Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Ethnopharmacol ; 328: 118057, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38518965

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Non-alcoholic fatty liver disease (NAFLD) represents a burgeoning challenge for public health with potential progression to malignant liver diseases. PANoptosis, an avant-garde conceptualization of cell deaths, is closely associated with mitochondrial damage and linked to multiple liver disorders. Si-Wu-Tang (SWT), a traditional Chinese herbal prescription renowned for regulating blood-related disorders and ameliorating gynecological and hepatic diseases, has been demonstrated to alleviate liver fibrosis by regulating bile acid metabolism and immune responses. AIM OF THE STUDY: However, the mechanisms by which mtDNA is released from PANoptotic hepatocytes, triggering macrophage activation and hepatitis and whether this process can be reversed by SWT remain unclear. MATERIALS AND METHODS: Here, sophisticated RNA-sequencing complemented by molecular approaches were applied to explore the underlying mechanism of SWT against NAFLD in methionine/choline-deficient diet (MCD)-induced mice and relative in vitro models. RESULTS: We revealed that SWT profoundly repaired mitochondrial dysfunction, blocked mitochondrial permeability transition and mtDNA released to the cytoplasm, subsequently reversing hepatocyte PANoptosis and macrophage polarization both in MCD-stimulated mice and in vitro. Mechanically, loaded lipids dramatically promoted the opening of mPTP and oligomerization of VDAC2 to orchestrate mtDNA release, which was combined with ZBP1 to promote hepatocyte PANoptosis and also taken by macrophages to trigger M1 polarization via the FSTL1 and PKM2 combination. SWT effectively blocked NOXA signaling and reversed all these detrimental outcomes. CONCLUSION: Our findings show that SWT protects against hepatitis-mediated hepatocyte PANoptosis and macrophage M1 polarization by influencing intrahepatic synthesis, release and intercellular transfer of mtDNA, suggesting a potential therapeutic strategy for ameliorating NAFLD.


Asunto(s)
Medicamentos Herbarios Chinos , Hepatitis , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , ADN Mitocondrial/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Macrófagos/metabolismo , Metionina/metabolismo , Hepatitis/metabolismo , Ratones Endogámicos C57BL
2.
J Ethnopharmacol ; 325: 117820, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38286157

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Qingfei Xieding prescription was gradually refined and produced by Hangzhou Red Cross Hospital. The raw material includes Ephedra sinica Stapf, Morus alba L., Bombyx Batryticatus, Gypsum Fibrosum, Prunus armeniaca L. var. ansu Maxim., Houttuynia cordata Thunb. , Pueraria edulis Pamp. Paeonia L., Scutellaria baicalensis Georgi and Anemarrhena asphodeloides Bge. It is effective in clinical adjuvant treatment of patients with pulmonary diseases. AIM OF THE STUDY: To explore the efficacy and underlying mechanism of Qingfei Xieding (QF) in the treatment of bleomycin-induced mouse model. MATERIALS AND METHODS: TGF-ß induced fibrotic phenotype in vitro. Bleomycin injection induced lung tissue fibrosis mouse model in vivo. Flow cytometry was used to detect apoptosis, cellular ROS and lipid oxidation. Mitochondria substructure was observed by transmission electron microscopy. Autophagolysosome and nuclear entry of P65 were monitored by immunofluorescence. Quantitative real-time PCR was performed to detect the transcription of genes associated with mtDNA-cGAS-STING pathway and subsequent inflammatory signaling activation. RESULTS: TGF-ß induced the expression of α-SMA and Collagen I, inhibited cell viability in lung epithelial MLE-12 cells that was reversed by QF-containing serum. TGF-ß-mediated downregulation in autophagy, upregulation in lipid oxidation and ROS contents, and mitochondrial damage were rescued by QF-containing serum treatment, but CQ exposure, an autophagy inhibitor, prevented the protective role of QF. In addition to that, the decreased autophagolysosome in TGF-ß-exposed MLE-12 cells was reversed by QF and restored to low level in the combination treatment of QF and CQ. Mechanistically, QF-containing serum treatment significantly inhibited mtDNA-cGAS-STING pathway and subsequent inflammatory signaling in TGF-ß-challenged cells, which were abolished by CQ-mediated autophagy inhibition. In bleomycin-induced mouse model, QF ameliorated pulmonary fibrosis, reduced mortality, re-activated autophagy in lung tissues and restrained mtDNA-cGAS-STING inflammation pathway. However, the protective effects of QF in bleomycin-induced model mice were also abrogated by CQ. CONCLUSION: QF alleviated bleomycin-induced pulmonary fibrosis by activating autophagy, inhibiting mtDNA-cGAS-STING pathway-mediated inflammation. This research recognizes the protection role of QF on bleomycin-induced mouse model, and offers evidence for the potentiality of QF in clinical application for pulmonary fibrosis treatment.


Asunto(s)
Fibrosis Pulmonar , Humanos , Ratones , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Bleomicina/toxicidad , ADN Mitocondrial/efectos adversos , ADN Mitocondrial/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Pulmón , Factor de Crecimiento Transformador beta/metabolismo , Mitocondrias/metabolismo , Inflamación/patología , Modelos Animales de Enfermedad , Autofagia , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/farmacología , Nucleotidiltransferasas/uso terapéutico , Lípidos/farmacología , Factor de Crecimiento Transformador beta1/metabolismo
3.
J Agric Food Chem ; 71(50): 20325-20335, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38052101

RESUMEN

Atrazine (ATZ) is a highly persistent herbicide that harms organism health. Lycopene (LYC) is an antioxidant found in plants and fruits. The aim of this study is to investigate the mechanisms of atrazine-induced mitochondrial damage and lycopene antagonism in the liver. The mice were divided into seven groups by randomization: blank control (Con group), vehicle control (Vcon group), 5 mg/kg lycopene (LYC group), 50 mg/kg atrazine (ATZ1 group), ATZ1+LYC group, 200 mg/kg atrazine (ATZ2 group), and ATZ2+LYC group. The present study performed a holistic assessment based on mitochondria to show that ATZ causes the excessive fission of mitochondria and disrupts mitochondrial biogenesis. However, the LYC supplementation reverses these changes. ATZ causes increased mitophagy and exacerbates the production of oxidized mitochondrial DNA (Ox-mtDNA) and mitochondrial stress. This study reveals that LYC could act as an antioxidant to repair Ox-mtDNA and restore the disordered mitochondrial function caused by ATZ.


Asunto(s)
Atrazina , Ratones , Animales , Licopeno/metabolismo , Atrazina/toxicidad , Atrazina/metabolismo , Antioxidantes/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Mitocondrias/metabolismo , Hepatocitos , Estrés Oxidativo
4.
PLoS One ; 18(8): e0285430, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37552681

RESUMEN

Heteroplasmy, the coexistence of multiple mitochondrial DNA (mtDNA) sequences in a cell, is well documented in plants. Next-generation sequencing technology (NGS) has made it feasible to sequence entire genomes. Thus, NGS has the potential to detect heteroplasmy; however, the methods and pitfalls in heteroplasmy detection have not been fully investigated and identified. One obstacle for heteroplasmy detection is the sequence homology between mitochondrial-, plastid-, and nuclear DNA, of which the influence of nuclear DNA segments homologous to mtDNA (numt) need to be minimized. To detect heteroplasmy, we first excluded nuclear DNA sequences of sugar beet (Beta vulgaris) line EL10 from the sugar beet mtDNA sequence. NGS reads were obtained from single plants of sugar beet lines NK-195BRmm-O and NK-291BRmm-O and mapped to the unexcluded mtDNA regions. More than 1000 sites exhibited intra-individual polymorphism as detected by genome browsing analysis. We focused on a 309-bp region where 12 intra-individual polymorphic sites were closely linked to each other. Although the existence of DNA molecules having variant alleles at the 12 sites was confirmed by PCR amplification from NK-195BRmm-O and NK-291BRmm-O, these variants were not always called by six variant-calling programs, suggesting that these programs are inappropriate for intra-individual polymorphism detection. When we changed the nuclear DNA reference, a numt absent from EL10 was found to include the 309-bp region. Genetic segregation of an F2 population from NK-195BRmm-O x NK-291BRmm-O supported the numt origin of the variant alleles. Using four references, we found that numt detection exhibited reference dependency, and extreme polymorphism of numts exists among sugar beet lines. One of the identified numts absent from EL10 is also associated with another intra-individual polymorphic site in NK-195mm-O. Our data suggest that polymorphism among numts is unexpectedly high within sugar beets, leading to confusion about the true degree of heteroplasmy.


Asunto(s)
Beta vulgaris , Genoma Mitocondrial , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Beta vulgaris/genética , Beta vulgaris/metabolismo , Heteroplasmia , Análisis de Secuencia de ADN/métodos , Azúcares , Genoma Mitocondrial/genética
5.
Biochim Biophys Acta Gen Subj ; 1867(5): 130328, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36791826

RESUMEN

Human MPV17, an evolutionarily conserved mitochondrial inner-membrane channel protein, accounts for the tissue-specific mitochondrial DNA depletion syndrome. However, the precise molecular function of the MPV17 protein is still elusive. Previous studies showed that the mitochondrial morphology and cristae organization are severely disrupted in the MPV17 knockout cells from yeast, zebrafish, and mammalian tissues. As mitochondrial cristae morphology is strictly regulated by the membrane phospholipids composition, we measured mitochondrial membrane phospholipids (PLs) levels in yeast Saccharomyces cerevisiae MPV17 ortholog, SYM1 (Stress-inducible Yeast MPV17) deleted cells. We found that Sym1 knockout decreases the mitochondrial membrane PL, phosphatidyl ethanolamine (PE), and inhibits respiratory growth at 37 ̊C on rich media. Both the oxygen consumption rate and the steady state expressions of mitochondrial complex II and super-complexes are compromised. Apart from mitochondrial PE defect a significant depletion of mitochondrial phosphatidyl-choline (PC) was noticed in the sym1∆ cells grown on synthetic media at both 30 ̊C and 37 ̊C temperatures. Surprisingly, exogenous supplementation of methylglyoxal (MG), an intrinsic side product of glycolysis, rescues the respiratory growth of Sym1 deficient yeast cells. Using a combination of molecular biology and lipid biochemistry, we uncovered that MG simultaneously restores both the mitochondrial PE/PC levels and the respiration by enhancing cytosolic NAD-dependent glycerol-3-phosphate dehydrogenase 1 (Gpd1) enzymatic activity. Further, MG is incapable to restore respiratory growth of the sym1∆gpd1∆ double knockout cells. Thus, our work provides Gpd1 activation as a novel strategy for combating Sym1 deficiency and PC/PE defects.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animales , Humanos , Saccharomyces cerevisiae/metabolismo , Piruvaldehído/metabolismo , Pez Cebra/metabolismo , Proteínas de la Membrana/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Mamíferos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Glicerol-3-Fosfato Deshidrogenasa (NAD+)/metabolismo
6.
Indian J Gastroenterol ; 42(4): 569-574, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36753038

RESUMEN

MPV17 is a mitochondrial inner membrane protein, involved in transporting deoxynucleotides into the mitochondria. Pathogenic MPV17 mutations can cause mitochondrial deoxyribonucleic acid (DNA) depletion syndrome, which has a varied presentation with neurological, muscular and hepatic involvement. Presentation as liver failure is relatively uncommon. Here, we report four infants from four separate families with pathogenic, homozygous MPV17 mutations. All had predominant hepatic involvement with cholestasis, lactic acidosis and hypoketotic hypoglycemia. Three of them had presented with liver failure. Interestingly, one of them showed fluctuating liver functions, which worsened with infection and improved after aggressive treatment with antibiotics and supplements. Two of the four cases died in infancy, while the other two improved on conservative management with medium-chain triglyceride-based diet, vitamin supplements, co-enzyme Q and carnitine. The two surviving children are alive at 12 and 25 months of age with native liver with normal to mildly deranged liver function and no neurological dysfunction. Next-generation sequencing confirmed the diagnosis in all of our cases. One of the detected mutations, c.55delC (p.Gln19ArgfsTer3) is a novel pathogenic frameshift mutation, while another mutation c.388G>C (p.Ala130Pro), which was previously reported in Single Nucleotide Polymorphism Database in heterozygous form, is being predicted as likely pathogenic in our case series. We, therefore, propose mutation testing for MPV17 gene during evaluation of indeterminate infantile liver failure, especially those with hypoglycemia and raised plasma lactate.


Asunto(s)
Fallo Hepático , Enfermedades Mitocondriales , Niño , Humanos , Lactante , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Proteínas de la Membrana/genética , Mutación , Proteínas Mitocondriales/genética
7.
Pharmacol Res ; 188: 106672, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36690165

RESUMEN

Mitochondria are morphologically dynamic organelles frequently undergoing fission and fusion processes that regulate mitochondrial integrity and bioenergetics. These processes are considered critical for cell survival. The mitochondrial fission process regulates mitochondrial biogenesis and mitophagy. It is associated with apoptosis, while mitochondrial fusion controls the accurate distribution of mitochondrial DNA and metabolic substances across the mitochondria. Excessive mitochondrial fission results in mitochondrial structural changes, dysfunction, and cell damage. Accumulating evidence demonstrates that mitochondrial dynamics affect neurodegenerative and cardiovascular diseases along with several other diseases. Biological molecules regulating the process of mitochondrial fission are potential targets for developing therapeutic agents. Many natural products target the dynamin-related protein 1 (Drp1)-dependent mitochondrial fission pathway, and their inhibitory effects ameliorate mitochondrial fragmentation. In this article, we reviewed the research literature that describes Drp1-dependent inhibition as a mechanism for the protective effects of natural compounds.


Asunto(s)
Enfermedades Cardiovasculares , Dinámicas Mitocondriales , Humanos , Dinámicas Mitocondriales/fisiología , Dinaminas/metabolismo , Mitocondrias/metabolismo , ADN Mitocondrial/metabolismo , Enfermedades Cardiovasculares/metabolismo , Proteínas Mitocondriales/metabolismo
8.
Neuroscience ; 517: 84-95, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36702373

RESUMEN

Melatonin supplementation has been shown to delay age-related hearing loss (ARHL) progression. Previously, melatonin was found to inhibit neuronal mitochondrial DNA (mtDNA) release, as well as inhibit cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling, thereby delaying the onset of central nervous system diseases. Therefore, we hypothesized that melatonin may delay the progression of hearing loss in the C57BL/6J presbycusis mouse model by inhibiting cGAS-STING signaling in the auditory pathway. Oral melatonin at 10 mg/kg/d was administered to 3-month-old C57BL/6J mice until 12 months of age. The auditory brainstem response (ABR) threshold was used to assess their hearing ability. By real-time polymerase chain reaction and Western blot analysis, the levels of cytosolic mtDNA, cGAS/STING, and cytokines were examined in the mouse cochlea, inferior colliculus, and auditory cortex. We found that the 12-month-old control mice exhibited significant hearing loss, increased cytosolic mtDNA, increased expression of inflammatory factors TNF-α, IL-6, IFN-ß, Cxcl10, and Ifit3, up-regulated cGAS and STING expression, and enhanced interferon regulatory factor 3 (IRF3) phosphorylation in the C57BL/6J mouse cochlea, inferior colliculus, and auditory cortex. Melatonin treatment significantly improved hearing, decreased cytosolic mtDNA, suppressed the expression of inflammatory cytokines TNF-α, IL-6, IFN-ß, Ifit3, and Cxcl10, down-regulated cGAS and STING expression, and attenuated IRF3 phosphorylation in the C57BL/6J mouse cochlea, inferior colliculus, and auditory cortex. This study suggested that melatonin had a protective effect on auditory function in the C57BL/6J presbycusis mouse model, which may be mediated through reducing mtDNA release, inhibiting the cGAS-STING signaling pathway in the auditory pathway.


Asunto(s)
Sordera , Melatonina , Presbiacusia , Ratones , Animales , Interferones , Melatonina/farmacología , Ratones Endogámicos C57BL , Factor de Necrosis Tumoral alfa , Interleucina-6 , Transducción de Señal , Nucleotidiltransferasas/genética , Citocinas , ADN Mitocondrial/metabolismo
9.
Nutrients ; 14(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36235564

RESUMEN

The purpose of this study was to examine whether Limonium tetragonum, cultivated in a smart-farming system with LED lamps, could increase exercise capacity in mice. C57BL/6 male mice were orally administered vehicle or Limonium tetragonum water extract (LTE), either 30 or 100 mg/kg, and were subjected to moderate intensity treadmill exercise for 4 weeks. Running distance markedly increased in the LTE group (100 mg/kg) by 80 ± 4% compared to the vehicle group, which was accompanied by a higher proportion of oxidative fibers (6 ± 6% vs. 10 ± 4%). Mitochondrial DNA content and gene expressions related to mitochondrial biogenesis were significantly increased in LTE-supplemented gastrocnemius muscles. At the molecular level, the expression of PGC-1α, a master regulator of fast-to-slow fiber-type transition, was increased downstream of the PKA/CREB signaling pathway. LTE induction of the PKA/CREB signaling pathway was also observed in C2C12 cells, which was effectively suppressed by PKA inhibitors H89 and Rp-cAMP. Altogether, these findings indicate that LTE treatment enhanced endurance exercise capacity via an improvement in mitochondrial biosynthesis and the increases in the formation of oxidative slow-twitch fibers. Future study is warranted to validate the exercise-enhancing effect of LTE in the human.


Asunto(s)
Condicionamiento Físico Animal , Extractos Vegetales , Plumbaginaceae , Carrera , Animales , ADN Mitocondrial/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Biogénesis de Organelos , Estrés Oxidativo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Condicionamiento Físico Animal/fisiología , Resistencia Física , Extractos Vegetales/farmacología , Plumbaginaceae/química
10.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36077101

RESUMEN

Mitochondrial epigenetic alterations are closely related to Alzheimer's disease (AD), which is described in this review. Reports of the alteration of mitochondrial DNA (mtDNA) methylation in AD demonstrate that the disruption of the dynamic balance of mtDNA methylation and demethylation leads to damage to the mitochondrial electron transport chain and the obstruction of mitochondrial biogenesis, which is the most studied mitochondrial epigenetic change. Mitochondrial noncoding RNA modifications and the post-translational modification of mitochondrial nucleoproteins have been observed in neurodegenerative diseases and related diseases that increase the risk of AD. Although there are still relatively few mitochondrial noncoding RNA modifications and mitochondrial nuclear protein post-translational modifications reported in AD, we have reason to believe that these mitochondrial epigenetic modifications also play an important role in the AD process. This review provides a new research direction for the AD mechanism, starting from mitochondrial epigenetics. Further, this review summarizes therapeutic approaches to targeted mitochondrial epigenetics, which is the first systematic summary of therapeutic approaches in the field, including folic acid supplementation, mitochondrial-targeting antioxidants, and targeted ubiquitin-specific proteases, providing a reference for therapeutic targets for AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Metilación de ADN , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Epigénesis Genética , Humanos , Proteínas Mitocondriales/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo
11.
Int J Mol Sci ; 23(18)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36142276

RESUMEN

Reproductive aging is characterized by a decline in ovarian function and in oocytes' quantity and quality. Pigment epithelium-derived factor (PEDF), a pivotal player in ovarian angiogenic and oxidative balance, was evaluated for its involvement in reproductive aging. Our work examines the initial stage of reproductive aging in women and mice, and the involvement of PEDF in the process. Granulosa cells from reproductively-aged (RA) women and mice (36-44 years old and 9-10 months old, respectively) indicated an increase in the level of PEDF mRNA (qPCR), with yet unchanged levels of AMH and FSHR mRNAs. However, the PEDF protein level in individual women showed an intra-cellular decrease (ELISA), along with a decrease in the corresponding follicular fluid, which reflects the secreted fraction of the protein. The in vitro maturation (IVM) rate in the oocytes of RA mice was lower compared with the oocytes of young mice, demonstrated by a reduced polar body extrusion (PBE) rate. The supplementation of PEDF improved the hampered PBE rate, manifested by a higher number of energetically-competent oocytes (ATP concentration and mtDNA copy number of individual oocytes). Our findings propose PEDF as an early marker of reproductive aging, and a possible therapeutic in vitro agent that could enhance the number of good-quality oocytes in older IVF patients.


Asunto(s)
Oocitos , Ovario , Serpinas/metabolismo , Adenosina Trifosfato/metabolismo , Envejecimiento/genética , Animales , ADN Mitocondrial/metabolismo , Proteínas del Ojo , Femenino , Humanos , Ratones , Factores de Crecimiento Nervioso , Oocitos/metabolismo , Ovario/metabolismo , ARN Mensajero/metabolismo
12.
Mol Med ; 28(1): 90, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35922766

RESUMEN

BACKGROUND: Myoclonus, Epilepsy and Ragged-Red-Fibers (MERRF) is a mitochondrial encephalomyopathy due to heteroplasmic mutations in mitochondrial DNA (mtDNA) most frequently affecting the tRNALys gene at position m.8344A > G. Defective tRNALys severely impairs mitochondrial protein synthesis and respiratory chain when a high percentage of mutant heteroplasmy crosses the threshold for full-blown clinical phenotype. Therapy is currently limited to symptomatic management of myoclonic epilepsy, and supportive measures to counteract muscle weakness with co-factors/supplements. METHODS: We tested two therapeutic strategies to rescue mitochondrial function in cybrids and fibroblasts carrying different loads of the m.8344A > G mutation. The first strategy was aimed at inducing mitochondrial biogenesis directly, over-expressing the master regulator PGC-1α, or indirectly, through the treatment with nicotinic acid, a NAD+ precursor. The second was aimed at stimulating the removal of damaged mitochondria through prolonged rapamycin treatment. RESULTS: The first approach slightly increased mitochondrial protein expression and respiration in the wild type and intermediate-mutation load cells, but was ineffective in high-mutation load cell lines. This suggests that induction of mitochondrial biogenesis may not be sufficient to rescue mitochondrial dysfunction in MERRF cells with high-mutation load. The second approach, when administered chronically (4 weeks), induced a slight increase of mitochondrial respiration in fibroblasts with high-mutation load, and a significant improvement in fibroblasts with intermediate-mutation load, rescuing completely the bioenergetics defect. This effect was mediated by increased mitochondrial biogenesis, possibly related to the rapamycin-induced inhibition of the Mechanistic Target of Rapamycin Complex 1 (mTORC1) and the consequent activation of the Transcription Factor EB (TFEB). CONCLUSIONS: Overall, our results point to rapamycin-based therapy as a promising therapeutic option for MERRF.


Asunto(s)
Síndrome MERRF , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Humanos , Síndrome MERRF/genética , Síndrome MERRF/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , ARN de Transferencia de Lisina/genética , ARN de Transferencia de Lisina/metabolismo , Sirolimus/metabolismo , Sirolimus/farmacología
13.
J Biol Chem ; 298(8): 102196, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35760101

RESUMEN

In human cells, ATP is generated using oxidative phosphorylation machinery, which is inoperable without proteins encoded by mitochondrial DNA (mtDNA). The DNA polymerase gamma (Polγ) repairs and replicates the multicopy mtDNA genome in concert with additional factors. The Polγ catalytic subunit is encoded by the POLG gene, and mutations in this gene cause mtDNA genome instability and disease. Barriers to studying the molecular effects of disease mutations include scarcity of patient samples and a lack of available mutant models; therefore, we developed a human SJCRH30 myoblast cell line model with the most common autosomal dominant POLG mutation, c.2864A>G/p.Y955C, as individuals with this mutation can present with progressive skeletal muscle weakness. Using on-target sequencing, we detected a 50% conversion frequency of the mutation, confirming heterozygous Y955C substitution. We found mutated cells grew slowly in a glucose-containing medium and had reduced mitochondrial bioenergetics compared with the parental cell line. Furthermore, growing Y955C cells in a galactose-containing medium to obligate mitochondrial function enhanced these bioenergetic deficits. Also, we show complex I NDUFB8 and ND3 protein levels were decreased in the mutant cell line, and the maintenance of mtDNA was severely impaired (i.e., lower copy number, fewer nucleoids, and an accumulation of Y955C-specific replication intermediates). Finally, we show the mutant cells have increased sensitivity to the mitochondrial toxicant 2'-3'-dideoxycytidine. We expect this POLG Y955C cell line to be a robust system to identify new mitochondrial toxicants and therapeutics to treat mitochondrial dysfunction.


Asunto(s)
ADN Polimerasa gamma/genética , Replicación del ADN , ADN Polimerasa Dirigida por ADN , ADN Polimerasa gamma/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Metabolismo Energético , Heterocigoto , Humanos , Mutación
14.
Biomed J ; 45(5): 733-748, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35568318

RESUMEN

Mitochondria are the organelles that generate energy for the cells and act as biosynthetic and bioenergetic factories, vital for normal cell functioning and human health. Mitochondrial bioenergetics is considered an important measure to assess the pathogenesis of various diseases. Dysfunctional mitochondria affect or cause several conditions involving the most energy-intensive organs, including the brain, muscles, heart, and liver. This dysfunction may be attributed to an alteration in mitochondrial enzymes, increased oxidative stress, impairment of electron transport chain and oxidative phosphorylation, or mutations in mitochondrial DNA that leads to the pathophysiology of various pathological conditions, including neurological and metabolic disorders. The drugs or compounds targeting mitochondria are considered more effective and safer for treating these diseases. In this review, we make an effort to concise the available literature on mitochondrial bioenergetics in various conditions and the therapeutic potential of various drugs/compounds targeting mitochondrial bioenergetics in metabolic and neurodegenerative diseases.


Asunto(s)
Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Mitocondrias/metabolismo , Metabolismo Energético , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , ADN Mitocondrial/farmacología , Fosforilación Oxidativa , Estrés Oxidativo
15.
Nutrients ; 14(9)2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35565950

RESUMEN

In patients with age-related macular degeneration (AMD), the crucial retinal pigment epithelial (RPE) cells are characterized by mitochondria that are structurally and functionally defective. Moreover, deficient expression of the mRNA-editing enzyme Dicer is noted specifically in these cells. This Dicer deficit up-regulates expression of Alu RNA, which in turn damages mitochondria-inducing the loss of membrane potential, boosting oxidant generation, and causing mitochondrial DNA to translocate to the cytoplasmic region. The cytoplasmic mtDNA, in conjunction with induced oxidative stress, triggers a non-canonical pathway of NLRP3 inflammasome activation, leading to the production of interleukin-18 that acts in an autocrine manner to induce apoptotic death of RPE cells, thereby driving progression of dry AMD. It is proposed that measures which jointly up-regulate mitophagy and mitochondrial biogenesis (MB), by replacing damaged mitochondria with "healthy" new ones, may lessen the adverse impact of Alu RNA on RPE cells, enabling the prevention or control of dry AMD. An analysis of the molecular biology underlying mitophagy/MB and inflammasome activation suggests that nutraceuticals or drugs that can activate Sirt1, AMPK, Nrf2, and PPARα may be useful in this regard. These include ferulic acid, melatonin urolithin A and glucosamine (Sirt1), metformin and berberine (AMPK), lipoic acid and broccoli sprout extract (Nrf2), and fibrate drugs and astaxanthin (PPARα). Hence, nutraceutical regimens providing physiologically meaningful doses of several or all of the: ferulic acid, melatonin, glucosamine, berberine, lipoic acid, and astaxanthin, may have potential for control of dry AMD.


Asunto(s)
Berberina , Degeneración Macular , Melatonina , Ácido Tióctico , Proteínas Quinasas Activadas por AMP/metabolismo , Berberina/farmacología , ADN Mitocondrial/metabolismo , Suplementos Dietéticos , Glucosamina , Humanos , Inflamasomas/metabolismo , Degeneración Macular/tratamiento farmacológico , Melatonina/metabolismo , Mitocondrias/metabolismo , Mitofagia , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Biogénesis de Organelos , Estrés Oxidativo , PPAR alfa/metabolismo , ARN/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Sirtuina 1/metabolismo
16.
Epigenetics Chromatin ; 15(1): 12, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35428319

RESUMEN

BACKGROUND: Mitochondrial DNA (mtDNA) copy number in oocytes correlates with oocyte quality and fertilisation outcome. The introduction of additional copies of mtDNA through mitochondrial supplementation of mtDNA-deficient Sus scrofa oocytes resulted in: (1) improved rates of fertilisation; (2) increased mtDNA copy number in the 2-cell stage embryo; and (3) improved development of the embryo to the blastocyst stage. Furthermore, a subset of genes showed changes in gene expression. However, it is still unknown if mitochondrial supplementation alters global and local DNA methylation patterns during early development. RESULTS: We generated a series of embryos in a model animal, Sus scrofa, by intracytoplasmic sperm injection (ICSI) and mitochondrial supplementation in combination with ICSI (mICSI). The DNA methylation status of ICSI- and mICSI-derived blastocysts was analysed by whole genome bisulfite sequencing. At a global level, the additional copies of mtDNA did not affect nuclear DNA methylation profiles of blastocysts, though over 2000 local genomic regions exhibited differential levels of DNA methylation. In terms of the imprinted genes, DNA methylation patterns were conserved in putative imprint control regions; and the gene expression profile of these genes and genes involved in embryonic genome activation were not affected by mitochondrial supplementation. However, 52 genes showed significant differences in expression as demonstrated by RNAseq analysis. The affected gene networks involved haematological system development and function, tissue morphology and cell cycle. Furthermore, seven mtDNA-encoded t-RNAs were downregulated in mICSI-derived blastocysts suggesting that extra copies of mtDNA affected tRNA processing and/or turnover, hence protein synthesis in blastocysts. We also showed a potential association between differentially methylated regions and changes in expression for 55 genes due to mitochondrial supplementation. CONCLUSIONS: The addition of just an extra ~ 800 copies of mtDNA into oocytes can have a significant impact on both gene expression and DNA methylation profiles in Sus scrofa blastocysts by altering the epigenetic programming established during oogenesis. Some of these changes may affect specific tissue-types later in life. Consequently, it is important to determine the longitudinal effect of these molecular changes on growth and development before considering human clinical practice.


Asunto(s)
Metilación de ADN , Transcriptoma , Animales , Blastocisto , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Suplementos Dietéticos , Desarrollo Embrionario , Metafase , Oocitos/metabolismo , Sus scrofa/genética , Sus scrofa/metabolismo , Porcinos
17.
Cells ; 11(4)2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35203288

RESUMEN

Mitochondria are cytoplasmic organelles, which generate energy as heat and ATP, the universal energy currency of the cell. This process is carried out by coupling electron stripping through oxidation of nutrient substrates with the formation of a proton-based electrochemical gradient across the inner mitochondrial membrane. Controlled dissipation of the gradient can lead to production of heat as well as ATP, via ADP phosphorylation. This process is known as oxidative phosphorylation, and is carried out by four multiheteromeric complexes (from I to IV) of the mitochondrial respiratory chain, carrying out the electron flow whose energy is stored as a proton-based electrochemical gradient. This gradient sustains a second reaction, operated by the mitochondrial ATP synthase, or complex V, which condensates ADP and Pi into ATP. Four complexes (CI, CIII, CIV, and CV) are composed of proteins encoded by genes present in two separate compartments: the nuclear genome and a small circular DNA found in mitochondria themselves, and are termed mitochondrial DNA (mtDNA). Mutations striking either genome can lead to mitochondrial impairment, determining infantile, childhood or adult neurodegeneration. Mitochondrial disorders are complex neurological syndromes, and are often part of a multisystem disorder. In this paper, we divide the diseases into those caused by mtDNA defects and those that are due to mutations involving nuclear genes; from a clinical point of view, we discuss pediatric disorders in comparison to juvenile or adult-onset conditions. The complementary genetic contributions controlling organellar function and the complexity of the biochemical pathways present in the mitochondria justify the extreme genetic and phenotypic heterogeneity of this new area of inborn errors of metabolism known as 'mitochondrial medicine'.


Asunto(s)
Mitocondrias , Protones , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Adulto , Niño , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Humanos , Mitocondrias/metabolismo
18.
Life Sci ; 293: 120333, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35051422

RESUMEN

Ageing is the most significant risk factor for cardiovascular diseases. l-Carnitine has a potent cardioprotective effect and its synthesis decreases during ageing. At the same time, there are pharmaceuticals, such as mildronate which, on the contrary, are aimed at reducing the concentration of l-carnitine in the heart and lead to slows down the oxidation of fatty acids in mitochondria. Despite this, both l-carnitine and mildronate are positioned as cardio protectors. We showed that l-carnitine supplementation to the diet of 15-month-old mice increased expression of the PGC-1α gene, which is responsible for the regulation of fatty acid oxidation, and the Nrf2 gene, which is responsible for protecting mitochondria by regulating the expression of antioxidants and mitophagy, in the heart. Mildronate activated the expression of genes that regulate glucose metabolism. Probably, this metabolic shift may protect the mitochondria of the heart from the accumulation of acyl-carnitine, which occurs during the oxidation of fatty acids under oxygen deficiency. Both pharmaceuticals impacted the gut microbiome bacterial composition. l-Carnitine increased the level of Lachnoanaerobaculum and [Eubacterium] hallii group, mildronate increased the level of Bifidobacterium, Rikinella, Christensenellaceae. Considered, that these bacteria for protection the organism from various pathogens and chronic inflammation. Thus, we suggested that the positive effects of both drugs on the mitochondria metabolism and gut microbiome bacterial composition may contribute to the protection of the heart during ageing.


Asunto(s)
Envejecimiento/metabolismo , Fármacos Cardiovasculares/farmacología , Carnitina/farmacología , Microbioma Gastrointestinal/fisiología , Metilhidrazinas/farmacología , Mitocondrias Cardíacas/metabolismo , Envejecimiento/efectos de los fármacos , Animales , Bifidobacterium/metabolismo , ADN Mitocondrial/metabolismo , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/efectos de los fármacos
19.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34948274

RESUMEN

Environmentally hazardous substances such as pesticides are gaining increasing interest in agricultural and nutritional research. This study aims to investigate the impact of these compounds on the healthspan and mitochondrial functions in an invertebrate in vivo model and in vitro in SH-SY5Y neuroblastoma cells, and to investigate the potential of polyphenolic metabolites to compensate for potential impacts. Wild-type nematodes (Caenorhabditis elegans, N2) were treated with pesticides such as pyraclostrobin (Pyr), glyphosate (Gly), or fluopyram (Fluo). The lifespans of the nematodes under heat stress conditions (37 °C) were determined, and the chemotaxis was assayed. Energetic metabolites, including adenosine triphosphate (ATP), lactate, and pyruvate, were analyzed in lysates of nematodes and cells. Genetic expression patterns of several genes associated with lifespan determination and mitochondrial parameters were assessed via qRT-PCR. After incubation with environmentally hazardous substances, nematodes were incubated with a pre-fermented polyphenol mixture (Rechtsregulat®Bio, RR) or protocatechuic acid (PCA) to determine heat stress resistance. Treatment with Pyr, Glyph and Fluo leads to dose-dependently decreased heat stress resistance, which was significantly improved by RR and PCA. The chemotaxes of the nematodes were not affected by pesticides. ATP levels were not significantly altered by the pesticides, except for Pyr, which increased ATP levels after 48 h leads. The gene expression of healthspan and mitochondria-associated genes were diversely affected by the pesticides, while Pyr led to an overall decrease of mRNA levels. Over time, the treatment of nematodes leads to a recovery of the nematodes on the mitochondrial level but not on stress resistance on gene expression. Fermented extracts of fruits and vegetables and phenolic metabolites such as PCA seem to have the potential to recover the vitality of C. elegans after damage caused by pesticides.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Longevidad/efectos de los fármacos , Plaguicidas/efectos adversos , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Línea Celular Tumoral , Factores Quimiotácticos/metabolismo , ADN Mitocondrial/metabolismo , Respuesta al Choque Térmico/efectos de los fármacos , Humanos , Invertebrados/efectos de los fármacos , Longevidad/genética , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Plaguicidas/farmacología , Polifenoles/efectos adversos , Polifenoles/metabolismo , Polifenoles/farmacología
20.
Nutrients ; 13(10)2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34684660

RESUMEN

Decreased energy expenditure and chronically positive energy balance contribute to the prevalence of obesity and associated metabolic dysfunctions, such as dyslipidemia, hepatic fat accumulation, inflammation, and muscle mitochondrial defects. We investigated the effects of Chrysanthemum morifolium Ramat flower extract (CE) on obesity-induced inflammation and muscle mitochondria changes. Sprague-Dawley rats were randomly divided into four groups and fed either a normal diet, 45% high-fat diet (HF), HF containing 0.2% CE, or 0.4% CE for 13 weeks. CE alleviated HF-increased adipose tissue mass and size, dyslipidemia, hepatic fat deposition, and systematic inflammation, and increased energy expenditure. CE significantly decreased gene expression involved in adipogenesis, pro-inflammation, and the M1 macrophage phenotype, as well as glycerol-3-phosphate dehydrogenase (GPDH) and nuclear factor-kappa B (NF-kB) activities in epididymal adipose tissue. Moreover, CE supplementation improved hepatic fat accumulation and modulated gene expression related to fat synthesis and oxidation with an increase in adenosine monophosphate-activated protein kinase (AMPK) activity in the liver. Furthermore, CE increased muscle mitochondrial size, mitochondrial DNA (mtDNA) content, and gene expression related to mitochondrial biogenesis and function, including sirtuin 1 (SIRT1), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), and PGC-1α-target genes, along with AMPK-SIRT1 activities in the skeletal muscle. These results suggest that CE attenuates obesity-associated inflammation by modulating the muscle AMPK-SIRT1 pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Chrysanthemum/química , Flores/química , Inflamación/tratamiento farmacológico , Mitocondrias Musculares/metabolismo , Obesidad/complicaciones , Extractos Vegetales/uso terapéutico , Sirtuina 1/metabolismo , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Adipocitos/patología , Adipogénesis/efectos de los fármacos , Adipogénesis/genética , Tejido Adiposo Blanco/metabolismo , Animales , Peso Corporal/efectos de los fármacos , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Dieta Alta en Grasa , Dislipidemias/complicaciones , Metabolismo Energético/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Hipertrofia , Inflamación/etiología , Hígado/efectos de los fármacos , Hígado/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Mitocondrias Musculares/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestructura , Extractos Vegetales/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA