Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38212287

RESUMEN

This study aimed to explore the topographic features of thalamic subregions, functional connectomes and hierarchical organizations between thalamus and cortex in poststroke fatigue patients. We consecutively recruited 121 acute ischemic stroke patients (mean age: 59 years) and 46 healthy controls matched for age, sex, and educational level. The mean age was 59 years (range 19-80) and 38% of acute stroke patients were females. Resting-state functional and structural magnetic resonance imaging were conducted on all participants. The fatigue symptoms were measured using the Fatigue Severity Scale. The thalamic functional subdivisions corresponding to the canonical functional network were defined using the winner-take-all parcellation method. Thalamic functional gradients were derived using the diffusion embedding analysis. The results suggested abnormal functional connectivity of thalamic subregions primarily located in the temporal lobe, posterior cingulate gyrus, parietal lobe, and precuneus. The thalamus showed a gradual increase from the medial to the lateral in all groups, but the right thalamus shifted more laterally in poststroke fatigue patients than in non- poststroke fatigue patients. Poststroke fatigue patients also had higher gradient scores in the somatomotor network and the right medial prefrontal and premotor thalamic regions, but lower values in the right lateral prefrontal thalamus. The findings suggested that poststroke fatigue patients had altered functional connectivity and thalamocortical hierarchical organizations, providing new insights into the neural mechanisms of the thalamus.


Asunto(s)
Conectoma , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Femenino , Humanos , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Masculino , Conectoma/métodos , Accidente Cerebrovascular Isquémico/patología , Tálamo/patología , Imagen por Resonancia Magnética/métodos , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/patología , Fatiga/diagnóstico por imagen , Fatiga/etiología
2.
Cerebrovasc Dis ; 51(4): 461-472, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34983048

RESUMEN

INTRODUCTION: Stroke is characterized by deleterious oxidative stress. Selenoprotein enzymes are essential endogenous antioxidants, and detailed insight into their role after stroke could define new therapeutic treatments. This systematic review aimed to elucidate how blood selenoprotein concentration and activity change in the acute phase of stroke. METHODS: We searched PubMed, EMBASE, and Medline databases for studies measuring serial blood selenoprotein concentration or activity in acute stroke patients or in stroke patients compared to non-stroke controls. Meta-analyses of studies stratified by the type of stroke, blood compartment, and type of selenoprotein measurement were conducted. RESULTS: Eighteen studies and data from 941 stroke patients and 708 non-stroke controls were included in this review. Glutathione peroxidase (GPx) was the only identified selenoprotein, and its activity was most frequently measured. Results from 12 studies and 693 patients showed that compared to non-stroke controls in acute ischaemic stroke patients, the GPx activity increased in haemolysate (standardized mean difference [SMD]: 0.27, 95% CI: 0.07-0.47) but decreased in plasma (mean difference [MD]: -1.08 U/L, 95% CI: -1.94 to -0.22) and serum (SMD: -0.54, 95% CI: -0.91 to -0.17). From 4 identified studies in 106 acute haemorrhagic stroke patients, the GPx activity decreased in haemolysate (SMD: -0.40, 95% CI: -0.68 to -0.13) and remained unchanged in plasma (MD: -0.10 U/L, 95% CI: -0.81 to 0.61) and serum (MD: -5.00 U/mL, 95% CI: -36.17 to 26.17) compared to non-stroke controls. Results from studies assessing the GPx activity in the haemolysate compartment were inconsistent and characterized by high heterogeneity. CONCLUSIONS: Our results suggest a reduction of the blood GPx activity in acute ischaemic stroke patients, a lack of evidence regarding a role for GPx in haemorrhagic stroke patients, and insufficient evidence for other selenoproteins.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Hemorrágico , Accidente Cerebrovascular Isquémico , Selenoproteínas , Antioxidantes , Isquemia Encefálica/diagnóstico , Isquemia Encefálica/patología , Glutatión Peroxidasa , Accidente Cerebrovascular Hemorrágico/diagnóstico , Accidente Cerebrovascular Hemorrágico/patología , Humanos , Accidente Cerebrovascular Isquémico/diagnóstico , Accidente Cerebrovascular Isquémico/patología , Selenio , Selenoproteínas/metabolismo
3.
Bioengineered ; 12(2): 12274-12293, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34898370

RESUMEN

Stroke is a leading cause of morbidity and mortality worldwide. As the most common type of stroke cases, treatment effectiveness is still limited despite intensive research. Recently, traditional Chinese medicine has attracted attention because of potential benefits for stroke treatment. Among these, luteolin, a natural plant flavonoid compound, offers neuroprotection following against ischemic stroke, although the specific mechanisms are unknown. Here we used network pharmacology, molecular docking, and experimental verification to explore the mechanisms whereby luteolin can benefit stroke recovery. The pharmacological and molecular properties of luteolin were obtained from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. The potential targets of luteolin and ischemic stroke were collected from interrogating public databases. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed by Funrich and Database for Annotation, Visualization and Integrated Discovery respectively, a luteolin-target-pathway network constructed using Cytoscape, Autodock vina was used for molecular docking simulation with Discovery Studio was used to visualize and analyze the docked conformations. Lastly, we employed an in vitro model of stroke injury to evaluate the effects of luteolin on cell survival and expression of the putative targets. From 95 candidate luteolin target genes, our analysis identified six core targets . KEGG analysis of the candidate targets identified that luteolin provides therapeutic effects on stroke through TNF signaling and other pathways. Our experimental analyses confirmed the conclusions analyzed above. In summary, the molecular and pharmacological mechanisms of luteolin against stroke are indicated in our study from a systematic perspective.


Asunto(s)
Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Luteolina/uso terapéutico , Simulación del Acoplamiento Molecular , Farmacología en Red , Animales , Células CACO-2 , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Ontología de Genes , Glucosa/deficiencia , Humanos , Accidente Cerebrovascular Isquémico/genética , Accidente Cerebrovascular Isquémico/patología , Luteolina/farmacología , Oxígeno , Células PC12 , Mapas de Interacción de Proteínas , Ratas , Reproducibilidad de los Resultados
4.
Microbiol Spectr ; 9(2): e0004221, 2021 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-34612696

RESUMEN

The complication of type 2 diabetes (T2D) exacerbates brain infarction in acute ischemic stroke (AIS). Because butyrate-producing bacteria are decreased in T2D and butyrate has been reported to be associated with attenuated brain injury in AIS, we hypothesize that administering butyrate could ameliorate T2D-associated exacerbation of brain infarction in AIS. Therefore, we first validated that Chinese AIS patients with T2D comorbidity have significantly lower levels of fecal butyrate-producing bacteria and butyrate than AIS patients without T2D. Then, we performed a 4-week intervention in T2D mice receiving either sodium butyrate (SB) or sodium chloride (NaCl) and found that SB improved the diabetic phenotype, altered the gut microbiota, and ameliorated brain injury after stroke. Fecal samples were collected from T2D mice after SB or NaCl treatment and were transplanted into antibiotic-treated C57BL/6 mice. After 2 weeks of transplantation, the gut microbiota profile and butyrate level of recipient mice were tested, and then the recipient mice were subjected to ischemic stroke. Stroke mice that received gut microbiota from SB-treated mice had a smaller cerebral infarct volume than mice that received gut microbiota from NaCl-treated mice. This protection was also associated with improvements in gut barrier function, reduced serum levels of lipopolysaccharide (LPS), LPS binding protein (LBP), and proinflammatory cytokines, and improvements in the blood-brain barrier. IMPORTANCE Ischemic stroke is a major global health burden, and T2D is a well-known comorbidity that aggravates brain injury after ischemic stroke. However, the underlying mechanism by which T2D exacerbates stroke injury has not been completely elucidated. A large amount of evidence suggests that the gut microbiota composition affects stroke outcomes. Our results showed that the gut microbiota of T2D aggravated brain injury after ischemic stroke and could be modified by SB to afford neuroprotection against stroke injury. These findings suggest that supplementation with SB is a potential therapeutic strategy for T2D patients with ischemic stroke.


Asunto(s)
Infarto Encefálico/tratamiento farmacológico , Lesiones Encefálicas/tratamiento farmacológico , Ácido Butírico/uso terapéutico , Diabetes Mellitus Tipo 2/patología , Trasplante de Microbiota Fecal , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Animales , Infarto Encefálico/patología , Citocinas/sangre , Femenino , Microbioma Gastrointestinal/fisiología , Humanos , Accidente Cerebrovascular Isquémico/patología , Lipopolisacáridos/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad
5.
PLoS One ; 16(9): e0255736, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34582494

RESUMEN

Dalbergia Odorifera (DO) has been widely used for the treatment of cardiovascular and cerebrovascular diseasesinclinical. However, the effective substances and possible mechanisms of DO are still unclear. In this study, network pharmacology and molecular docking were used toelucidate the effective substances and active mechanisms of DO in treating ischemic stroke (IS). 544 DO-related targets from 29 bioactive components and 344 IS-related targets were collected, among them, 71 overlapping common targets were got. Enrichment analysis showed that 12 components were the possible bioactive components in DO, which regulating 9 important signaling pathways in 3 biological processes including 'oxidative stress' (KEGG:04151, KEGG:04068, KEGG:04915), 'inflammatory response'(KEGG:04668, KEGG:04064) and 'vascular endothelial function regulation'(KEGG:04066, KEGG:04370). Among these, 5 bioactive components with degree≥20 among the 12 potential bioactive components were selected to be docked with the top5 core targets using AutodockVina software. According to the results of molecular docking, the binding sites of core target protein AKT1 and MOL002974, MOL002975, and MOL002914 were 9, 8, and 6, respectively, and they contained 2, 1, and 0 threonine residues, respectively. And some binding sites were consistent, which may be the reason for the similarities and differences between the docking results of the 3 core bioactive components. The results of in vitro experiments showed that OGD/R could inhibit cell survival and AKT phosphorylation which were reversed by the 3 core bioactive components. Among them, MOL002974 (butein) had a slightly better effect. Therefore, the protective effect of MOL002974 (butein) against cerebral ischemia was further evaluated in a rat model of middle cerebral artery occlusion (MCAO) by detecting neurological score, cerebral infarction volume and lactate dehydrogenase (LDH) level. The results indicated that MOL002974 (butein) could significantly improve the neurological score of rats, decrease cerebral infarction volume, and inhibit the level of LDH in the cerebral tissue and serum in a dose-dependent manner. In conclusion, network pharmacology and molecular docking predicate the possible effective substances and mechanisms of DO in treating IS. And the results are verified by the in vitro and in vivo experiments. This research reveals the possible effective substances from DO and its active mechanisms for treating IS and provides a new direction for the secondary development of DO for treating IS.


Asunto(s)
Dalbergia/química , Medicamentos Herbarios Chinos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Mapas de Interacción de Proteínas/efectos de los fármacos , Animales , Supervivencia Celular , Infarto Cerebral/tratamiento farmacológico , Infarto Cerebral/metabolismo , Infarto Cerebral/patología , Edaravona/farmacología , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Simulación del Acoplamiento Molecular , Células PC12 , Ratas , Ratas Sprague-Dawley , Biología de Sistemas
6.
Cells ; 10(7)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34359998

RESUMEN

Ischemic stroke triggers a series of complex pathophysiological processes including autophagy. Differential activation of autophagy occurs in neurons derived from males versus females after stressors such as nutrient deprivation. Whether autophagy displays sexual dimorphism after ischemic stroke is unknown. We used a cerebral ischemia mouse model (middle cerebral artery occlusion, MCAO) to evaluate the effects of inhibiting autophagy in ischemic brain pathology. We observed that inhibiting autophagy reduced infarct volume in males and ovariectomized females. However, autophagy inhibition enhanced infarct size in females and in ovariectomized females supplemented with estrogen compared to control mice. We also observed that males had increased levels of Beclin1 and LC3 and decreased levels of pULK1 and p62 at 24 h, while females had decreased levels of Beclin1 and increased levels of ATG7. Furthermore, the levels of autophagy markers were increased under basal conditions and after oxygen and glucose deprivation in male neurons compared with female neurons in vitro. E2 supplementation significantly inhibited autophagy only in male neurons, and was beneficial for cell survival only in female neurons. This study shows that autophagy in the ischemic brain differs between the sexes, and that autophagy regulators have different effects in a sex-dependent manner in neurons.


Asunto(s)
Autofagia/genética , Beclina-1/genética , Isquemia Encefálica/genética , Accidente Cerebrovascular Isquémico/genética , Proteínas Asociadas a Microtúbulos/genética , Neuronas/metabolismo , Adenina/análogos & derivados , Adenina/farmacología , Animales , Autofagia/efectos de los fármacos , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Beclina-1/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Hipoxia de la Célula/genética , Supervivencia Celular , Femenino , Regulación de la Expresión Génica , Glucosa/deficiencia , Infarto de la Arteria Cerebral Media/cirugía , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/patología , Ovariectomía/métodos , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Índice de Severidad de la Enfermedad , Factores Sexuales , Transducción de Señal
7.
Biomed Pharmacother ; 142: 112048, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34435588

RESUMEN

Mannitol, a representative of hyperosmolar therapy, is indispensable for the treatment of malignant cerebral infarction, but its therapeutic effect is limited by its exacerbation of blood-brain barrier (BBB) disruption. This study was to explore whether Danhong injection (DHI), a standardized product extracted from Salvia miltiorrhiza Bunge and Carthamus tinctorius L., inhibits the destructive effect of mannitol on BBB and thus enhancing the treatment of hemispheric ischemic stroke. SD rats were subjected to pMCAO followed by intravenous bolus injections of mannitol with/without DHI intervention. Neurological deficit score, brain edema, infarct volume at 24 h after MCAO and histopathology, microvascular ultrastructure, immunohistochemistry and immunofluorescence staining of endothelial cell junctions, energy metabolism in the ischemic penumbra were assessed. Intravenous mannitol after MCAO resulted in a decrease in 24 h mortality and cerebral edema, whereas no significant benefit on neurological deficits, infarct volume and microvascular ultrastructure. Moreover, mannitol led to the loss of endothelial integrity, manifested by the decreased expression of occludin, junctional adhesion molecule-1 (JAM-1) and zonula occluden-1 (ZO-1) and the discontinuity of occludin staining around the periphery of endothelial cells. Meanwhile, after mannitol treatment, energy-dependent vimentin and F-actin, ATP content, and ATP5D expression were down-regulated, while MMP2 and MMP9 expression increased in the ischemic penumbra. All the insults after mannitol treatment were attenuated by addition of intravenous DHI. The results suggest DHI as a potential remedy to attenuate mannitol-related BBB disruption, and the potential of DHI to upregulate energy metabolism and inhibit the activity of MMPs is likely attributable to its effects observed.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Isquemia Encefálica/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Manitol/farmacología , Fármacos Neuroprotectores/farmacología , Animales , Edema Encefálico/tratamiento farmacológico , Isquemia Encefálica/patología , Citoesqueleto/efectos de los fármacos , Modelos Animales de Enfermedad , Quimioterapia Combinada/métodos , Medicamentos Herbarios Chinos/administración & dosificación , Células Endoteliales/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/patología , Inyecciones , Uniones Intercelulares/efectos de los fármacos , Accidente Cerebrovascular Isquémico/patología , Manitol/uso terapéutico , Metaloproteinasas de la Matriz/efectos de los fármacos , Microvasos/efectos de los fármacos , Microvasos/ultraestructura , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Fármacos Neuroprotectores/administración & dosificación , Ratas Sprague-Dawley , Tasa de Supervivencia
8.
Pharm Biol ; 59(1): 828-839, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34196587

RESUMEN

CONTEXT: Pien-Tze-Huang (PTH) is traditionally applied to treat various inflammation-related diseases including stroke. However, literature regarding the anti-inflammatory effects and possible mechanisms of PTH in ischaemic stroke is unavailable. OBJECTIVE: This study investigates the anti-inflammatory effects and its underlying mechanism of PTH on ischaemic stroke. MATERIALS AND METHODS: Cerebral ischaemia-reperfusion injury was induced through 2 h middle cerebral artery occlusion (MCAO) followed by 24 h reperfusion in male Sprague-Dawley (SD) rats receiving oral pre-treatment with PTH (180 mg/kg) for 4 days. TLR4 antagonist TAK-242 (3 mg/kg) was injected intraperitoneally at 1.5 h after MCAO. MRI, HE staining, qRT-PCR, western blot, and immunofluorescence methods were employed. RESULTS: PTH treatment markedly reduced cerebral infarct volume (by 51%), improved neurological function (by 33%), and ameliorated brain histopathological damage in MCAO rats. It also reduced the levels of four inflammatory mediators including IL-1ß (by 70%), IL-6 (by 78%), TNF-α (by 60%) and MCP-1 (by 58%); inhibited microglia and astrocyte activation; and decreased protein expression of iNOS and COX-2 in injured brains. Moreover, PTH down-regulated the protein expressions of TLR4, MyD88, and TRAF6; reduced the expression and nuclear translocation of NF-κB; and lowered the protein expressions of p-ERK1/2, p-JNK, and p-p38. Similar effects were observed in MCAO rats with TAK-242 treatment. However, combined administration of PTH and TAK-242 did not significantly reinforce the anti-inflammatory effects of PTH. DISCUSSION AND CONCLUSION: PTH improved cerebral ischaemia-reperfusion injury by inhibiting neuroinflammation partly via the TLR4/NF-κB/MAPK signalling pathway, which will help guide its clinical application.


Asunto(s)
Antiinflamatorios/farmacología , Medicamentos Herbarios Chinos/farmacología , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Animales , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/patología , Modelos Animales de Enfermedad , Infarto de la Arteria Cerebral Media , Accidente Cerebrovascular Isquémico/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , FN-kappa B/metabolismo , Enfermedades Neuroinflamatorias/patología , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/complicaciones , Daño por Reperfusión/tratamiento farmacológico , Sulfonamidas/farmacología , Receptor Toll-Like 4/metabolismo
9.
Oxid Med Cell Longev ; 2021: 9663208, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34257822

RESUMEN

The study indicates inflammation and autophagy are closely related to neural apoptosis in the pathology of ischemic stroke. In the study, we investigate the effects and mechanisms of the extracts of Angelica sinensis and Cinnamomum cassia (AC) from oriental medicinal foods on inflammatory and autophagic pathways in rat permanent middle cerebral artery occlusion model. Three doses of AC extract were, respectively, administered for 7 days. It suggests that AC extract treatment ameliorated scores of motor and sensory functions and ratio of glucose utilization in thalamic lesions in a dose-dependent manner. Expression of Iba1 was decreased and CD206 was increased by immunofluorescence staining, western blotting results showed expressions of TLR4, phosphorylated-IKKß and IκBα, nuclear P65, NLRP3, ASC, and Caspase-1 were downregulated, and Beclin 1 and LC3 II were upregulated. Low concentrations of TNF-α, IL-1ß, and IL-6 were presented by ELISA assay. Additionally, caspase 8 and cleaved caspase-3 expressions and the number of TUNEL positive cells in ipsilateral hemisphere were decreased, while the ratio of Bcl-2/Bax was increased. Simultaneously, in LPS-induced BV2 cells, it showed nuclear P65 translocation and secretion of proinflammatory cytokines were suppressed by AC extract-contained cerebrospinal fluid, and its intervened effects were similar to TLR4 siRNA treatment. Our study demonstrates that AC extract treatment attenuates inflammatory response and elevates autophagy against neural apoptosis, which contributes to the improvement of neurological function poststroke. Therefore, AC extract may be a novel neuroprotective agent by regulation of inflammatory and autophagic pathways for ischemic stroke treatment.


Asunto(s)
Angelica sinensis/química , Cinnamomum aromaticum/química , Inflamación/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Medicina Tradicional de Asia Oriental/métodos , Anciano , Animales , Autofagia , Femenino , Humanos , Accidente Cerebrovascular Isquémico/patología , Masculino , Persona de Mediana Edad , Ratas
10.
Future Med Chem ; 13(15): 1271-1283, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34137272

RESUMEN

Background: A comprehensive approach to drug repositioning will be required to overcome translational hurdles and identify more neuroprotective drugs. Results & methods: Gene Set Enrichment Analysis was applied to identify related pathways and enriched genes. Candidate genes were optimized using ToppGene, ToppGenet and pBRIT. From the perspective of the local structures, gene-domain-substructure-drug relationships were constructed. Using the MCODE algorithm and K-means clustering, 31 functional subnetworks were obtained, and 252 drugs with proposed neuroprotective function were identified. Using computational analysis, 72 substructures with different scores were found to correspond to neuroprotective functions. The protective effects of benidipine and barnidipine were confirmed in vitro. Conclusion: The authors' research has great potential to discover more neuroprotective drugs and obtain more information regarding mechanisms of action and functional substructures.


Asunto(s)
Biología Computacional/métodos , Reposicionamiento de Medicamentos , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Algoritmos , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Dihidropiridinas/química , Dihidropiridinas/farmacología , Dihidropiridinas/uso terapéutico , Descubrimiento de Drogas , Humanos , Accidente Cerebrovascular Isquémico/genética , Accidente Cerebrovascular Isquémico/patología , Ratones , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Nifedipino/análogos & derivados , Nifedipino/química , Nifedipino/farmacología , Nifedipino/uso terapéutico , Estrés Oxidativo/efectos de los fármacos
11.
Nat Commun ; 12(1): 3289, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34078897

RESUMEN

Acute ischemic stroke affects men and women differently. In particular, women are often reported to experience higher acute stroke severity than men. We derived a low-dimensional representation of anatomical stroke lesions and designed a Bayesian hierarchical modeling framework tailored to estimate possible sex differences in lesion patterns linked to acute stroke severity (National Institute of Health Stroke Scale). This framework was developed in 555 patients (38% female). Findings were validated in an independent cohort (n = 503, 41% female). Here, we show brain lesions in regions subserving motor and language functions help explain stroke severity in both men and women, however more widespread lesion patterns are relevant in female patients. Higher stroke severity in women, but not men, is associated with left hemisphere lesions in the vicinity of the posterior circulation. Our results suggest there are sex-specific functional cerebral asymmetries that may be important for future investigations of sex-stratified approaches to management of acute ischemic stroke.


Asunto(s)
Tronco Encefálico/patología , Accidente Cerebrovascular Isquémico/patología , Corteza Sensoriomotora/patología , Tálamo/patología , Anciano , Anciano de 80 o más Años , Teorema de Bayes , Mapeo Encefálico , Tronco Encefálico/irrigación sanguínea , Tronco Encefálico/diagnóstico por imagen , Revascularización Cerebral/métodos , Estudios de Cohortes , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Accidente Cerebrovascular Isquémico/terapia , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Factores de Riesgo , Corteza Sensoriomotora/irrigación sanguínea , Corteza Sensoriomotora/diagnóstico por imagen , Índice de Severidad de la Enfermedad , Factores Sexuales , Tálamo/irrigación sanguínea , Tálamo/diagnóstico por imagen , Resultado del Tratamiento
12.
Pharm Biol ; 59(1): 465-471, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33915069

RESUMEN

CONTEXT: Cryptotanshinone (CT), a lipophilic compound extracted from roots of Salvia miltiorrhiza Bunge (Lamiaceae) (Danshen), has multiple properties in diseases, such as pulmonary fibrosis, lung cancer, and osteoarthritis. Our previous findings suggest that CT plays a protective role in cerebral stroke. However, the molecular mechanisms underlying CT protection in ischaemic stroke remain unclear. OBJECTIVE: This study examines the effect of CT on ischaemic stroke. MATERIALS AND METHODS: We used the middle cerebral artery occlusion (MCAO) rat (Sprague-Dawley rats, 200 ± 20 g, n = 5) model with a sham operation group was treated as negative control. MCAO rats were treated with 15 mg/kg CT using intragastric administration. Moreover, TGF-ß (5 ng/mL) was used to treat MCAO rats as a positive control group. RESULTS: The 50% inhibitory concentration (IC50) of CT on CD4+ cell damage was 485.1 µg/mL, and median effective concentration (EC50) was 485.1 µg/mL. CT attenuates the infarct region in the MCAO model. The percentage of CD4+CD25+FOXP3+ Treg cells in the peripheral blood of the MCAO group was increased with CT treatment. The protein level of FOXP3 and the phosphorylation of STAT5 were recovered in the CD4+CD25+ Treg cells of model group after treated with CT. Importantly, the effects of CT treatment were blocked by treatment with the inhibitor STAT5-IN-1 in CD4+ T cells of the MCAO model. DISCUSSION AND CONCLUSION: Our findings not only enhance the understanding of the mechanisms underlying CT treatment, but also indicate its potential value as a promising agent in the treatment of ischaemic stroke. Further study will be valuable to examine the effects of CT on patients with ischaemic stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Fenantrenos/farmacología , Factor de Transcripción STAT5/metabolismo , Salvia miltiorrhiza/química , Animales , Modelos Animales de Enfermedad , Factores de Transcripción Forkhead/metabolismo , Infarto de la Arteria Cerebral Media , Concentración 50 Inhibidora , Accidente Cerebrovascular Isquémico/patología , Masculino , Fenantrenos/administración & dosificación , Fenantrenos/aislamiento & purificación , Ratas , Ratas Sprague-Dawley , Linfocitos T Reguladores/metabolismo
13.
Int J Med Sci ; 18(7): 1687-1698, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33746585

RESUMEN

Background: Ischemic stroke is the second leading cause of death and disability worldwide, which needs to develop new pharmaceuticals for its prevention and treatment. Qingda granule (QDG), a traditional Chinese medicine formulation, could improve angiotensin II-induced brain injury and decrease systemic inflammation. In this study, we aimed to evaluate the neuroprotective effect of QDG against ischemia/reperfusion-induced cerebral injury and illustrate the potential mechanisms. Methods: The middle cerebral artery occlusion/reperfusion (MCAO/R) surgery in vivo and oxygen-glucose deprivation/reoxygenation (OGD/R) in vitro models were established. Ischemic infarct volume was quantified using magnetic resonance imaging (MRI). Neurobehavioral deficits were assessed using a five-point scale. Cerebral histopathology was determined by hematoxylin-eosin (HE) staining. Neuronal apoptosis was evaluated by TUNEL and immunostaining with NeuN antibodies. The protective effect of QDG on OGD/R-injured HT22 cells was determined by MTT assay and Hoechst 33258 staining. The expression of lncRNA GAS5, miR-137 and apoptosis-related proteins were investigated in MCAO/R-injured rats and in OGD/R-injured HT22 cells using RT-qPCR and western blot analysis. Results: QDG significantly reduced the ischemic infarct volume, which was accompanied with improvements in neurobehavioral deficits. Additionally, QDG significantly ameliorated cerebral histopathological changes and reduced neuron loss in MCAO/R-injured rats. Moreover, QDG improved growth and inhibited apoptosis of HT22 cells injured by OGD/R in vitro. Finally, QDG significantly decreased the expression of lncRNA GAS5, Bax and cleaved caspase3, whereas it increased miR-137 and Bcl-2 expression in MCAO/R-injured rats and in OGD/R-injured HT22 cells. Conclusion: QDG plays a neuroprotective role in ischemic stroke via regulation of the lncRNA GAS5/miR-137 signaling pathway.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Daño por Reperfusión/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Accidente Cerebrovascular Isquémico/complicaciones , Accidente Cerebrovascular Isquémico/patología , Masculino , Ratones , MicroARNs/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Fármacos Neuroprotectores/uso terapéutico , ARN Largo no Codificante/metabolismo , Ratas , Daño por Reperfusión/etiología , Daño por Reperfusión/patología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
14.
Phytomedicine ; 83: 153469, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33535128

RESUMEN

BACKGROUND: Ischemic stroke is a multifactorial disease contributing to mortality and neurological dysfunction. Isoliquiritin (ISL) has been reported to possess a series of pharmacological activities including antioxidant, anti-inflammatory, antifungal, anti-depression, anti-neurotoxicity and pro-angiogenesis activities but whether it can be used for ischemic stroke treatment remains unknown. PURPOSE: The goal of this study is to explore its therapeutic effect on ischemic stroke and demonstrated the potential mechanism of ISL in zebrafish model. METHODS: Using the photothrombotic-induced adult zebrafish model of ischemic stroke, we visualized the telencephalon (Tel) and optic tectum (OT) infarction injury at 24 h post-light exposure for 30 min by TTC and H&E staining. The effect of ISL on neurological deficits was analyzed during open tank swimming by video tracking. The antioxidant activity against ischemia injury was quantified by SOD, GSH-Px and MDA assay. Transcriptome analysis of zebrafish Tel revealed how ISL regulating gene expression to exert protective effect, which were also been validated by real-time quantitative PCR assays. RESULTS: We found for the first time that the Tel tissue was the first damaged site of the whole brain and it showed more sensitivity to the brain ischemic damage compared to the OT. ISL reduced the rate of Tel injury, ameliorated neurological deficits as well as counteracted oxidative damages by increasing SOD, GSH-Px and decreasing MDA activity. GO enrichment demonstrated that ISL protected membrane and membrane function as well as initiate immune regulation in the stress response after ischemia. KEGG pathway analysis pointed out that immune-related pathways, apoptosis as well as necroptosis pathways were more involved in the protective mechanism of ISL. Furthermore, the log2 fold change in expression pattern of 25 genes detected by qRT-PCR was consistent with that by RNA-seq. CONCLUSIONS: Tel was highly sensitive to the brain ischemia injury in zebrafish model of ischemic stroke. ISL significantly exerted protective effect on Tel injury, neurological deficits and oxidative damages. ISL could regulate a variety of genes related to immune, apoptosis and necrosis pathways against complex cascade reaction after ischemia. These findings enriched the study of ISL, making it a novel multi-target agent for ischemic stroke treatment.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Chalcona/análogos & derivados , Glucósidos/farmacología , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Sustancias Protectoras/farmacología , Telencéfalo/efectos de los fármacos , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Isquemia Encefálica/patología , Chalcona/farmacología , Modelos Animales de Enfermedad , Enzimas/metabolismo , Femenino , Accidente Cerebrovascular Isquémico/patología , Masculino , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/genética , Telencéfalo/metabolismo , Telencéfalo/patología , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
15.
Pharmacol Res ; 165: 105460, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33513357

RESUMEN

Despite of its high morbidity and mortality, there is still a lack of effective treatment for ischemic stroke in part due to our incomplete understanding of molecular mechanisms of its pathogenesis. In this study, we demonstrate that SHH-PTCH1-GLI1-mediated axonal guidance signaling and its related neurogenesis, a central pathway for neuronal development, also plays a critical role in early stage of an acute stroke model. Specifically, in vivo, we evaluated the effect of GXNI on ischemic stroke mice via using the middle cerebral artery embolization model, and found that GXNI significantly alleviated cerebral ischemic reperfusion (I/R) injury by reducing the volume of cerebral infarction, neurological deficit score and cerebral edema, reversing the BBB permeability and histopathological changes. A combined approach of RNA-seq and network pharmacology analysis was used to reveal the underlying mechanisms of GXNI followed by RT-PCR, immunohistochemistry and western blotting validation. It was pointed out that axon guidance signaling pathway played the most prominent role in GXNI action with Shh, Ptch1, and Gli1 genes as the critical contributors in brain protection. In addition, GXNI markedly prevented primary cortical neuron cells from oxygen-glucose deprivation/reoxygenation damage in vitro, and promoted axon growth and synaptogenesis of damaged neurons, which further confirmed the results of in vivo experiments. Moreover, due to the inhibition of the SHH-PTCH1-GLI1 signaling pathway by cyclopropylamine, the effect of GXNI was significantly weakened. Hence, our study provides a novel option for the clinical treatment of acute ischemic stroke by GXNI via SHH-PTCH1-GLI1-mediated axonal guidance signaling, a neuronal development pathway previously considered for after-stroke recovery.


Asunto(s)
Orientación del Axón/efectos de los fármacos , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/patología , Medicamentos Herbarios Chinos/uso terapéutico , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/patología , Animales , Animales Recién Nacidos , Orientación del Axón/fisiología , Isquemia Encefálica/metabolismo , Células Cultivadas , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/farmacología , Accidente Cerebrovascular Isquémico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
16.
Acta Neurol Belg ; 121(2): 357-364, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30835051

RESUMEN

Grape seed proanthocyanidins (GSP) has been reported to attenuate endoplasmic reticulum (ER) stress-induced apoptosis, which is associated with ischemic stroke. However, whether GSP pays crucial roles in ischemic stroke still remains unclear. The purpose of this study is to explore the role of GSP in ischemic stroke and the underlying mechanism. The ischemic stroke mouse model was established by middle cerebral artery occlusion. GSP administration was performed intragastrically. Long-term neurological outcome was assessed by the foot fault test after reperfusion. Brain injury was identified by infarct volume from 2,3,5-triphenyltetrazolium chloride staining. Neuronal apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling. The expression levels of Bax, Bcl-2, Cleaved Caspase-3, phosphorylated ERK (p-ERK), ERK, Glucose-regulated protein 78 kDa (GRP78), Caspase-12 were detected by western blotting. In mice with ischemia stroke, GSP administration improved long-term neurological outcomes by attenuating ischemia-reperfusion induced neuronal apoptosis and brain injury. Mechanically, GSP performance inhibited the expression levels of ER stress-associated genes. GSP protects mice against ischemic stroke via attenuating neuronal apoptosis. Moreover, GSP attenuated ER stress-associated apoptosis by inhibiting GRP78 and Caspase-12. Our study indicates that GSP attenuates neuronal apoptosis in ischemic stroke, which shows the potential for ischemic stroke treatment.


Asunto(s)
Apoptosis/efectos de los fármacos , Isquemia Encefálica/tratamiento farmacológico , Extracto de Semillas de Uva/uso terapéutico , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Proantocianidinas/uso terapéutico , Animales , Apoptosis/fisiología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Relación Dosis-Respuesta a Droga , Chaperón BiP del Retículo Endoplásmico , Extracto de Semillas de Uva/farmacología , Mediadores de Inflamación/antagonistas & inhibidores , Mediadores de Inflamación/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Proantocianidinas/farmacología
17.
Oxid Med Cell Longev ; 2020: 7875396, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33178387

RESUMEN

Ischemic stroke is the major type of cerebrovascular disease usually resulting in death or disability among the aging population globally. Oxidative stress has been closely linked with ischemic stroke. Disequilibrium between excessive production of reactive oxygen species (ROS) and inherent antioxidant capacity leads to subsequent oxidative damage in the pathological progression of ischemic brain injury. Acupuncture has been applied widely in treating cerebrovascular diseases from time immemorial in China. This review mainly lays stress on the evidence to illuminate the possible mechanisms of acupuncture therapy in treating ischemic stroke through regulating oxidative stress. We found that by regulating a battery of molecular signaling pathways involved in redox modulation, acupuncture not only activates the inherent antioxidant enzyme system but also inhibits the excessive generation of ROS. Acupuncture therapy possesses the potential in alleviating oxidative stress caused by cerebral ischemia, which may be linked with the neuroprotective effect of acupuncture.


Asunto(s)
Terapia por Acupuntura , Accidente Cerebrovascular Isquémico , Estrés Oxidativo , Antioxidantes/metabolismo , China , Humanos , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Accidente Cerebrovascular Isquémico/terapia , Especies Reactivas de Oxígeno/metabolismo
18.
Biomed Pharmacother ; 132: 110855, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33059257

RESUMEN

Ischemic diseases, such as ischemic heart diseases and ischemic stroke, are the leading cause of death worldwide. Angiogenic therapy is a wide-ranging approach to fighting ischemic diseases. However, compared with anti-angiogenesis therapy for tumors, less attention has been paid to therapeutic angiogenesis. Recently, Traditional Chinese medicine (TCM) has garnered increasing interest for its definite curative effect and low toxicity. A growing number of studies have reported that TCM formulas, extracts, and compounds from herbal medicines exert pro-angiogenic activity, which has been confirmed in a few clinical trials. For comprehensive analysis of relevant literature, global and local databases including PubMed, Web of Science, and China National Knowledge Infrastructure were searched using keywords such as "angiogenesis," "neovascularization," "traditional Chinese medicine," "formula," "extract," and "compound." Articles were chosen that are closely and directly related to pro-angiogenesis. This review summarizes the pro-angiogenic activity and the mechanism of TCM formulas, extracts, and compounds; it delivers an in-depth understanding of the relationship between TCM and pro-angiogenesis and will provide new ideas for clinical practice.


Asunto(s)
Medicamentos Herbarios Chinos/uso terapéutico , Medicina Tradicional China/métodos , Neovascularización Fisiológica/efectos de los fármacos , Inductores de la Angiogénesis/farmacología , Animales , Humanos , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/patología , Isquemia Miocárdica/tratamiento farmacológico , Isquemia Miocárdica/patología
19.
Oxid Med Cell Longev ; 2020: 6072380, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33082911

RESUMEN

BACKGROUND: Hedysarum multijugum Maxim.-Chuanxiong rhizoma compound (HCC) is a common herbal formula modified from Buyang Huanwu decoction. Clinical trials have demonstrated its therapeutic potential for ischemic stroke (IS). However, the mechanism of HCC remains unclear. METHODS: The HCC's components were collected from the TCMSP database and TCM@Taiwan database. After that, the HCC's compound targets were predicted by PharmMapper. The IS-related genes were obtained from GeneCards, and OMIM and the protein-protein interaction (PPI) data of HCC's targets and IS genes were obtained from the String database. After that, the DAVID platform was applied for Gene Ontology (GO) enrichment analysis and pathway enrichment analysis and the Cytoscape 3.7.2 was utilized to construct and analyze the networks. Finally, a series of animal experiments were carried out to validate the prediction results of network pharmacology. The expressions of GRP78, p-PERK, and CHOP proteins and mRNAs in different time periods after HCC intervention were detected by Western blot, immunohistochemistry, and RT-qPCR. RESULTS: A total of 440 potential targets and 388 IS genes were obtained. The results of HCC-IS PPI network analysis showed that HCC may regulate IS-related targets (such as ALB, AKT1, MMP9, IGF1, and CASP3), biological processes (such as endoplasmic reticulum stress, inflammation modules, hypoxia modules, regulation of neuronal apoptosis and proliferation, and angiogenesis), and signaling pathways (such as PI3K-Akt, FoxO, TNF, HIF-1, and Rap1 signaling). The animal experiments showed that HCC can improve the neurobehavioral scores and protect the neurons of IS rats (P < 0.05). HCC inhibited the expression of p-PERK in the PERK pathway from 12 h after surgery, significantly promoted the expression of GRP78 protein, and inhibited the expression of CHOP protein after surgery, especially at 24 h after surgery (P < 0.05). The results of RT-qPCR showed that HCC can significantly reduce the expression of CHOP mRNA in the neurons in the CA1 region of the hippocampus 72 h after MCAO (P < 0.05). CONCLUSION: HCC may achieve a role in the treatment of IS by intervening in a series of targets, signaling pathways, and biological processes such as inflammation, oxidative stress, endoplasmic reticulum stress, and angiogenesis.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Accidente Cerebrovascular Isquémico/patología , Mapas de Interacción de Proteínas/efectos de los fármacos , Animales , Cromatografía Líquida de Alta Presión , Análisis por Conglomerados , Bases de Datos Factuales , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/uso terapéutico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Hipocampo/metabolismo , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/genética , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo
20.
Biomed Pharmacother ; 129: 110458, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32603893

RESUMEN

Salidroside (Sal) is a bioactive extract principally from traditional herbal medicine such as Rhodiola rosea L., which has been commonly used for hundreds of years in Asia countries. The excellent neuroprotective capacity of Sal has been illuminated in recent studies. This work focused on the source, pharmacokinetics, safety and anti-ischemic stroke (IS) effect of Sal, especially emphasizing its mechanism of action and BBB permeability. Extensive databases, including Pubmed, Web of science (WOS), Google Scholar and China National Knowledge Infrastructure (CNKI), were applied to obtain relevant online literatures. Sal exerts powerful therapeutic effects on IS in experimental models either in vitro or in vivo due to its neuroprotection, with significantly diminishing infarct size, preventing cerebral edema and improving neurological function. Also, the findings suggest the underlying mechanisms involve anti-oxidation, anti-inflammation and anti-apoptosis by regulating multiple signaling pathways and key molecules, such as NF-κB, TNF-α and PI3K/Akt pathway. In pharmacokinetics, although showing a rapid absorption and elimination, bioavailability of Sal is elevated under some non-physiological conditions. The component and its metabolite (tyrosol) are capable of distributing to brain tissue and the later keeps a higher level of concentration. Moreover, Sal scarcely has obvious toxicity or side effects in a variety of animal experiments and clinical trials, but combination of drugs and perinatal use of medicine should be taken more attentions. Finally, as an active ingredient, not only is Sal isolated from diverse plants with limited yield, but also large batches of the products can be harvested by biological and chemical synthesis. With higher efficacy and better safety profiles, Sal could sever as a promising neuroprotectant for preventing and treating IS. Nevertheless, further investigations are still required to explore the pharmacodynamic and pharmacokinetic properties of Sal in the treatment of IS.


Asunto(s)
Encéfalo/efectos de los fármacos , Glucósidos/farmacocinética , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Fármacos Neuroprotectores/farmacocinética , Fenoles/farmacocinética , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Permeabilidad Capilar , Glucósidos/administración & dosificación , Glucósidos/efectos adversos , Humanos , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Accidente Cerebrovascular Isquémico/fisiopatología , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/efectos adversos , Fenoles/administración & dosificación , Fenoles/efectos adversos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA