (GFAP)/S100B ratio was decreased following MPP+ administration (18 µg/mouse). At this highest dose, MPP+ increased the ionized calcium-binding adapter molecule 1 (Iba-1) immunocontent, suggesting microglial activation. Also, MPP+ at a dose of 18 µg/mouse increased thiobarbituric acid reactive substances (TBARS) and glutathione (GSH) levels and increased glutathione peroxidase (GPx) and hemeoxygenase-1 (HO-1) immunocontent, suggesting a significant role for oxidative stress in the MPP+-induced striatal damage. MPP+ (18 µg/mouse) also increased striatal fibroblast growth factor 2 (FGF-2) and brain-derived neurotrophic factor (BDNF) levels. Moreover, MPP+ decreased tropomyosin receptor kinase B (TrkB) immunocontent. Finally, MPP+ (1.8-18 µg/mouse) increased serum corticosterone levels and did not alter acetylcholinesterase (AChE) activity in the striatum but increased it in cerebral cortex and hippocampus. Collectively, these results indicate that MPP+ administration at low doses may be used as a model of emotional and memory/learning behavioral deficit related to PD and that MPP+ administration at high dose could be useful for analysis of striatal dysfunctions associated with motor deficits in PD.


Asunto(s)
1-Metil-4-fenilpiridinio/toxicidad , Cuerpo Estriado/efectos de los fármacos , Emociones/efectos de los fármacos , Aprendizaje/efectos de los fármacos , Memoria/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Acetilcolinesterasa/metabolismo , Animales , Cuerpo Estriado/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Glutatión/metabolismo , Ratones , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
15.
Pharm Biol ; 55(1): 481-486, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27937005

RESUMEN

CONTEXT: The twigs of Sorbus alnifolia (Sieb. et Zucc.) K. Koch (Rosaceae) have been used to treat neurological disorders as a traditional medicine in Korea. However, there are limited data describing the efficacy of S. alnifolia in Parkinson's disease (PD). OBJECTIVE: This study was conducted to identify the protective effects of the methanol extracts of S. alnifolia (MESA) on the dopaminergic (DA) neurodegeneration in Caenorhabditis elegans. MATERIALS AND METHODS: To test the neuroprotective action of MESA, viability assay was performed after 48 h exposure to 1-methyl-4-phenylpyridine (MMP+) in PC12 cells and C. elegans (400 µM and 2 mM of MMP+, respectively). Fluorescence intensity was quantified using transgenic mutants such as BZ555 (Pdat-1::GFP) and and UA57 (Pdat-1::GFP and Pdat-1::CAT-2) to determine MESA's effects on DA neurodegeneration in C. elegans. Aggregation of α-synuclein was observed using NL5901 strain (unc-54p::α-synuclein::YFP). MESA's protective effects on the DA neuronal functions were examined by food-sensing assay. Lifespan assay was conducted to test the effects of MESA on the longevity. RESULTS: MESA restored MPP+-induced loss of viability in both PC12 cells and C. elegans (85.8% and 54.9%, respectively). In C. elegans, MESA provided protection against chemically and genetically-induced DA neurodegeneration, respectively. Moreover, food-sensing functions were increased 58.4% by MESA in the DA neuron degraded worms. MESA also prolonged the average lifespan by 25.6%. However, MESA failed to alter α-synuclein aggregation. DISCUSSION AND CONCLUSIONS: These results revealed that MESA protects DA neurodegeneration and recovers diminished DA neuronal functions, thereby can be a valuable candidate for the treatment of PD.


Asunto(s)
1-Metil-4-fenilpiridinio/toxicidad , Caenorhabditis elegans/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Degeneración Nerviosa , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Sorbus/química , Animales , Animales Modificados Genéticamente , Conducta Animal/efectos de los fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Supervivencia Celular/efectos de los fármacos , Citoprotección , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Relación Dosis-Respuesta a Droga , Conducta Alimentaria/efectos de los fármacos , Longevidad/efectos de los fármacos , Metanol/química , Actividad Motora/efectos de los fármacos , Fármacos Neuroprotectores/aislamiento & purificación , Células PC12 , Fitoterapia , Componentes Aéreos de las Plantas , Extractos Vegetales/aislamiento & purificación , Plantas Medicinales , Agregado de Proteínas , Ratas , Solventes/química , Factores de Tiempo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
16.
Phytomedicine ; 23(12): 1422-1433, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27765362

RESUMEN

BACKGROUND: The F-box protein 7 (FBXO7) mutations have been identified in families with early-onset parkinsonism and pyramidal tract signs, and designated as PARK15. In addition, FBXO7 mutations were found in typical and young onset Parkinson's disease (PD). Evidence has also shown that FBXO7 plays an important role in the development of dopaminergic neurons and increased stability and overexpression of FBXO7 may be beneficial to PD. PURPOSE: We screened extracts of medicinal herbs to enhance FBXO7 expression for neuroprotection in MPP+-treated cells. METHODS: Promoter reporter assay in HEK-293 cells was used to examine the cis/trans elements controlling FBXO7 expression and to screen extracts of medicinal herbs enhancing FBXO7 expression. MTT assay was performed to assess cell viability of MPP+-treated HEK-293/SH-SY5Y cells. In addition, proteasome activity, mitochondrial membrane potential and FBXO7/TRAF2/GATA2 protein expression were evaluated. RESULTS: We demonstrated that -202--57 region of the FBXO7 promoter is likely to contain sequences that are bound by positive trans protein factors to activate FBXO7 expression and GATA2 is the main trans protein factor enhancing FBXO7 expression. Extracts of medicinal herbs Oenanthe javanica (Blume) DC. (Umbelliferae), Casuarina equisetifolia L. (Casuarinaceae), and Sorghum bicolor (L.) Moench (Gramineae) improved cell viability of both MPP+-treated HEK-293 and SH-SY5Y cells, rescued proteasome activity in MPP+-treated HEK-293 cells, and restored mitochondrial membrane potential in MPP+-treated SH-SY5Y cells. These protection effects of herbal extracts are acting through enhancing FBXO7 and decreasing TRAF2 expression, which is probably mediated by GATA2 induction. CONCLUSION: Collectively, our study provides new targets, FBXO7 and its regulator GATA2, for the development of potential treatments of PD.


Asunto(s)
1-Metil-4-fenilpiridinio/toxicidad , Proteínas F-Box/metabolismo , Fármacos Neuroprotectores/farmacología , Oenanthe , Enfermedad de Parkinson/metabolismo , Extractos Vegetales/farmacología , Sorghum , Supervivencia Celular/efectos de los fármacos , Proteínas F-Box/genética , Factor de Transcripción GATA2/metabolismo , Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Herbicidas/toxicidad , Humanos , Magnoliopsida , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mutación , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Fitoterapia , Extractos Vegetales/uso terapéutico , Regiones Promotoras Genéticas , Complejo de la Endopetidasa Proteasomal/metabolismo , Factor 2 Asociado a Receptor de TNF/metabolismo
17.
J Ethnopharmacol ; 194: 522-529, 2016 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-27742410

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Neuroinflammation, oxidative stress, and protein aggregation form a vicious cycle in the pathophysiology of Parkinson's disease (PD); activated microglia is the main location of neuroinflammation. A Chinese medicine book, "Shanghan Lun", known as the "Treatises on Cold damage Diseases" has suggested that Scutellaria baicalensis Georgi is effective in treating CNS diseases. The anti-inflammatory mechanisms of baicalein, a phenolic flavonoid in the dried root of Scutellaria baicalensis Georgi, remain to be explored. AIM OF THE STUDY: The neuroprotective mechanisms of baicalein involving α-synuclein aggregation, inflammasome activation, and programmed cell death were investigated in the nigrostriatal dopaminergic system of rat brain in vivo. MATERIALS AND METHODS: Intranigral infusion of 1-methyl-4-phenylpyridinium (MPP+, a Parkinsonian neurotoxin) was performed on anesthetized Sprague-Dawley rats. Baicalein was daily administered via intraperitoneal injection. Striatal dopamine levels were measured using high performance liquid chromatography coupled with electrochemical detection. Cellular signalings were measured by Western blot assay, immunofluorescent staining assay and enzyme-linked immunosorbent assay. RESULTS: Systemic administration of baicalein attenuated MPP+-induced reductions in striatal dopamine content and tyrosine hydroxylase (a biomarker of dopaminergic neurons) in the infused substantia nigra (SN). Furthermore, MPP+-induced elevations in α-synuclein aggregates (a pathological hallmark of PD), ED-1 (a biomarker of activated microglia), activated caspase-1 (a proinflammatory caspase), IL-1ß and cathepsin B (a cysteine lysosomal protease) in the infused SN were attenuated in the baicalein-treated rats. Moreover, intense immunoreactivities of caspase 1 and cathepsin B were co-localized with that of ED-1 in the MPP+-infused SN. At the same time, baicalein inhibited MPP+-induced increases in active caspases 9 and 12 (biomarkers of apoptosis) as well as LC3-II levels (a biomarker of autophagy) in the rat nigrostriatal dopaminergic system. CONCLUSION: Our in vivo study showed that baicalein possesses anti-inflammatory activities by inhibiting α-synuclein aggregation, inflammasome activation and cathepsin B production in the MPP+-infused SN. Moreover, baicalein is of therapeutic significance because it inhibits MPP+-induced apoptosis and autophagy in the nigrostriatal dopaminergic system of rat brain.


Asunto(s)
1-Metil-4-fenilpiridinio/toxicidad , Autofagia , Cuerpo Estriado/efectos de los fármacos , Flavanonas/farmacología , Inflamasomas/metabolismo , Sustancia Negra/efectos de los fármacos , alfa-Sinucleína/metabolismo , Animales , Cuerpo Estriado/metabolismo , Ratas , Ratas Sprague-Dawley , Sustancia Negra/metabolismo
18.
Neurochem Int ; 97: 117-23, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26994872

RESUMEN

The cause of Parkinson's disease (PD) could be ascribed to the progressive and selective loss of dopaminergic neurons in the substantia nigra pars compacta, and thus molecules with neuroprotective ability may have therapeutic value against PD. In the current study, the neuroprotective effects and underlying mechanisms of tormentic acid (TA), a naturally occurring triterpene extracted from medicinal plants such as Rosa rugosa and Potentilla chinensis, were evaluated in a widely used cellular PD model in which neurotoxicity was induced by MPP(+) in cultured SH-SY5Y cells. We found that TA at 1-30 µM substantially protected against MPP(+)-induced neurotoxicity, as evidenced by the increase in cell viability, decrease in lactate dehydrogenase release and the reduction in apoptotic nuclei. Moreover, TA effectively inhibited the elevated intracellular accumulation of reactive oxygen species as well as Bax/Bcl-2 ratio caused by MPP(+). Most importantly, TA markedly reversed the inhibition of protein expression of phosphorylated Akt (Ser 473) and phosphorylated GSK3ß (Ser 9) caused by MPP(+). LY294002, the specific inhibitor of PI3-K, significantly abrogated the up-regulated phosphorylated Akt and phosphorylated GSK3ß offered by TA, suggesting that the neuroprotection of TA was mainly dependent on the activation of PI3-K/Akt/GSK3ß signaling pathway. The results taken together indicate that TA may be a potential candidate for further preclinical study aimed at the prevention and treatment of PD.


Asunto(s)
1-Metil-4-fenilpiridinio/toxicidad , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Fármacos Neuroprotectores/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Triterpenos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Herbicidas/toxicidad , Humanos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
19.
J Med Food ; 18(4): 409-14, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25325362

RESUMEN

This study investigated the effect of nobiletin, a flavonoid found in citrus fruits, on the degeneration of dopaminergic (DA) neurons in a neurotoxin model of Parkinson's disease (PD). 1-Methyl-4-phenylpyridinium (MPP(+)) was unilaterally injected into the median forebrain bundle of rat brains (to generate a neurotoxin model of PD) with or without daily intraperitoneal injection of nobiletin. Our results showed that nobiletin treatment at 10 mg/kg bw, but not at 1 or 20 mg/kg bw, significantly protected DA neurons in the substantia nigra (SN) of MPP(+)-treated rats. In parallel to the neuroprotection, nobiletin treatment at 10 mg/kg inhibited microglial activation and preserved the expression of the glial cell line-derived neurotrophic factor, which is a therapeutic agent against PD, in the SN. These results suggest that the proper supplementation with nobiletin may protect against the neurodegeneration involved in PD.


Asunto(s)
1-Metil-4-fenilpiridinio/toxicidad , Neuronas Dopaminérgicas/efectos de los fármacos , Flavonas/administración & dosificación , Fármacos Neuroprotectores/administración & dosificación , Enfermedad de Parkinson/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Femenino , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Ratas , Ratas Sprague-Dawley , Sustancia Negra
20.
Lipids Health Dis ; 13: 197, 2014 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-25522984

RESUMEN

BACKGROUND: Parkinson's disease is a neurodegenerative disorder that is being characterized by the progressive loss of dopaminergic neurons of the nigrostriatal pathway in the brain. The protective effect of omega-6 fatty acids is unclear. There are lots of contradictions in the literature with regard to the cytoprotective role of arachidonic acid. To date, there is no solid evidence that shows the protective role of omega-6 fatty acids in Parkinson's disease. In the current study, the potential of two omega-6 fatty acids (i.e. arachidonic acid and linoleic acid) in alleviating 1-methyl-4-phenylpyridinium (MPP+)-induced cytotoxicity in PC12 cells was examined. METHODS: Cultured PC12 cells were either treated with MPP+ alone or co-treated with one of the omega-6 fatty acids for 1 day. Cell viability was then assessed by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RESULTS: Cells treated with 500 µM MPP+ for a day reduced cell viability to ~70% as compared to control group. Linoleic acid (50 and 100 µM) significantly reduced MPP+-induced cell death back to ~85-90% of the control value. The protective effect could be mimicked by arachidonic acid, but not by ciglitazone. CONCLUSIONS: Both linoleic acid and arachidonic acid are able to inhibit MPP+-induced toxicity in PC12 cells. The protection is not mediated via peroxisome proliferator-activated receptor gamma (PPAR-γ). Overall, the results suggest the potential role of omega-6 fatty acids in the treatment of Parkinson's disease.


Asunto(s)
1-Metil-4-fenilpiridinio/toxicidad , Antiparkinsonianos/farmacología , Ácido Araquidónico/farmacología , Ácido Linoleico/farmacología , Fármacos Neuroprotectores/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Células PC12 , Ratas , Tiazolidinedionas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA