Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 13: 1128807, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37009498

RESUMEN

Hepatitis B virus infections have always been associated with high levels of mortality. In 2019, hepatitis B virus (HBV)-related diseases resulted in approximately 555,000 deaths globally. In view of its high lethality, the treatment of HBV infections has always presented a huge challenge. The World Health Organization (WHO) came up with ambitious targets for the elimination of hepatitis B as a major public health threat by 2030. To accomplish this goal, one of the WHO's strategies is to develop curative treatments for HBV infections. Current treatments in a clinical setting included 1 year of pegylated interferon alpha (PEG-IFNα) and long-term nucleoside analogues (NAs). Although both treatments have demonstrated outstanding antiviral effects, it has been difficult to develop a cure for HBV. The reason for this is that covalently closed circular DNA (cccDNA), integrated HBV DNA, the high viral burden, and the impaired host immune responses all hinder the development of a cure for HBV. To overcome these problems, there are clinical trials on a number of antiviral molecules being carried out, all -showing promising results so far. In this review, we summarize the functions and mechanisms of action of various synthetic molecules, natural products, traditional Chinese herbal medicines, as clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR/Cas)-based systems, zinc finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs), all of which could destroy the stability of the HBV life cycle. In addition, we discuss the functions of immune modulators, which can enhance or activate the host immune system, as well some representative natural products with anti-HBV effects.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B , Humanos , Virus de la Hepatitis B/fisiología , Replicación Viral , Hepatitis B/tratamiento farmacológico , Interferón-alfa/farmacología , Antivirales/farmacología , Antivirales/uso terapéutico , Antivirales/metabolismo , ADN Circular/metabolismo , ADN Circular/farmacología , ADN Circular/uso terapéutico , ADN Viral/genética
2.
J Med Virol ; 94(12): 5987-5999, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36000452

RESUMEN

Chronic hepatitis B virus (HBV) infection is an important public health problem. Polygonum perfoliatum L. is a traditional medicinal herb and has been reported to have pharmacological activities such as anti-inflammatory, antibacterial, and antiviral. In this study, the antiviral activities and mechanisms of Polygonum perfoliatum L. extract against HBV and the effective components were investigated. The results showed that the total extract of Polygonum perfoliatum L. reduced the levels of HBV e antigen (HBeAg) secretion and the viral covalently closed circular DNA (CCC DNA) formation, but had little or no negative effects on viral capsid assembly and pregenomic RNA packaging. Further fractionation showed that the water extract (WE) fraction exerted comparable anti-HBV activities with the total extract, especially in inhibiting the CCC DNA formation and HBeAg production, indicating that the effective antiviral components are mainly distributed in this fraction. Further study showed that the phenolic acids constituents, protocatechuic acid, and gallic acid, but not ethyl caffeate, which is reported enriched in the WE fraction, showed strong anti-HBV activities in inhibiting viral core DNA synthesis, CCC DNA formation, and HBeAg production. These results suggested that the Polygonum perfoliatum L. total extract and the related phenolic acids like protocatechuic acid and gallic acid could inhibit HBV replication and also indicated the potential utility of Polygonum perfoliatum L. and related constituents as sources of novel antivirals against HBV.


Asunto(s)
Hepatitis B Crónica , Hepatitis B , Polygonum , Antibacterianos/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , ADN Circular , ADN Viral , Ácido Gálico/farmacología , Ácido Gálico/uso terapéutico , Antígenos e de la Hepatitis B , Virus de la Hepatitis B/genética , Humanos , Hidroxibenzoatos , Polygonum/genética , ARN/farmacología , ARN/uso terapéutico , Replicación Viral , Agua/farmacología
3.
Int J Med Sci ; 19(5): 858-866, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35693741

RESUMEN

Background & Aims: Correlations between serum viral markers and intrahepatic cccDNA in patients undergoing long-term nucleos(t)ide analogues (NAs) treatment haven't been fully explored. In this study, we evaluate the correlation between intrahepatic cccDNA and other serum viral markers and intrahepatic HBV DNA in HBeAg positive chronic hepatitis B (CHB) patients during 60-month treatment with NAs. Methods: Fifty-four HBeAg positive CHB patients received long-term NAs treatment were included in this study. Serial serum samples were regularly collected and quantitatively analyzed for HBsAg, HBV DNA, HBV RNA and HBcrAg. Histological samples from liver biopsy at baseline and month 60 were analyzed for intrahepatic HBV DNA and cccDNA. Results: At baseline, serum HBV DNA plus RNA was positively associated with intrahepatic cccDNA in multivariate regression analysis (ß=0.205, P<0.001). In the correlation analysis between cccDNA and serum viral markers, HBV DNA plus RNA had the highest correlation coefficient (r=0.698, P<0.001), followed by serum HBV DNA (r=0.641, P<0.001), HBV RNA (r=0.590, P<0.001), and HBcrAg (r=0.564, P<0.001). At month 60, correlations between these serum viral markers and cccDNA were not observed (P>0.05). Multivariate regression analysis showed that only the decreased HBV DNA plus RNA was positively associated with cccDNA decline (ß=0.172, P =0.006). Changes of HBV DNA plus RNA (r=0.525, P=0.001) was better correlated with cccDNA decline as compared to HBV RNA (r=0.384, P=0.008), HBV DNA (r=0.431, P=0.003), and HBsAg (r=0.342, P=0.029). Conclusions: Serum HBV DNA plus RNA better correlated with intrahepatic cccDNA than other viral makers before and during NAs treatment in HBeAg positive CHB patients.


Asunto(s)
Antígenos de Superficie de la Hepatitis B , Hepatitis B Crónica , Antivirales/uso terapéutico , Biomarcadores , ADN Circular/genética , ADN Circular/uso terapéutico , ADN Viral/genética , Antígenos e de la Hepatitis B , Virus de la Hepatitis B/genética , Humanos , Hígado/patología , Extractos Vegetales , ARN
4.
J Med Virol ; 94(6): 2727-2735, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35075662

RESUMEN

The chronic hepatitis B virus (HBV) infection is a worldwide public health problem, which cannot be cured by current therapeutics due to the persistence of viral CCC DNA in the infected hepatocytes. Screening from medicinal herbs for anti-HBV activities showed that the ethanol extract from Ranunculus japonicus Thunb. could decrease the production of HBV e antigen (HBeAg). Further study showed that the extract had no effect on core protein expression but significantly reduced the efficiency of viral capsid assembly. The levels of viral pgRNA and total core DNA were not affected significantly. However, the ratio of RC DNA/SS DNA decreased, indicating that the conversion of RC DNA from SS DNA was delayed by the extract. More interestingly, though similar levels of RC DNA were accumulated, the CCC DNA level and its formation efficiency were reduced significantly, which was also consistent with the decreased level of HBeAg, indicating that R. japonicus Thunb. extract could inhibit the CCC DNA formation. Together, this study found that R. japonicus Thunb. extract could inhibit HBV replication at multiple steps, especially showed significant inhibitory effects on capsid assembly and CCC DNA formation.


Asunto(s)
Hepatitis B Crónica , Hepatitis B , Ranunculus , ADN Circular , ADN Viral/genética , Etanol/metabolismo , Etanol/farmacología , Antígenos e de la Hepatitis B/metabolismo , Virus de la Hepatitis B/genética , Humanos , Extractos Vegetales/farmacología , Ranunculus/genética , Ranunculus/metabolismo , Replicación Viral
5.
Viruses ; 13(8)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34452329

RESUMEN

Hepatitis B virus (HBV) remains a major medical problem affecting at least 257 million chronically infected patients who are at risk of developing serious, frequently fatal liver diseases. HBV is a small, partially double-stranded DNA virus that goes through an intricate replication cycle in its native cellular environment: human hepatocytes. A critical step in the viral life-cycle is the conversion of relaxed circular DNA (rcDNA) into covalently closed circular DNA (cccDNA), the latter being the major template for HBV gene transcription. For this conversion, HBV relies on multiple host factors, as enzymes capable of catalyzing the relevant reactions are not encoded in the viral genome. Combinations of genetic and biochemical approaches have produced findings that provide a more holistic picture of the complex mechanism of HBV cccDNA formation. Here, we review some of these studies that have helped to provide a comprehensive picture of rcDNA to cccDNA conversion. Mechanistic insights into this critical step for HBV persistence hold the key for devising new therapies that will lead not only to viral suppression but to a cure.


Asunto(s)
ADN Circular/genética , ADN Viral/genética , Virus de la Hepatitis B/genética , Hepatitis B Crónica/virología , Animales , ADN Circular/metabolismo , ADN Viral/química , ADN Viral/metabolismo , Virus de la Hepatitis B/fisiología , Humanos , Replicación Viral
6.
Int J Mol Sci ; 21(19)2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32998270

RESUMEN

Immune modulation is a very modern medical field for targeting viral infections. In the race to develop the best immune modulator against viruses, curcumin, as a natural product, is inexpensive, without side effects, and can stimulate very well certain areas of the human immune system. As a bright yellow component of turmeric spice, curcumin has been the subject of thousands of scientific and clinical studies in recent decades to prove its powerful antioxidant properties and anticancer effects. Curcumin has been shown to influence inter- and intracellular signaling pathways, with direct effects on gene expression of the antioxidant proteins and those that regulate the immunity. Experimental studies have shown that curcumin modulates several enzyme systems, reduces nitrosative stress, increases the antioxidant capacity, and decreases the lipid peroxidation, protecting against fatty liver pathogenesis and fibrotic changes. Hepatitis B virus (HBV) affects millions of people worldwide, having sometimes a dramatic evolution to chronic aggressive infection, cirrhosis, and hepatocellular carcinoma. All up-to-date treatments are limited, there is still a gap in the scientific knowledge, and a sterilization cure may not yet be possible with the removal of both covalently closed circular DNA (cccDNA) and the embedded HBV DNA. With a maximum light absorption at 420 nm, the cytotoxicity of curcumin as photosensitizer could be expanded by the intravenous blue laser blood irradiation (IVBLBI) or photobiomodulation in patients with chronic hepatitis B infection, Hepatitis B e-antigen (HBeAg)-positive, noncirrhotic, but nonresponsive to classical therapy. Photobiomodulation increases DNA repair by the biosynthesis of complex molecules with antioxidant properties, the outset of repairing enzyme systems and new phospholipids for regenerating the cell membranes. UltraBioavailable Curcumin and blue laser photobiomodulation could suppress the virus and control better the disease by reducing inflammation/fibrosis and stopping the progression of chronic hepatitis, reversing fibrosis, and diminishing the progression of cirrhosis, and decreasing the incidence of hepatocellular carcinoma. Photodynamic therapy with blue light and curcumin opens new avenues for the effective prevention and cure of chronic liver infections and hepatocellular carcinoma. Blue laser light and UltraBioavailable Curcumin could be a new valuable alternative for medical applications in chronic B viral hepatitis and hepatocarcinoma, saving millions of lives.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Carcinoma Hepatocelular/radioterapia , Curcumina/uso terapéutico , Hepatitis B Crónica/radioterapia , Cirrosis Hepática/radioterapia , Neoplasias Hepáticas/radioterapia , Terapia por Luz de Baja Intensidad/métodos , Antioxidantes/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/etiología , Carcinoma Hepatocelular/virología , Reparación del ADN/efectos de la radiación , ADN Circular/antagonistas & inhibidores , ADN Circular/genética , ADN Circular/metabolismo , ADN Viral/antagonistas & inhibidores , ADN Viral/genética , ADN Viral/metabolismo , Antígenos e de la Hepatitis B/genética , Antígenos e de la Hepatitis B/inmunología , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/crecimiento & desarrollo , Virus de la Hepatitis B/patogenicidad , Virus de la Hepatitis B/efectos de la radiación , Hepatitis B Crónica/complicaciones , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/virología , Humanos , Factores Inmunológicos/uso terapéutico , Hígado/efectos de los fármacos , Hígado/inmunología , Hígado/patología , Hígado/efectos de la radiación , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/etiología , Cirrosis Hepática/virología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/virología , Fármacos Fotosensibilizantes/uso terapéutico
7.
Hum Gene Ther ; 30(9): 1093-1100, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31084364

RESUMEN

Cystathionine ß-synthase (CBS) deficiency is a recessive inborn error of metabolism characterized by extremely elevated total homocysteine (tHcy) in the blood. Patients diagnosed with CBS deficiency have a variety of clinical problems, including dislocated lenses, osteoporosis, cognitive and behavioral issues, and a significantly increased risk of thrombosis. Current treatment strategies involve a combination of vitamin supplementation and restriction of foods containing the homocysteine precursor methionine. Here, a mouse model for CBS deficiency (Tg-I278T Cbs-/-) was used to evaluate the potential of minicircle-based naked DNA gene therapy to treat CBS deficiency. A 2.3 kb DNA-minicircle containing the liver-specific P3 promoter driving the human CBS cDNA (MC.P3-hCBS) was delivered into Tg-I278T Cbs-/- mice via a single hydrodynamic tail vein injection. Mean serum tHcy decreased from 351 µM before injection to 176 µM 7 days after injection (p = 0.0005), and remained decreased for at least 42 days. Western blot analysis reveals significant minicircle-directed CBS expression in the liver tissue. Liver CBS activity increased 34-fold (12.8 vs. 432 units; p = 0.0004) in MC.P3-hCBS-injected animals. Injection of MC.P3-hCBS in young mice, subsequently followed for 202 days, showed that the vector can ameliorate the mouse homocystinuria alopecia phenotype. The present findings show that minicircle-based gene therapy can lower tHcy in a mouse model of CBS deficiency.


Asunto(s)
Cistationina betasintasa/genética , ADN Circular/genética , Terapia Genética , Vectores Genéticos/genética , Homocistinuria/genética , Homocistinuria/terapia , Animales , Biomarcadores , Cistationina betasintasa/sangre , Cistationina betasintasa/deficiencia , ADN Circular/administración & dosificación , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Técnicas de Transferencia de Gen , Vectores Genéticos/administración & dosificación , Homocistinuria/metabolismo , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Noqueados , Fenotipo , Transfección/métodos , Resultado del Tratamiento
8.
Science ; 364(6438): 399-402, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-31023926

RESUMEN

The maintenance of terminally differentiated cells, especially hepatocytes, in vitro has proven challenging. Here we demonstrated the long-term in vitro maintenance of primary human hepatocytes (PHHs) by modulating cell signaling pathways with a combination of five chemicals (5C). 5C-cultured PHHs showed global gene expression profiles and hepatocyte-specific functions resembling those of freshly isolated counterparts. Furthermore, these cells efficiently recapitulated the entire course of hepatitis B virus (HBV) infection over 4 weeks with the production of infectious viral particles and formation of HBV covalently closed circular DNA. Our study demonstrates that, with a chemical approach, functional maintenance of PHHs supports long-term HBV infection in vitro, providing an efficient platform for investigating HBV cell biology and antiviral drug screening.


Asunto(s)
Virus de la Hepatitis B/crecimiento & desarrollo , Hepatocitos/fisiología , Hepatocitos/virología , Cultivo Primario de Células/métodos , Cultivo de Virus/métodos , Antivirales/aislamiento & purificación , Antivirales/farmacología , ADN Circular/biosíntesis , ADN Circular/aislamiento & purificación , ADN Viral/biosíntesis , ADN Viral/aislamiento & purificación , Evaluación Preclínica de Medicamentos , Virus de la Hepatitis B/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Transcriptoma , Virión/efectos de los fármacos , Virión/crecimiento & desarrollo
9.
Mitochondrion ; 46: 179-186, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30006008

RESUMEN

The structures of plant mitochondrial genomes are more complex than those of animals. One of the reasons for this is that plant mitochondrial genomes typically have many long and short repeated sequences and intra- and intermolecular recombination may create various DNA molecules in this organelle. Recombination may sometimes create a novel gene that causes cytoplasmic male sterility (CMS). The onion has several cytoplasm types, with some causing CMS while others do not. The complete mitochondrial genome sequence of the onion was reported for an inbred line with CMS-S cytoplasm; however, the number of differences between onion strains remains unclear, and studies on purified mitochondrial DNA (mtDNA) have not yet been performed. Furthermore, analyses of transcripts in the mitochondrial genome have not been conducted. In the present study, we examined the mitochondrial genome of the onion variety "Momiji-3" (Allium cepa L.) possessing CMS-S-type cytoplasm using next-generation sequencing (NGS). The "Momiji-3" mitochondrial genome mainly exists as three circles as a result of recombination through repeated sequences and we herein succeeded for the first time in visualizing its structure using pulsed field gel electrophoresis (PFGE). The ability to clarify the structure of the mitochondrial genome is rare in plant mitochondria; therefore, "Momiji-3" represents a good example for elucidating complex plant mitochondrial genomes. We also mapped transcript data to the mitochondrial genome in order to identify the RNA-editing positions in all gene-coding regions and estimate the expression levels of genes. We identified 635 editing positions in gene-coding regions. Start and stop codons were created by RNA editing in six genes (nad1, nad4L, atp6, atp9, ccmFC, and orf725). The transcript amounts of novel open reading frames (ORFs) were all markedly lower than those of functional genes. These results suggest that a new functional gene was not present in the mitochondrial genome of "Momiji-3", and that the candidate gene for CMS is orf725, as previously reported.


Asunto(s)
Perfilación de la Expresión Génica , Genoma Mitocondrial , Cebollas/genética , ADN Circular/genética , ADN Mitocondrial/genética , Electroforesis en Gel de Campo Pulsado , Edición de ARN , Recombinación Genética
10.
Nat Commun ; 9(1): 5308, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30546019

RESUMEN

The propensity of viruses to acquire genetic material from relatives and possibly from infected hosts makes them excellent candidates as vectors for horizontal gene transfer. However, virus-mediated acquisition of host genetic material, as deduced from historical events, appears to be rare. Here, we report spontaneous and surprisingly efficient generation of hybrid virus/host DNA molecules in the form of minicircles during infection of Beta vulgaris by Beet curly top Iran virus (BCTIV), a single-stranded DNA virus. The hybrid minicircles replicate, become encapsidated into viral particles, and spread systemically throughout infected plants in parallel with the viral infection. Importantly, when co-infected with BCTIV, B. vulgaris DNA captured in minicircles replicates and is transcribed in other plant species that are sensitive to BCTIV infection. Thus, we have likely documented in real time the initial steps of a possible path of virus-mediated horizontal transfer of chromosomal DNA between plant species.


Asunto(s)
Beta vulgaris/genética , Beta vulgaris/virología , ADN Circular/genética , ADN de Plantas/genética , ADN Viral/genética , Geminiviridae/genética , Transferencia de Gen Horizontal/genética , Arabidopsis/virología , ADN de Cadena Simple/genética , Enfermedades de las Plantas/virología , Nicotiana/virología
11.
Nucleic Acids Res ; 46(7): 3625-3632, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29554297

RESUMEN

Phi29 (Φ29) DNA polymerase is an enzyme commonly used in DNA amplification methods such as rolling circle amplification (RCA) and multiple strand displacement amplification (MDA), as well as in DNA sequencing methods such as single molecule real time (SMRT) sequencing. Here, we report the ability of phi29 DNA polymerase to amplify RNA-containing circular substrates during RCA. We found that circular substrates with single RNA substitutions are amplified at a similar amplification rate as non-chimeric DNA substrates, and that consecutive RNA pyrimidines were generally preferred over purines. We observed RCA suppression with higher number of ribonucleotide substitutions, which was partially restored by interspacing RNA bases with DNA. We show that supplementing manganese ions as cofactor supports replication of RNAs during RCA. Sequencing of the RCA products demonstrated accurate base incorporation at the RNA base with both Mn2+ and Mg2+ as cofactors during replication, proving reverse transcriptase activity of the phi29 DNA polymerase. In summary, the ability of phi29 DNA polymerase to accept RNA-containing substrates broadens the spectrum of applications for phi29 DNA polymerase-mediated RCA. These include amplification of chimeric circular probes, such as padlock probes and molecular inversion probes.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , ADN/química , ADN Polimerasa Dirigida por ARN/química , ARN/química , Fagos de Bacillus/enzimología , Secuencia de Bases , ADN/genética , ADN Circular , ADN Polimerasa Dirigida por ADN/genética , ARN/genética , ADN Polimerasa Dirigida por ARN/genética , Análisis de Secuencia de ADN
12.
Antiviral Res ; 152: 45-52, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29432776

RESUMEN

Hepatitis B virus (HBV) covalently closed circular DNA (cccDNA), existing in hepatocyte nuclei as a stable minichromosome, plays a central role in the life cycle of the virus and permits the persistence of infection. Despite being essential for HBV infection, little is known about the molecular mechanisms of cccDNA formation, regulation and degradation, and there is no therapeutic agents directly targeting cccDNA, fore mostly due to the lack of robust, reliable and quantifiable HBV cccDNA models. In this study, combined the Cre/loxP and sleeping beauty transposons system, we established HepG2-derived cell lines integrated with 2-60 copies of monomeric HBV genome flanked by loxP sites (HepG2-HBV/loxP). After Cre expression via adenoviral transduction, 3.3-kb recombinant cccDNA (rcccDNA) bearing a chimeric intron can be produced in the nuclei of these HepG2-HBV/loxP cells. The rcccDNA could be accurately quantified by quantitative PCR using specific primers and cccDNA pool generated in this model could be easily detected by Southern blotting using the digoxigenin probe system. We demonstrated that the rcccDNA was epigenetically organized as the natural minichromosome and served as the template supporting pgRNA transcription and viral replication. As the expression of HBV S antigen (HBsAg) is dependent on the newly generated cccDNA, HBsAg is the surrogate marker of cccDNA. Additionally, the efficacies of 3 classes of anti-HBV agents were evaluated in HepG2-HBV/loxP cells and antiviral activities with different mechanisms were confirmed. These data collectively suggested that HepG2-HBV/loxP cell system will be powerful platform for studying cccDNA related biological mechanisms and developing novel cccDNA targeting drugs.


Asunto(s)
Antivirales/farmacología , ADN Circular/genética , ADN Viral/genética , Virus de la Hepatitis B/efectos de los fármacos , Hepatitis B/virología , ADN Circular/metabolismo , ADN Recombinante/genética , ADN Recombinante/metabolismo , ADN Viral/metabolismo , Evaluación Preclínica de Medicamentos , Células Hep G2 , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/fisiología , Humanos , Integrasas/metabolismo , Replicación Viral/efectos de los fármacos
13.
Sci Rep ; 7(1): 12809, 2017 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-28993626

RESUMEN

For DNA replication in vivo, DNA primase uses a complementary single-stranded DNA template to synthesize RNA primers ranging from 4 to 20 nucleotides in length, which are then elongated by DNA polymerase. Here, we report that, in the presence of double-stranded DNA, the thermophilic DNA primase TtDnaG2 synthesizes RNA primers of around 100 nucleotides with low initiation specificity at 70 °C. Analysing the structure of TtDnaG2, we identified that it adopts a compact conformation. The conserved sites in its zinc binding domain are sequestered away from its RNA polymerase domain, which might give rise to the low initiation specificity and synthesis of long RNA segments by TtDnaG2. Based on these unique features of TtDnaG2, a DNA amplification method has been developed. We utilized TtDnaG2 to synthesize RNA primers at 70 °C after 95 °C denaturation, followed by isothermal amplification with the DNA polymerase Bst3.0 or phi29. Using this method, we successfully amplified genomic DNA of a virus with 100% coverage and low copy number variation. Our data also demonstrate that this method can efficiently amplify circular DNA from a mixture of circular DNA and linear DNA, thus providing a tool to amplify low-copy-number circular DNA such as plasmids.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN Primasa/metabolismo , Técnicas de Amplificación de Ácido Nucleico , Temperatura , Thermoanaerobacter/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/química , ADN/metabolismo , ADN Primasa/química , ADN Circular/metabolismo , Genoma Viral , Desnaturalización de Ácido Nucleico , ARN/metabolismo , ARN Bacteriano/biosíntesis , Moldes Genéticos
14.
J Hepatol ; 66(6): 1149-1157, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28213165

RESUMEN

BACKGROUND & AIMS: Hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) persists as a stable episome in infected hepatocytes and serves as a template for the transcription of all viral genes. Due to the narrow host range of HBV, the development of a robust mouse model that supports cccDNA-dependent viral replication is a key hurdle in the development of novel HBV therapeutics. This study aimed to develop a novel tool to investigate HBV cccDNA. METHODS: Through minicircle technology, HBVcircle, a recombinant cccDNA, was easily generated and extracted from a genetically engineered E. coli strain. We characterized the performance of HBVcircle in cell culture by transfection and in immunocompetent mice by hydrodynamic injection (HDI). RESULTS: We demonstrated that HBVcircle formed authentic cccDNA-like molecules in vitro in transiently transfected hepatic cells and in vivo in mouse liver after HDI. HBVcircle supported high levels and persistent HBV replication. In addition, we investigated different factors affecting HBV in vivo replication and persistence, including the host genetic background, vector design and dosage, viral genes and genotypes, and immune activation status. Furthermore, different classes of anti-HBV drugs were also assessed with the HBVcircle system. CONCLUSION: Compared with previous reported HBV mouse models which employ other viral vectors to introduce overlength HBV genomes, viral gene expression and associated phenotypes are entirely driven by cccDNA-like viral genomes in the HBVcircle mouse model. Therefore, the HBVcircle is a close mimic of cccDNA, and it represents a novel tool for addressing HBV cccDNA related biological questions and for anti-HBV drug discovery. LAY SUMMARY: To establish a mouse model that supports cccDNA-dependent transcription, a novel tool named HBVcircle, was developed with minicircle technology. HBVcircle formed authentic cccDNA-like molecules in hepatocytes, and supported high levels and persistent HBV replication in vivo. The HBVcircle is a close mimic of cccDNA, and it represents a novel tool for addressing HBV cccDNA related biological questions and for anti-HBV drug discovery.


Asunto(s)
ADN Circular/genética , ADN Viral/genética , Técnicas Genéticas , Virus de la Hepatitis B/genética , Inmunidad Adaptativa , Animales , Línea Celular , ADN Circular/biosíntesis , ADN Circular/inmunología , ADN Viral/biosíntesis , ADN Viral/inmunología , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Genes Virales , Ingeniería Genética , Células Hep G2 , Hepatitis B/tratamiento farmacológico , Hepatitis B/virología , Virus de la Hepatitis B/inmunología , Virus de la Hepatitis B/fisiología , Hepatocitos/virología , Humanos , Masculino , Ratones , Ratones Endogámicos C3H , Modelos Genéticos , Transcripción Genética , Transfección , Replicación Viral/genética
15.
Curr Genet ; 63(2): 241-252, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27422574

RESUMEN

The genus Gentiana is the largest in the Gentianaceae family with ca. 400 species. However, with most species growing on the Qinghai-Tibet plateau, the processes of adaptive evolution and speciation within the genus is not clear. Also, the genomic analyses could provide important information. So far, the complete chloroplast (cp) genome data of the genus are still deficient. As the second and third sequenced members within Gentianaceae, we report the construction of complete cp sequences of Gentiana robusta King ex Hook. f. and Gentiana crassicaulis Duthie ex Burk., and describe a comparative study of three Gentiana cp genomes, including the cp genome of Gentiana straminea Maxim. published previously. These cp genomes are highly conserved in gene size, gene content, and gene order and the rps16 pseudogene with exon2 missing was found common. Three repeat types and five SSR types were investigated, and the number and distribution are similar among the three genomes. Sixteen genome divergent hotspot regions were identified across these cp genomes that could provide potential molecular markers for further phylogenetic studies in Gentiana. The IR/SC boundary organizations in Gentianales cp genomes were compared and three different types of boundaries were observed. Six data partitions of cp genomes in Gentianales were used for phylogenetic analyses and different data partitions were largely congruent with each other. The ML phylogenetic tree was constructed based on the fragments in cp genomes commonly available in 33 species from Lamiids, including 12 species in Gentianales, 1 in Boraginaceae, 10 in Solanales, and 10 in Lamiales. The result strongly supports the position of Boraginaceae (Ehretia acuminata) as the sister of Solanales, with the bootstrap values of 97 %. This study provides a platform for further research into the molecular phylogenetics of species in the order Gentianales (family Gentianaceae) notably in respect of speciation and species identification.


Asunto(s)
ADN Circular/genética , Genoma del Cloroplasto/genética , Genómica/métodos , Gentiana/genética , Medicina de Hierbas , Plantas Medicinales/genética , Proteínas de Cloroplastos/genética , ADN de Cloroplastos/química , ADN de Cloroplastos/genética , ADN de Cloroplastos/aislamiento & purificación , ADN Circular/química , Orden Génico , Genes del Cloroplasto/genética , Gentiana/clasificación , Filogenia , Plantas Medicinales/clasificación , Análisis de Secuencia de ADN , Especificidad de la Especie , Tibet
16.
Antiviral Res ; 134: 97-107, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27591143

RESUMEN

The development of new agents to target HBV cccDNA is urgently needed because of the limitations of current available drugs for treatment of hepatitis B. By using a cell-based assay in which the production of HBeAg is in a cccDNA-dependent manner, we screened a compound library derived from Chinese herbal remedies for inhibitors against HBV cccDNA. Three hydrolyzable tannins, specifically punicalagin, punicalin and geraniin, emerged as novel anti-HBV agents. These compounds significantly reduced the production of secreted HBeAg and cccDNA in a dose-dependent manner in our assay, without dramatic alteration of viral DNA replication. Furthermore, punicalagin did not affect precore/core promoter activity, pgRNA transcription, core protein expression, or HBsAg secretion. By employing the cell-based cccDNA accumulation and stability assay, we found that these tannins significantly inhibited the establishment of cccDNA and modestly facilitated the degradation of preexisting cccDNA. Collectively, our results suggest that hydrolyzable tannins inhibit HBV cccDNA production via a dual mechanism through preventing the formation of cccDNA and promoting cccDNA decay, although the latter effect is rather minor. These hydrolyzable tannins may serve as lead compounds for the development of new agents to cure HBV infection.


Asunto(s)
ADN Circular/antagonistas & inhibidores , ADN Viral/antagonistas & inhibidores , Glucósidos/farmacología , Virus de la Hepatitis B/efectos de los fármacos , Taninos Hidrolizables/farmacología , Antivirales/farmacología , Replicación del ADN/efectos de los fármacos , ADN Circular/efectos de los fármacos , ADN Viral/efectos de los fármacos , Descubrimiento de Drogas , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/aislamiento & purificación , Medicamentos Herbarios Chinos/farmacología , Hepatitis B/tratamiento farmacológico , Antígenos e de la Hepatitis B/efectos de los fármacos , Antígenos e de la Hepatitis B/metabolismo , Bibliotecas de Moléculas Pequeñas , Replicación Viral/efectos de los fármacos
17.
Plant Cell Rep ; 35(10): 2113-23, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27417695

RESUMEN

KEY MESSAGE: Chloroplast genome of Solanum commersonii and S olanum tuberosum were completely sequenced, and Indel markers were successfully applied to distinguish chlorotypes demonstrating the chloroplast genome was randomly distributed during protoplast fusion. Somatic hybridization has been widely employed for the introgression of resistance to several diseases from wild Solanum species to overcome sexual barriers in potato breeding. Solanum commersonii is a major resource used as a parent line in somatic hybridization to improve bacterial wilt resistance in interspecies transfer to cultivated potato (S. tuberosum). Here, we sequenced the complete chloroplast genomes of Lz3.2 (S. commersonii) and S. tuberosum (PT56), which were used to develop fusion products, then compared them with those of five members of the Solanaceae family, S. tuberosum, Capsicum annum, S. lycopersicum, S. bulbocastanum and S. nigrum and Coffea arabica as an out-group. We then developed Indel markers for application in chloroplast genotyping. The complete chloroplast genome of Lz3.2 is composed of 155,525 bp, which is larger than the PT56 genome with 155,296 bp. Gene content, order and orientation of the S. commersonii chloroplast genome were highly conserved with those of other Solanaceae species, and the phylogenetic tree revealed that S. commersonii is located within the same node of S. tuberosum. However, sequence alignment revealed nine Indels between S. commersonii and S. tuberosum in their chloroplast genomes, allowing two Indel markers to be developed. The markers could distinguish the two species and were successfully applied to chloroplast genotyping (chlorotype) in somatic hybrids and their progenies. The results obtained in this study confirmed the random distribution of the chloroplast genome during protoplast fusion and its maternal inheritance and can be applied to select proper plastid genotypes in potato breeding program.


Asunto(s)
Genoma del Cloroplasto , Hibridación Genética , Solanum/genética , Secuencia de Bases , Codón/genética , Cruzamientos Genéticos , ADN Circular/genética , Marcadores Genéticos , Variación Genética , Genotipo , Mutación INDEL/genética , Filogenia , Reacción en Cadena de la Polimerasa , Secuencias Repetidas en Tándem/genética
18.
Liver Int ; 36(6): 775-82, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26854115

RESUMEN

Approximately 350 million people worldwide are chronically infected with hepatitis B virus (HBV), representing a significant public health challenge. Nucleos/tide analogues (NUCs) and interferon alpha (IFNα), the current standard of care for chronic infection, aim at preventing progression of the disease to cirrhosis, hepatocellular carcinoma (HCC) and death. However, in contrast to the case of hepatitis C virus infection, in which novel antiviral drugs cure the vast majority of treated patients, in regard to HBV, cure is rare due to the unusual persistence of viral DNA in the form of covalently closed circular DNA (cccDNA) within the nucleus of infected cells. Available therapies for HBV require lifelong treatment and surveillance, as reactivation frequently occurs following medication cessation and the occurrence of HCC is decreased but not eliminated, even after years of successful viral suppression. Progress has been made in the development of new therapeutics, and it is likely that only a combination of immune modulators, inhibitors of gene expression and replication and cccDNA-targeting drugs will eradicate chronic infection. This review aims to summarize the state of the art in HBV drug research highlighting those agents with the greatest potential for success based on in vitro as well as on data from clinical studies.


Asunto(s)
Antivirales/uso terapéutico , Virus de la Hepatitis B/efectos de los fármacos , Hepatitis B Crónica/tratamiento farmacológico , ADN Circular/análisis , ADN Viral/análisis , Sistemas de Liberación de Medicamentos , Vacunas contra Hepatitis B/uso terapéutico , Virus de la Hepatitis B/genética , Humanos , Inmunidad Innata , Ensayos Clínicos Controlados Aleatorios como Asunto
19.
Artículo en Inglés | MEDLINE | ID: mdl-24438302

RESUMEN

Spongospora subterranea is a soil-borne obligate parasite responsible for potato powdery scab disease. S. subterranea is a member of the order Plasmodiophorida, a protist taxa that is related to Cercozoa and Foraminifera but the fine details of these relationships remain unresolved. Currently there is only one available complete mtDNA sequence of a cercozoan, Bigelowiella natans. In this work, the mitochondrial sequence of a S. subterranea isolate infecting an Andean variety of S. tuberosum ssp. andigena (Diacol-Capiro) is presented. The mtDNA codes for 16 proteins of the respiratory chain, 11 ribosomal proteins, 3 ribosomal RNAs, 24 tRNAs, a RNA processing RNaseP, a RNA-directed polymerase, and two proteins of unknown function. This is the first report of a mtDNA genome sequence from a plasmodiophorid and will be useful in clarifying the phylogenetic relationship of this group to other members in the supergroup Rhizaria once more mtDNA sequences are available.


Asunto(s)
Genoma Mitocondrial , Genoma de Protozoos , Plasmodiophorida/genética , Solanum tuberosum/parasitología , Composición de Base/genética , Emparejamiento Base/genética , Secuencia de Bases , ADN Circular/genética , ADN Mitocondrial/genética , Sistemas de Lectura Abierta/genética , Enfermedades de las Plantas/parasitología , ARN de Transferencia/genética
20.
Biotechnol J ; 10(3): 469-72, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25512105

RESUMEN

There is an increasing need to develop novel bioassay methods for low-cost, rapid, and easy-to-use multiplex detection of pathogens in various fields ranging from human infectious disease diagnosis, drinking water quality control, to food safety applications. Due to their unique advantages, magnetic and optomagnetic bioassay principles are particularly promising for biodetection platforms that will be used in developing countries. In this paper, an optomagnetic method for rapid and cost-efficient qualitative biplex detection of bacterial DNA sequences is demonstrated. Within less than two hours, the assay gives an answer to whether none, both, or only one of the bacterial DNA sequences is present in the sample. The assay relies on hybridization of oligonucleotide-functionalized magnetic nanobeads of two different sizes to rolling circle amplification (RCA) products originating from two different bacterial targets. The different bead sizes are equipped with different oligonucleotide probes, complementary to only one of the RCA products, and the read-out is carried out in the same sample volume. In an optomagnetic setup, the frequency modulation of transmitted laser light in response to an applied AC magnetic field is measured. The presented methodology is potentially interesting for low-cost screening of pathogens relating to both human and veterinary medicine in resource-poor regions of the world.


Asunto(s)
Técnicas Biosensibles/economía , Técnicas Biosensibles/métodos , ADN Bacteriano/análisis , Nanopartículas de Magnetita/química , Bacterias/clasificación , Bacterias/genética , ADN Bacteriano/química , ADN Circular/química , Países en Desarrollo , Humanos , Técnicas de Amplificación de Ácido Nucleico/economía , Técnicas de Amplificación de Ácido Nucleico/métodos , Sondas de Oligonucleótidos/química , Sondas de Oligonucleótidos/genética , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA