Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Genes (Basel) ; 14(6)2023 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-37372467

RESUMEN

The coconut (Cocos nucifera L.) is a commercial crop widely distributed among coastal tropical regions. It provides millions of farmers with food, fuel, cosmetics, folk medicine, and building materials. Among these, oil and palm sugar are representative extracts. However, this unique living species of Cocos has only been preliminarily studied at molecular levels. Benefiting from the genomic sequence data published in 2017 and 2021, we investigated the transfer RNA (tRNA) modifications and modifying enzymes of the coconut in this survey. An extraction method for the tRNA pool from coconut flesh was built. In total, 33 species of modified nucleosides and 66 homologous genes of modifying enzymes were confirmed using a nucleoside analysis using high-performance liquid chromatography combined with high-resolution mass spectrometry (HPLC-HRMS) and homologous protein sequence alignment. The positions of tRNA modifications, including pseudouridines, were preliminarily mapped using a oligonucleotide analysis, and the features of their modifying enzymes were summarized. Interestingly, we found that the gene encoding the modifying enzyme of 2'-O-ribosyladenosine at the 64th position of tRNA (Ar(p)64) was uniquely overexpressed under high-salinity stress. In contrast, most other tRNA-modifying enzymes were downregulated with mining transcriptomic sequencing data. According to previous physiological studies of Ar(p)64, the coconut appears to enhance the quality control of the translation process when subjected to high-salinity stress. We hope this survey can help advance research on tRNA modification and scientific studies of the coconut, as well as thinking of the safety and nutritional value of naturally modified nucleosides.


Asunto(s)
Cocos , Nucleósidos , Cocos/genética , Cocos/química , Cocos/metabolismo , Genómica/métodos , Perfilación de la Expresión Génica , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
2.
Methods Mol Biol ; 2676: 87-100, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37277626

RESUMEN

Natural proteins are normally made by 20 canonical amino acids. Genetic code expansion (GCE) enables incorporation of diverse chemically synthesized noncanonical amino acids (ncAAs) by orthogonal aminoacyl-tRNA synthetase (aaRS)/tRNA pairs using nonsense codons, which could significantly expand new functionalities of proteins in both scientific and biomedical applications. Here, by hijacking the cysteine biosynthetic enzymes, we describe a method combining amino acid biosynthesis and GCE to introduce around 50 structurally novel ncAAs into proteins by supplementation of commercially available aromatic thiol precursors, thus eliminating the need to chemically synthesize these ncAAs. A screening method is also provided for improving the incorporation efficiency of a particular ncAA. Furthermore, we demonstrate bioorthogonal groups, such as azide and ketone, that are compatible with our system and can be easily introduced into protein for subsequent site-specific labeling.


Asunto(s)
Aminoácidos , Aminoacil-ARNt Sintetasas , Aminoácidos/química , Proteínas/metabolismo , Código Genético , Aminoacil-ARNt Sintetasas/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Biosíntesis de Proteínas
3.
mBio ; 14(2): e0028723, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36853041

RESUMEN

When microbes grow in foreign nutritional environments, selection may enrich mutations in unexpected pathways connecting growth and homeostasis. An evolution experiment designed to identify beneficial mutations in Burkholderia cenocepacia captured six independent nonsynonymous substitutions in the essential gene tilS, which modifies tRNAIle2 by adding a lysine to the anticodon for faithful AUA recognition. Further, five additional mutants acquired mutations in tRNAIle2, which strongly suggests that disrupting the TilS-tRNAIle2 interaction was subject to strong positive selection. Mutated TilS incurred greatly reduced enzymatic function but retained capacity for tRNAIle2 binding. However, both mutant sets outcompeted the wild type by decreasing the lag phase duration by ~3.5 h. We hypothesized that lysine demand could underlie fitness in the experimental conditions. As predicted, supplemental lysine complemented the ancestral fitness deficit, but so did the additions of several other amino acids. Mutant fitness advantages were also specific to rapid growth on galactose using oxidative overflow metabolism that generates redox imbalance, not resources favoring more balanced metabolism. Remarkably, 13 tilS mutations also evolved in the long-term evolution experiment with Escherichia coli, including four fixed mutations. These results suggest that TilS or unknown binding partners contribute to improved growth under conditions of rapid sugar oxidation at the predicted expense of translational accuracy. IMPORTANCE There is growing evidence that the fundamental components of protein translation can play multiple roles in maintaining cellular homeostasis. Enzymes that interact with transfer RNAs not only ensure faithful decoding of the genetic code but also help signal the metabolic state by reacting to imbalances in essential building blocks like free amino acids and cofactors. Here, we present evidence of a secondary function for the essential enzyme TilS, whose only prior known function is to modify tRNAIle(CAU) to ensure accurate translation. Multiple nonsynonymous substitutions in tilS, as well as its cognate tRNA, were selected in evolution experiments favoring rapid, redox-imbalanced growth. These mutations alone decreased lag phase and created a competitive advantage, but at the expense of most primary enzyme function. These results imply that TilS interacts with other factors related to the timing of exponential growth and that tRNA-modifying enzymes may serve multiple roles in monitoring metabolic health.


Asunto(s)
Aminoacil-ARNt Sintetasas , Nucleósidos de Pirimidina , Lisina/metabolismo , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Nucleósidos de Pirimidina/metabolismo , Bacterias/genética , ARN de Transferencia/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Mutación , Aminoácidos/metabolismo
4.
Neuropediatrics ; 54(5): 351-355, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36603837

RESUMEN

OBJECTIVE: By loading transfer RNAs with their cognate amino acids, aminoacyl-tRNA synthetases (ARS) are essential for protein translation. Both cytosolic ARS1-deficiencies and mitochondrial ARS2 deficiencies can cause severe diseases. Amino acid supplementation has shown to positively influence the clinical course of four individuals with cytosolic ARS1 deficiencies. We hypothesize that this intervention could also benefit individuals with mitochondrial ARS2 deficiencies. METHODS: This study was designed as a N-of-1 trial. Daily oral L-phenylalanine supplementation was used in a 3-year-old girl with FARS2 deficiency. A period without supplementation was implemented to discriminate the effects of treatment from age-related developments and continuing physiotherapy. Treatment effects were measured through a physiotherapeutic testing battery, including movement assessment battery for children, dynamic gait index, gross motor function measure 66, and quality of life questionnaires. RESULTS: The individual showed clear improvement in all areas tested, especially in gross motor skills, movement abilities, and postural stability. In the period without supplementation, she lost newly acquired motor skills but regained these upon restarting supplementation. No adverse effects and good tolerance of treatment were observed. INTERPRETATION AND CONCLUSION: Our positive results encourage further studies both on L-phenylalanine for other individuals with FARS2 deficiency and the exploration of this treatment rationale for other ARS2 deficiencies. Additionally, treatment costs were relatively low at 1.10 €/day.


Asunto(s)
Fenilalanina-ARNt Ligasa , Niño , Femenino , Humanos , Preescolar , Fenilalanina-ARNt Ligasa/genética , Fenilalanina-ARNt Ligasa/química , Fenilalanina-ARNt Ligasa/metabolismo , Fenilalanina/metabolismo , Calidad de Vida , Mitocondrias/genética , Mitocondrias/metabolismo , ARN de Transferencia/metabolismo , Proteínas Mitocondriales/genética
5.
Front Cell Infect Microbiol ; 12: 973282, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204637

RESUMEN

Streptococcus suis (S. suis) is a highly virulent zoonotic pathogen and causes severe economic losses to the swine industry worldwide. Public health security is also threatened by the rapidly growing antimicrobial resistance in S. suis. Therefore, there is an urgent need to develop new and safe antibacterial alternatives against S. suis. The green tea polyphenol epigallocatechin gallate (EGCG) with a number of potential health benefits is known for its antibacterial effect; however, the mechanism of its bactericidal action remains unclear. In the present, EGCG at minimal inhibitory concentration (MIC) showed significant inhibitory effects on S. suis growth, hemolytic activity, and biofilm formation, and caused damage to S. suis cells in vitro. EGCG also reduced S. suis pathogenicity in Galleria mellonella larvae in vivo. Metabolomics and proteomics analyses were performed to investigate the underlying mechanism of antibacterial activity of EGCG at MIC. Many differentially expressed proteins involved in DNA replication, synthesis of cell wall, and cell membrane, and virulence were down-regulated after the treatment of S. suis with EGCG. EGCG not only significantly reduced the hemolytic activity of S. suis but also down-regulated the expression of suilysin (Sly). The top three shared KEGG pathways between metabolomics and proteomics analysis were ABC transporters, glycolysis/gluconeogenesis, and aminoacyl-tRNA biosynthesis. Taken together, these data suggest that EGCG could be a potential phytochemical compound for treating S. suis infection.


Asunto(s)
Streptococcus suis , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Antibacterianos/metabolismo , Antibacterianos/farmacología , Catequina/análogos & derivados , Hemólisis , Polifenoles/farmacología , Proteómica , ARN de Transferencia/metabolismo , Streptococcus suis/genética , Porcinos , Té/metabolismo
6.
Zhongguo Zhong Yao Za Zhi ; 47(18): 5032-5039, 2022 Sep.
Artículo en Chino | MEDLINE | ID: mdl-36164913

RESUMEN

This study investigated the potential mechanism of Cordyceps militaris(CM) against non-small cell lung cancer(NSCLC) based on serum untargeted metabolomics. Specifically, Balb/c nude mice were used to generate the human lung cancer A549 xenograft mouse model. The tumor volume, tumor weight, and tumor inhibition rate in mice in the model, cisplatin, Cordyceps(low-, medium-, and high-dose), and CM(low-, medium-, and high-dose) groups were compared to evaluate the influence of CM on lung cancer. Gas chromatography-mass spectrometry(GC-MS) was used for the analysis of mouse serum, SIMCA 13.0 for the compa-rison of metabolic profiles, and MetaboAnalyst 5.0 for the analysis of metabolic pathways. According to the pharmacodynamic data, the tumor volume and tumor weight of mice in high-dose CM group and cisplatin group decreased as compared with those in the model group(P<0.05 or P<0.01). The results of serum metabolomics showed that the metabolic profiles of the model group were significantly different from those of the high-dose CM group, and the content of endogenous metabolites was adjusted to different degrees. A total of 42 differential metabolites and 7 differential metabolic pathways were identified. In conclusion, CM could significantly inhibit the tumor growth of lung cancer xenograft mice. The mechanism is the likelihood that it influences the aminoacyl-tRNA biosynthesis, the metabolism of D-glutamine and D-glutamate, metabolism of alanine, aspartate, and glutamate, metabolism of glyoxylate and dicarboxylic acid, biosynthesis of phenylalanine, tyrosine, and tryptophan, arginine biosynthesis as well as nitrogen metabolism. This study elucidated the underlying mechanism of CM against NSCLC from the point of metabolites. The results would lay a foundation for the anticancer research and clinical application of CM.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Cordyceps , Neoplasias Pulmonares , Alanina/metabolismo , Animales , Arginina/metabolismo , Ácido Aspártico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Cisplatino/farmacología , Ácido Glutámico , Glutamina , Glioxilatos/metabolismo , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Metabolómica/métodos , Ratones , Ratones Desnudos , Nitrógeno/metabolismo , Fenilalanina/metabolismo , ARN de Transferencia/metabolismo , Triptófano/metabolismo , Tirosina/metabolismo
7.
Int J Mol Sci ; 23(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35887319

RESUMEN

The 5-substituted 2-selenouridines are natural components of the bacterial tRNA epitranscriptome. Because selenium-containing biomolecules are redox-active entities, the oxidation susceptibility of 2-selenouridine (Se2U) was studied in the presence of hydrogen peroxide under various conditions and compared with previously reported data for 2-thiouridine (S2U). It was found that Se2U is more susceptible to oxidation and converted in the first step to the corresponding diselenide (Se2U)2, an unstable intermediate that decomposes to uridine and selenium. The reversibility of the oxidized state of Se2U was demonstrated by the efficient reduction of (Se2U)2 to Se2U in the presence of common reducing agents. Thus, the 2-selenouridine component of tRNA may have antioxidant potential in cells because of its ability to react with both cellular ROS components and reducing agents. Interestingly, in the course of the reactions studied, we found that (Se2U)2 reacts with Se2U to form new 'oligomeric nucleosides' as linear and cyclic byproducts.


Asunto(s)
Nucleósidos , Selenio , Indicadores y Reactivos , Compuestos de Organoselenio , Oxidación-Reducción , ARN de Transferencia/metabolismo , Sustancias Reductoras , Uridina/análogos & derivados , Uridina/metabolismo
8.
Exp Clin Transplant ; 20(10): 965-966, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35867014

RESUMEN

Dysfunction of oxidative phosphorylation and the mitochondrial respiratory chain leads to a heterogeneous group of pathogenic mitochondrial variations. The TRMU gene codes for transfer RNA 5- methylaminomethyl-2-thiouridylate methyltransferase and is essential for posttranscriptional modification of the mitochondrial transfer RNA, and alterations in the TRMU gene can lead to infantile liver failure at approximately 6 months of age. Orthotopic liver transplant is a curative option. We present a case of a patient with TRMU alteration who underwent liver transplant at 11 months of age to treat infantile end- stage liver disease. The patient had liver failure due to long-standing allograft rejection and required another liver transplant at age 24 years, and here we discuss the perioperative care of this patient. Coordination of the care team to prevent rhabdomyolysis or alternative negative catabolic effects was the cornerstone of management in addition to evaluation of unusual electrocardiographic findings in the immediate postoperative period. Although the patient's postoperative course was complicated by repair of a bile leak, liver retransplant successfully restored the patient's preoperative quality of life.


Asunto(s)
Fallo Hepático , ARNt Metiltransferasas , Humanos , Adulto , Adulto Joven , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Calidad de Vida , Mutación , Resultado del Tratamiento , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Fallo Hepático/genética
9.
Nat Commun ; 12(1): 7039, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34857769

RESUMEN

Site-specific incorporation of unnatural amino acids (UAAs) with similar incorporation efficiency to that of natural amino acids (NAAs) and low background activity is extremely valuable for efficient synthesis of proteins with diverse new chemical functions and design of various synthetic auxotrophs. However, such efficient translation systems remain largely unknown in the literature. Here, we describe engineered chimeric phenylalanine systems that dramatically increase the yield of proteins bearing UAAs, through systematic engineering of the aminoacyl-tRNA synthetase and its respective cognate tRNA. These engineered synthetase/tRNA pairs allow single-site and multi-site incorporation of UAAs with efficiencies similar to those of NAAs and high fidelity. In addition, using the evolved chimeric phenylalanine system, we construct a series of E. coli strains whose growth is strictly dependent on exogenously supplied of UAAs. We further show that synthetic auxotrophic cells can grow robustly in living mice when UAAs are supplemented.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Evolución Molecular Dirigida/métodos , Escherichia coli/genética , Fenilalanina/metabolismo , Biosíntesis de Proteínas , ARN de Transferencia/genética , Aminoácidos/metabolismo , Aminoácidos/farmacología , Aminoacil-ARNt Sintetasas/metabolismo , Animales , Emparejamiento Base , Materiales Biomiméticos/metabolismo , Materiales Biomiméticos/farmacología , Ingeniería Celular , Escherichia coli/metabolismo , Expresión Génica , Genes Reporteros , Vida Libre de Gérmenes , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Conformación de Ácido Nucleico , Fenilalanina/farmacología , Plásmidos/química , Plásmidos/metabolismo , ARN de Transferencia/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
Int J Mol Sci ; 22(21)2021 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-34768885

RESUMEN

Transfer RNA[Ser]Sec carries multiple post-transcriptional modifications. The A37G mutation in tRNA[Ser]Sec abrogates isopentenylation of base 37 and has a profound effect on selenoprotein expression in mice. Patients with a homozygous pathogenic p.R323Q variant in tRNA-isopentenyl-transferase (TRIT1) show a severe neurological disorder, and hence we wondered whether selenoprotein expression was impaired. Patient fibroblasts with the homozygous p.R323Q variant did not show a general decrease in selenoprotein expression. However, recombinant human TRIT1R323Q had significantly diminished activities towards several tRNA substrates in vitro. We thus engineered mice conditionally deficient in Trit1 in hepatocytes and neurons. Mass-spectrometry revealed that hypermodification of U34 to mcm5Um occurs independently of isopentenylation of A37 in tRNA[Ser]Sec. Western blotting and 75Se metabolic labeling showed only moderate effects on selenoprotein levels and 75Se incorporation. A detailed analysis of Trit1-deficient liver using ribosomal profiling demonstrated that UGA/Sec re-coding was moderately affected in Selenop, Txnrd1, and Sephs2, but not in Gpx1. 2'O-methylation of U34 in tRNA[Ser]Sec depends on FTSJ1, but does not affect UGA/Sec re-coding in selenoprotein translation. Taken together, our results show that a lack of isopentenylation of tRNA[Ser]Sec affects UGA/Sec read-through but differs from a A37G mutation.


Asunto(s)
Transferasas Alquil y Aril/genética , ARN de Transferencia/metabolismo , Selenoproteínas/metabolismo , Transferasas Alquil y Aril/metabolismo , Animales , Línea Celular , Cisteína/metabolismo , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Ratones , Neuronas/metabolismo , Fosfotransferasas/genética , Fosfotransferasas/metabolismo , Biosíntesis de Proteínas/genética , ARN de Transferencia/genética , Ribosomas/metabolismo , Selenio/metabolismo , Selenocisteína/genética , Selenoproteína P/genética , Selenoproteínas/genética
11.
Nat Commun ; 12(1): 5706, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34588441

RESUMEN

Genetic code expansion technologies supplement the natural codon repertoire with assignable variants in vivo, but are often limited by heterologous translational components and low suppression efficiencies. Here, we explore engineered Escherichia coli tRNAs supporting quadruplet codon translation by first developing a library-cross-library selection to nominate quadruplet codon-anticodon pairs. We extend our findings using a phage-assisted continuous evolution strategy for quadruplet-decoding tRNA evolution (qtRNA-PACE) that improved quadruplet codon translation efficiencies up to 80-fold. Evolved qtRNAs appear to maintain codon-anticodon base pairing, are typically aminoacylated by their cognate tRNA synthetases, and enable processive translation of adjacent quadruplet codons. Using these components, we showcase the multiplexed decoding of up to four unique quadruplet codons by their corresponding qtRNAs in a single reporter. Cumulatively, our findings highlight how E. coli tRNAs can be engineered, evolved, and combined to decode quadruplet codons, portending future developments towards an exclusively quadruplet codon translation system.


Asunto(s)
Anticodón/metabolismo , Codón/metabolismo , Evolución Molecular Dirigida , Escherichia coli/genética , ARN de Transferencia/genética , Aminoácidos/genética , Aminoacil-ARNt Sintetasas/metabolismo , Clonación Molecular , Escherichia coli/enzimología , Proteínas de Escherichia coli/biosíntesis , Biosíntesis de Proteínas , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN de Transferencia/metabolismo
12.
Mol Biol Evol ; 38(12): 5735-5751, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34436590

RESUMEN

In most eukaryotes, transfer RNAs (tRNAs) are one of the very few classes of genes remaining in the mitochondrial genome, but some mitochondria have lost these vestiges of their prokaryotic ancestry. Sequencing of mitogenomes from the flowering plant genus Silene previously revealed a large range in tRNA gene content, suggesting rapid and ongoing gene loss/replacement. Here, we use this system to test longstanding hypotheses about how mitochondrial tRNA genes are replaced by importing nuclear-encoded tRNAs. We traced the evolutionary history of these gene loss events by sequencing mitochondrial genomes from key outgroups (Agrostemma githago and Silene [=Lychnis] chalcedonica). We then performed the first global sequencing of purified plant mitochondrial tRNA populations to characterize the expression of mitochondrial-encoded tRNAs and the identity of imported nuclear-encoded tRNAs. We also confirmed the utility of high-throughput sequencing methods for the detection of tRNA import by sequencing mitochondrial tRNA populations in a species (Solanum tuberosum) with known tRNA trafficking patterns. Mitochondrial tRNA sequencing in Silene revealed substantial shifts in the abundance of some nuclear-encoded tRNAs in conjunction with their recent history of mt-tRNA gene loss and surprising cases where tRNAs with anticodons still encoded in the mitochondrial genome also appeared to be imported. These data suggest that nuclear-encoded counterparts are likely replacing mitochondrial tRNAs even in systems with recent mitochondrial tRNA gene loss, and the redundant import of a nuclear-encoded tRNA may provide a mechanism for functional replacement between translation systems separated by billions of years of evolutionary divergence.


Asunto(s)
ARN de Transferencia , Solanum tuberosum , Genes Mitocondriales , Mitocondrias/genética , Mitocondrias/metabolismo , Plantas/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo
13.
Genet Med ; 23(11): 2202-2207, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34194004

RESUMEN

PURPOSE: Recessive cytosolic aminoacyl-tRNA synthetase (ARS) deficiencies are severe multiorgan diseases, with limited treatment options. By loading transfer RNAs (tRNAs) with their cognate amino acids, ARS are essential for protein translation. However, it remains unknown why ARS deficiencies lead to specific symptoms, especially early life and during infections. We set out to increase pathophysiological insight and improve therapeutic possibilities. METHODS: In fibroblasts from patients with isoleucyl-RS (IARS), leucyl-RS (LARS), phenylalanyl-RS-beta-subunit (FARSB), and seryl-RS (SARS) deficiencies, we investigated aminoacylation activity, thermostability, and sensitivity to ARS-specific amino acid concentrations, and developed personalized treatments. RESULTS: Aminoacylation activity was reduced in all patients, and further diminished at 38.5/40 °C (PLARS and PFARSB), consistent with infectious deteriorations. With lower cognate amino acid concentrations, patient fibroblast growth was severely affected. To prevent local and/or temporal deficiencies, we treated patients with corresponding amino acids (follow-up: 1/2-2 2/3rd years), and intensified treatment during infections. All patients showed beneficial treatment effects, most strikingly in growth (without tube feeding), head circumference, development, coping with infections, and oxygen dependency. CONCLUSION: For these four ARS deficiencies, we observed a common disease mechanism of episodic insufficient aminoacylation to meet translational demands and illustrate the power of amino acid supplementation for the expanding ARS patient group. Moreover, we provide a strategy for personalized preclinical functional evaluation.


Asunto(s)
Aminoacil-ARNt Sintetasas , Aminoácidos , Aminoacil-ARNt Sintetasas/genética , Aminoacilación , Humanos , ARN de Transferencia/metabolismo
14.
Metallomics ; 13(6)2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-33930157

RESUMEN

Selenium is an essential trace element whose compounds are widely metabolized by organisms from all three domains of life. Moreover, phylogenetic evidence indicates that selenium species, along with iron, molybdenum, tungsten, and nickel, were metabolized by the last universal common ancestor of all cellular lineages, primarily for the synthesis of the 21st amino acid selenocysteine. Thus, selenium metabolism is both environmentally ubiquitous and a physiological adaptation of primordial life. Selenium metabolic reactions comprise reductive transformations both for assimilation into macromolecules and dissimilatory reduction of selenium oxyanions and elemental selenium during anaerobic respiration. This review offers a comprehensive overview of the physiology and evolution of both assimilatory and dissimilatory selenium metabolism in bacteria and archaea, highlighting mechanisms of selenium respiration. This includes a thorough discussion of our current knowledge of the physiology of selenocysteine synthesis and incorporation into proteins in bacteria obtained from structural biology. Additionally, this is the first comprehensive discussion in a review of the incorporation of selenium into the tRNA nucleoside 5-methylaminomethyl-2-selenouridine and as an inorganic cofactor in certain molybdenum hydroxylase enzymes. Throughout, conserved mechanisms and derived features of selenium metabolism in both domains are emphasized and discussed within the context of the global selenium biogeochemical cycle.


Asunto(s)
Archaea/metabolismo , Bacterias/metabolismo , Evolución Molecular , Molibdeno/metabolismo , Selenio/metabolismo , Oxigenasas de Función Mixta/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Selenocisteína/química , Selenocisteína/metabolismo
15.
Sci Rep ; 10(1): 4915, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32188916

RESUMEN

Taurine that conjugates with bile acid (BA) and mitochondrial-tRNA (mt-tRNA) is a conditional essential amino acid in humans, similarly to cats. To better understand the influence of acquired depletion of taurine on BA metabolism, the profiling of BAs and its intermediates, BA metabolism-enzyme expression, and taurine modified mt-tRNAs were evaluated in the taurine deficient diet-supplemented cats. In the taurine depleted cats, taurine-conjugated bile acids in bile and taurine-modified mt-tRNA in liver were significantly decreased, whereas unconjugated BA in serum was markedly increased. Impaired bile acid metabolism in the liver was induced accompanied with the decreases of mitochondrial cholesterol 27-hydroxylase expression and mitochondrial activity. Consequently, total bile acid concentration in bile was significantly decreased by the low activity of mitochondrial bile acid synthesis. These results implied that the insufficient dietary taurine intake causes impaired bile acid metabolism, and in turn, a risk for the various diseases similar to the mitochondrial diseases would be enhanced.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , ARN de Transferencia/metabolismo , Taurina/metabolismo , Animales , Biomarcadores , Gatos , Colesterol/sangre , Colesterol/metabolismo , Expresión Génica , Metabolismo de los Lípidos , Hígado/metabolismo , Modelos Biológicos , Especificidad de Órganos , Oxiesteroles/sangre , Oxiesteroles/metabolismo , ARN de Transferencia/genética , Taurina/sangre
16.
Biomed Res Int ; 2020: 4374801, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33457408

RESUMEN

Dracocephalum tanguticum and Dracocephalum moldavica are important herbs from Lamiaceae and have great medicinal value. We used the Illumina sequencing technology to sequence the complete chloroplast genome of D. tanguticum and D. moldavica and then conducted de novo assembly. The two chloroplast genomes have a typical quadripartite structure, with the gene's lengths of 82,221 bp and 81,450 bp, large single-copy region's (LSC) lengths of 82,221 bp and 81,450 bp, and small single-copy region's (SSC) lengths of 17,363 bp and 17,066 bp, inverted repeat region's (IR) lengths of 51,370 bp and 51,352 bp, respectively. The GC content of the two chloroplast genomes was 37.80% and 37.83%, respectively. The chloroplast genomes of the two plants encode 133 and 132 genes, respectively, among which there are 88 and 87 protein-coding genes, respectively, as well as 37 tRNA genes and 8 rRNA genes. Among them, the rps2 gene is unique to D. tanguticum, which is not found in D. moldavica. Through SSR analysis, we also found 6 mutation hotspot regions, which can be used as molecular markers for taxonomic studies. Phylogenetic analysis showed that Dracocephalum was more closely related to Mentha.


Asunto(s)
Cloroplastos/metabolismo , Genes de Plantas , Genoma del Cloroplasto , Lamiaceae/genética , Plantas Medicinales/genética , Secuenciación Completa del Genoma , Composición de Base , Genoma de Planta , Secuenciación de Nucleótidos de Alto Rendimiento , Repeticiones de Microsatélite , Mutación , Filogenia , ARN de Transferencia/metabolismo , Análisis de Secuencia de ADN
17.
Nucleic Acids Res ; 47(12): 6425-6438, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-30997498

RESUMEN

Ribonucleoprotein (RNP) complexes and RNA-processing enzymes are attractive targets for antibiotic development owing to their central roles in microbial physiology. For many of these complexes, comprehensive strategies to identify inhibitors are either lacking or suffer from substantial technical limitations. Here, we describe an activity-binding-structure platform for bacterial ribonuclease P (RNase P), an essential RNP ribozyme involved in 5' tRNA processing. A novel, real-time fluorescence-based assay was used to monitor RNase P activity and rapidly identify inhibitors using a mini-helix and a pre-tRNA-like bipartite substrate. Using the mini-helix substrate, we screened a library comprising 2560 compounds. Initial hits were then validated using pre-tRNA and the pre-tRNA-like substrate, which ultimately verified four compounds as inhibitors. Biolayer interferometry-based binding assays and molecular dynamics simulations were then used to characterize the interactions between each validated inhibitor and the P protein, P RNA and pre-tRNA. X-ray crystallographic studies subsequently elucidated the structure of the P protein bound to the most promising hit, purpurin, and revealed how this inhibitor adversely affects tRNA 5' leader binding. This integrated platform affords improved structure-function studies of RNA processing enzymes and facilitates the discovery of novel regulators or inhibitors.


Asunto(s)
Antraquinonas/farmacología , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/farmacología , Ribonucleasa P/antagonistas & inhibidores , Antraquinonas/química , Antraquinonas/metabolismo , Sitios de Unión , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Colorantes Fluorescentes , Fluorometría , Hematoxilina/análogos & derivados , Hematoxilina/química , Hematoxilina/metabolismo , Hematoxilina/farmacología , Simulación de Dinámica Molecular , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN de Transferencia/metabolismo , Ribonucleasa P/química , Ribonucleasa P/metabolismo , Bibliotecas de Moléculas Pequeñas
18.
ACS Infect Dis ; 5(3): 326-335, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30682246

RESUMEN

Bacterial tRNA modification synthesis pathways are critical to cell survival under stress and thus represent ideal mechanism-based targets for antibiotic development. One such target is the tRNA-(N1G37) methyltransferase (TrmD), which is conserved and essential in many bacterial pathogens. Here we developed and applied a widely applicable, radioactivity-free, bioluminescence-based high-throughput screen (HTS) against 116350 compounds from structurally diverse small-molecule libraries to identify inhibitors of Pseudomonas aeruginosa TrmD ( PaTrmD). Of 285 compounds passing primary and secondary screens, a total of 61 TrmD inhibitors comprised of more than 12 different chemical scaffolds were identified, all showing submicromolar to low micromolar enzyme inhibitor constants, with binding affinity confirmed by thermal stability and surface plasmon resonance. S-Adenosyl-l-methionine (SAM) competition assays suggested that compounds in the pyridine-pyrazole-piperidine scaffold were substrate SAM-competitive inhibitors. This was confirmed in structural studies, with nuclear magnetic resonance analysis and crystal structures of PaTrmD showing pyridine-pyrazole-piperidine compounds bound in the SAM-binding pocket. Five hits showed cellular activities against Gram-positive bacteria, including mycobacteria, while one compound, a SAM-noncompetitive inhibitor, exhibited broad-spectrum antibacterial activity. The results of this HTS expand the repertoire of TrmD-inhibiting molecular scaffolds that show promise for antibiotic development.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Evaluación Preclínica de Medicamentos/métodos , Inhibidores Enzimáticos/farmacología , Metiltransferasas/antagonistas & inhibidores , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/enzimología , ARN de Transferencia/metabolismo , Antibacterianos/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Descubrimiento de Drogas , Inhibidores Enzimáticos/química , Cinética , Metiltransferasas/química , Metiltransferasas/genética , Metiltransferasas/metabolismo , Pseudomonas aeruginosa/genética , Especificidad por Sustrato
19.
Int J Mol Sci ; 20(3)2019 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-30678326

RESUMEN

Cell-free protein synthesis is useful for synthesizing difficult targets. The site-specific incorporation of non-natural amino acids into proteins is a powerful protein engineering method. In this study, we optimized the protocol for cell extract preparation from the Escherichia coli strain RFzero-iy, which is engineered to lack release factor 1 (RF-1). The BL21(DE3)-based RFzero-iy strain exhibited quite high cell-free protein productivity, and thus we established the protocols for its cell culture and extract preparation. In the presence of 3-iodo-l-tyrosine (IY), cell-free protein synthesis using the RFzero-iy-based S30 extract translated the UAG codon to IY at various sites with a high translation efficiency of >90%. In the absence of IY, the RFzero-iy-based cell-free system did not translate UAG to any amino acid, leaving UAG unassigned. Actually, UAG was readily reassigned to various non-natural amino acids, by supplementing them with their specific aminoacyl-tRNA synthetase variants (and their specific tRNAs) into the system. The high incorporation rate of our RFzero-iy-based cell-free system enables the incorporation of a variety of non-natural amino acids into multiple sites of proteins. The present strategy to create the RFzero strain is rapid, and thus promising for RF-1 deletions of various E. coli strains genomically engineered for specific requirements.


Asunto(s)
Proteínas de Escherichia coli/biosíntesis , Escherichia coli/metabolismo , Monoyodotirosina/metabolismo , Factores de Terminación de Péptidos/deficiencia , Codón de Terminación/genética , Codón de Terminación/metabolismo , Monoyodotirosina/genética , Biosíntesis de Proteínas , ARN de Transferencia/metabolismo , Fracciones Subcelulares/metabolismo
20.
Mol Imaging Biol ; 21(3): 529-537, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30112727

RESUMEN

PURPOSE: Although a preparation method for F-18-labeled proteins that used a cell-free translation system and 4-[18F]fluoro-L-proline instead of L-proline has been reported, its introduction depends on amino acid sequences of target proteins. The purpose of the study was to propose site-specific labeling method of F-18 by using cell-free translation systems supplemented with an engineered orthogonal aminoacyl-tRNA synthetase derived from Methanocaldococcus jannaschii (pCNF-RS)/suppressor tRNA (tRNACUAopt) pair, O-2-[18F]fluoroethyl-L-tyrosine ([18F]FET), and template DNA inserted with an amber codon. PROCEDURES: [18F]FET was prepared from the corresponding precursor and determined whether [18F]FET could be incorporated into an affibody molecule for human epidermal growth factor receptor type 2 (HER2; ZHER2:342) as the 21st amino acid used with the pCNF-RS-tRNACUAopt pair and template DNA inserted with an amber codon in a cell-free translation system. Using SKOV-3 cells, we performed an in vitro binding assay of [18F]FET-ZHER2:342. Furthermore, in vivo positron emission tomography (PET) imaging in SKOV-3 xenograft-bearing mice was performed after the intravenous administration of [18F]FET-ZHER2:342. RESULTS: [18F]FET was successfully incorporated into proteins by using commercially available cell-free protein synthesis reagents with a pCNF-RS-tRNACUAopt pair and template DNA of the desired proteins inserted with an amber codon. The mean radiochemical yield (non-decay-corrected) of [18F]FET-ZHER2:342 was 6.5 ± 4.1 %. An in vitro cell binding assay revealed that SKOV-3 cells-bound [18F]FET-ZHER2:342 expressed HER2. The in vivo PET imaging in SKOV-3 xenograft-bearing mice revealed that [18F]FET-ZHER2:342 accumulated in SKOV-3 xenografts. CONCLUSION: The method proposed in this study might be useful for preparing proteins with F-18 and molecular imaging in the preclinical development.


Asunto(s)
Radioisótopos de Flúor/química , Biosíntesis de Proteínas , Proteínas/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Coloración y Etiquetado , Tirosina/análogos & derivados , Secuencia de Aminoácidos , Aminoacil-ARNt Sintetasas/metabolismo , Animales , Línea Celular Tumoral , Sistema Libre de Células , Femenino , Células HEK293 , Humanos , Interleucina-8/metabolismo , Ratones SCID , Proteínas/química , ARN de Transferencia/metabolismo , Tirosina/química , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA