Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Lett Appl Microbiol ; 76(11)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37989849

RESUMEN

Treatment of wounds is challenging due to bacterial infections, including Staphylococcus aureus and Pseudomonas aeruginosa. Using the merits of alternative antimicrobials like tea tree oil (TTO) and nanotechnology, they can be helpful in combatting bacterial infections. Solid lipid nanoparticle (SLN) and chitosan (CS) nanoparticles show great potential as carriers for enhancing the stability and therapeutic benefits of oils. The aim of this study is to compare the influence of nanocarriers in enhancing the antibacterial effects of TTO. The study evaluates the physicochemical and antibacterial properties of TTO-SLN and TTO-CS against P. aeruginosa and S. aureus. The TTO-SLN nanoparticles showed a clear round shape with the average diameter size of 477 nm, while the TTO-CS nanoparticles illustrated very homogeneous morphology with 144 nm size. The encapsulation efficiency for TTO-CS and TTO-SLN was ∼88.3% and 73.5%, respectively. Minimum inhibitory concentration against S. aureus and P. aeruginosa for TTO-CS, TTO-SLN, and pure TTO were 35 and 45 µg ml-1, 130 and 170 µg ml-1, and 380 and 410 µg ml-1, respectively. Since TTO-CS revealed an impressively higher antimicrobial effects in comparison with TTO-SLN and TTO alone, it can be considered as a nanocarrier that produces the same antimicrobial effects with lower required amounts of the active substance.


Asunto(s)
Antiinfecciosos , Infecciones Bacterianas , Quitosano , Melaleuca , Staphylococcus aureus Resistente a Meticilina , Nanopartículas , Aceite de Árbol de Té , Staphylococcus aureus , Pseudomonas aeruginosa , Melaleuca/química , Quitosano/farmacología , Árboles , Aceite de Árbol de Té/farmacología , Aceite de Árbol de Té/química , Antibacterianos/farmacología , Antibacterianos/química , Antiinfecciosos/farmacología , Nanopartículas/química , Pruebas de Sensibilidad Microbiana ,
2.
Molecules ; 28(15)2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37570859

RESUMEN

Nanoemulsion is a new multi-component drug delivery system; the selection of different oil phases can give it special physiological activity, and play the role of "medicine and pharmaceutical excipients all-in-one". In this paper, we used glycyrrhizic acid as the natural surfactant, and Blumea balsamifera oil (BB) and tea tree oil (TTO) as the mixed oil phase, to obtain a new green functional composite nanoemulsion. Using the average particle size and polydispersion index (PDI) as the evaluation criteria, the effects of the oil ratio, oil content, glycyrrhizic acid concentration, and ultrasonic time on the nanoemulsion were systematically investigated. The stability and physicochemical properties and biological activities of BB-TTO NEs prepared via the optimum formulation were characterized. The optimal prescription was BB: TTO = 1:1, 5% oil phase, 0.7% glycyrrhizic acid, and 5 min ultrasonication time. The mean particle size, PDI, and zeta potential were 160.01 nm, 0.125, and -50.94 mV, respectively. The nanoemulsion showed non-significant changes in stability after centrifugation, dilution, and 120 days storage. These nanoemulsions were found to exhibit potential antibacterial and anti-inflammatory activities. The minimal inhibitory concentration (MIC) of BB-TTO NEs against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa is 2975 µg/mL, 2975 µg/mL, and 5950 µg/mL, respectively. A lower level of inflammatory cell infiltration and proportion of fibrosis were found in the synovial tissue of AIA rats treated with BB-TTO NEs. These findings demonstrate that the BB-TTO NEs produced in this study have significant potential for usage in antibacterial and anti-inflammatory areas.


Asunto(s)
Aceite de Árbol de Té , Ratas , Animales , Aceite de Árbol de Té/farmacología , Aceite de Árbol de Té/química , Ácido Glicirrínico/farmacología , Escherichia coli , Sistemas de Liberación de Medicamentos , Antibacterianos/farmacología , Antibacterianos/química , Emulsiones/química
3.
J Biomater Sci Polym Ed ; 34(17): 2438-2461, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37640030

RESUMEN

Essential oil from Melaleuca alternifolia (also known as Tea tree essential oil, TTO) is used as traditional medicine and used as therapeutic in medicine, food and cosmetic sectors. However, this oil is highly unstable, volatile and prone to oxidation which limits its practical use. The objective of this study was synthesis of tea tree oil based O/W (oil/water) nanoemulsions (tea tree essential oil nanoemulsions, TNE) and evaluation of its biological potential. Physiological characterization was carried out using UV, fluorescent, and FT-IR techniques. Various biological activities such as anticancerous, antidiabetic and anti-inflammatory were also estimated. Pharmacokinetics study on TNE was carried out. Encapsulation efficiency of nanoemulsions was found to be 83%. Nanoemulsions were spherical in shape with globule size 308 nm, zeta potential -9.42 and polydispersity index was 0.31. Nanoemulsions were stable even after 50 days of storage at different temperatures. Anti-oxidant potential of TNE was conducted by various assays and IC50 were: Nitric oxide radical scavenging activity:225.1, DPPH radical scavenging activity:30.66, Iron chelating assay:38.73, and Iron reducing assay:39.36. Notable anticancer activity was observed with the percent cell viability of HeLa cells after treatment with 1, 2 and 5 µl of TNE was 82%, 41% and 24%, respectively. Antidiabetic study revealed that TNE inhibited -amylase in a dose-dependent manner, with 88% inhibition at its higher volume of 250 µl. Drug kinetic study revealed that nanoemulsions exhibited first-order model. Based on this, the possible role of M. alternifolia oil-based nanoemulsions in cosmetic, food, and pharma sectors has been discussed.


Asunto(s)
Melaleuca , Aceites Volátiles , Aceite de Árbol de Té , Humanos , Aceites Volátiles/farmacología , Aceites Volátiles/química , Antioxidantes/farmacología , Melaleuca/química , Células HeLa , Espectroscopía Infrarroja por Transformada de Fourier , Aceite de Árbol de Té/farmacología , Aceite de Árbol de Té/química , Antiinflamatorios/farmacología ,
4.
Molecules ; 28(9)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37175338

RESUMEN

Tea tree oil (TTO) is a volatile essential oil obtained by distillation, mainly from the Australian native plant Melaleuca alternifolia (Maiden & Betche) Cheel (Myrtaceae). In this study, a comparative analysis of the chemical constituents of seven tea tree oils (M. alternifolia) and four other Melaleuca spp. oils (M. cajuputi, (MCa), two chemotypes of M. quinquenervia, (MNe and MNi), and M. ericifolia (MRo)) was carried out using gas chromatography-mass spectrometry (GC-MS) and high-performance thin-layer chromatography (HPTLC). Among the seven TTOs, terpinen-4-ol (37.66-44.28%), γ-terpinene (16.42-20.75%), α-terpinene (3.47-12.62%), α-terpineol (3.11-4.66%), and terpinolene (2.75-4.19%) were the most abundant compounds. On the other hand, the most abundant compounds of the other Melaleuca oils varied, such as 1,8-cineole (64.63%) in MCa oil, (E)-nerolidol (48.40%) and linalool (33.30%) in MNe oil, 1,8-cineole (52.20%) in MNi oil, and linalool (38.19%) and 1,8-cineole (27.57%) in MRo oil. HPTLC fingerprinting of Melaleuca oils enabled the discrimination of TTO oils from other Melaleuca spp. oils. Variation was observed in the profile of the Rf values among EOs. The present study shows that HPTLC is one of the best ways to identify and evaluate the quality control in authenticating TTOs, other Melaleuca EOs, or EOs from other species within the Myrtaceae.


Asunto(s)
Melaleuca , Myrtaceae , Aceites Volátiles , Aceite de Árbol de Té , Aceites Volátiles/química , Aceite de Árbol de Té/química , Melaleuca/química , Eucaliptol/análisis , Cromatografía en Capa Delgada , Australia , Terpenos/química
5.
J Mater Chem B ; 11(19): 4260-4273, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37132514

RESUMEN

This study describes the construction of a tailor-made clay-based hybrid with advanced dermocompatibility, antibacterial and anti-inflammatory performance by incorporating tunable ratios of tea tree oil (TTO) and salicylic acid (SA) into the naturally occurring porous structure of palygorskite (Pal). Among the three TTO/SA/Pal (TSP) systems constructed, TSP-1 with a TTO : SA ratio of 1 : 3 demonstrated the lowest 3T3 NRU predicted acute oral toxicity and dermal HaCaT cytotoxicity as well as the most pronounced antibacterial activity with a selective inhibitory action against the pathogens (E. coli, P. acnes and S. aureus) over the beneficial (S. epdermidis) species inhabiting on the human skin. Also noticeable is that exposure of these skin commensal bacteria to TSP-1 prevented the antimicrobial resistance evolution compared to the conventional antibiotic ciprofloxacin. Mechanistic investigation of its antibacterial modes of action revealed a synergy between the TTO and SA loadings on the Pal supports in reactive oxygen production, causing oxidative damage to bacterial cell membranes and increased leakage of intracellular compounds. Additionally, TSP-1 significantly decreased the proinflammatory cytokines of IL-1ß, IL-6, IL-8, and TNF-α in a bacterial lipopolysaccharide-stimulated differentiated THP-1 macrophage model, showing the potential to inhibit inflammatory responses in bacterial infections. Overall, this is the first report exploring the potential of constructing clay-based organic-inorganic hybrids as alternatives to antibiotics to combat bacterial resistance with advanced compatibility and anti-inflammatory benefits that are desired for the development of topically applied biopharmaceuticals.


Asunto(s)
Aceite de Árbol de Té , Humanos , Aceite de Árbol de Té/farmacología , Aceite de Árbol de Té/química , Trombospondina 1 , Escherichia coli , Ácido Salicílico , Staphylococcus aureus , Arcilla , Antibacterianos/farmacología , Bacterias , Antiinflamatorios
6.
Nutrients ; 15(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36986049

RESUMEN

In this study, antibacterial and antioxidant molecules-rich Melaleuca alternifolia oil (tea tree oil (TTO)) loaded chitosan (CS) based nanoemulsions (NEMs) were prepared and encapsulated by sodium alginate (SA) microsphere for antibacterial wound dressing. CS-TTO NEMs were prepared by oil-in-water emulsion technique, and the nanoparticle tracking analysis (NTA) confirmed that the CS-TTO NEMs had an average particle size of 89.5 nm. Further, the SA-CS-TTO microsphere was confirmed through SEM analysis with an average particle size of 0.76 ± 0.10 µm. The existence of TTO in CS NEMs and SA encapsulation was evidenced through FTIR analysis. The XRD spectrum proved the load of TTO and SA encapsulation with CS significantly decreased the crystalline properties of the CS-TTO and SA-CS-TTO microsphere. The stability of TTO was increased by the copolymer complex, as confirmed through thermal gravimetric analysis (TGA). Furthermore, TTO was released from the CS-SA complex in a sustained manner and significantly inhibited the bacterial pathogens observed under confocal laser scanning microscopy (CLSM). In addition, CS-TTO (100 µg/mL) showed antioxidant potential (>80%), thereby increasing the DPPH and ABTS free radicals scavenging ability of SA-CS-TTO microspheres. Moreover, CS and SA-CS-TTO microsphere exhibited negligible cytotoxicity and augmented the NIH3T3 cell proliferation confirmed in the in vitro scratch assay. This study concluded that the SA-CS-TTO microsphere could be an antibacterial and antioxidant wound dressing.


Asunto(s)
Quitosano , Aceite de Árbol de Té , Animales , Ratones , Aceite de Árbol de Té/farmacología , Aceite de Árbol de Té/química , Antioxidantes/farmacología , Quitosano/farmacología , Quitosano/química , Microesferas , Células 3T3 NIH , Antibacterianos/farmacología , Antibacterianos/química , Alginatos/química
7.
Poult Sci ; 102(1): 102238, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36368171

RESUMEN

The purpose of this study was to formulate tee tree oil nanoliposomes (TTONL) and evaluate its characterization and antibacterial activity. TTONL was prepared by thin film hydration and sonication technique, and the preparation conditions were optimized by Box-behnken response surface method. The characterization (morphology, size, zeta potential, and stability) and antibacterial activity of TTONL against Escherichia coli (E. coli) in vitro and in vivo were evaluated. The optimal preparation conditions for TTONL: lecithin to cholesterol mass ratio of 3.7:1, TTO concentration of 0.5%, and pH of the hydration medium of 7.4, which resulted in a TTONL encapsulation rate of 80.31 ± 0.56%. TTONL was nearly spherical in shape and uniform in size, and the average particle size was 227.8 ± 25.3 nm with negative charge. The specific disappearance of the TTO peak in the infrared spectrum suggested the successful preparation of TTONL, which showed high stability at 4°C within 35 d. The result of MIC test found that the nanoliposomes improved antibacterial activity of TTO against various E. coli strains. TTONL exposure in vitro caused different degrees of structural damage to the E. coli. TTONL by oral administration alleviated the clinical symptoms and intestinal lesion of chickens induced with E. coli challenge. Furthermore, TTONL treatment remarkably lowered the mRNA expression of NLRP3 and NF-κB (p65) in the duodenum and cecum of E. coli-infected chickens. In conclusion, the prepared TTONL had good stability and slow-release property with dose-dependent inhibition and killing effects on different strains of E. coli, and exerted a preventive role against chicken colibacillosis through inhibition.


Asunto(s)
Aceite de Árbol de Té , Animales , Aceite de Árbol de Té/farmacología , Aceite de Árbol de Té/química , Escherichia coli , Pollos , Antibacterianos/farmacología , Antibacterianos/química
8.
Molecules ; 27(19)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36234697

RESUMEN

The GC-MS analysis of tea tree oil (TTO) revealed 38 volatile components with sesquiterpene hydrocarbons (43.56%) and alcohols (41.03%) as major detected classes. TTO efficacy is masked by its hydrophobicity; nanoencapsulation can address this drawback. The results showed that TTO-loaded solid lipid nanoparticles (SLN1), composed of glyceryl monostearate (2% w/w) and Poloxamer188 (5% w/w), was spherical in shape with a core-shell microstructure. TTO-SLN1 showed a high entrapment efficiency (96.26 ± 2.3%), small particle size (235.0 ± 20.4 nm), low polydispersity index (0.31 ± 0.01), and high negative Zeta potential (-32 mV). Moreover, it exhibited a faster active agent release (almost complete within 4 h) compared to other formulated TTO-SLNs as well as the plain oil. TTO-SLN1 was then incorporated into cellulose nanofibers gel, isolated from sugarcane bagasse, to form the 'TTO-loaded nanolipogel' which had a shear-thinning behavior. Second-degree thermal injuries were induced in Wistar rats, then the burned skin areas were treated daily for 7 days with the TTO-loaded nanolipogel compared to the unmedicated nanolipogel, the TTO-loaded conventional gel, and the normal saline (control). The measurement of burn contraction proved that TTO-loaded nanolipogel exhibited a significantly accelerated skin healing, this was confirmed by histopathological examination as well as quantitative assessment of inflammatory infiltrate. This study highlighted the success of the proposed nanotechnology approach in improving the efficacy of TTO used for the repair of skin damage induced by burns.


Asunto(s)
Quemaduras , Saccharum , Aceite de Árbol de Té , Alcoholes , Animales , Quemaduras/tratamiento farmacológico , Celulosa , Cromatografía de Gases y Espectrometría de Masas , Liposomas , Nanopartículas , Ratas , Ratas Wistar , Solución Salina , Aceite de Árbol de Té/química , Aceite de Árbol de Té/farmacología
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 283: 121766, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35988468

RESUMEN

Essential oil distilled from Melaleuca alternifolialeaves, commonly known as tea tree oil, is well known for its biological activity, principally its antimicrobial properties. However, many samples are adulterated with other, cheaper essential oils such as eucalyptus oil. Current methods of detecting such adulteration are costly and time-consuming, making them unsuitable for rapid authentication screening. This study investigated the use of mid-infrared (MIR) spectroscopy for detecting and quantifying the level of eucalyptus oil adulteration in spiked samples of pure Australian tea tree oil. To confirm the authenticity of the tea tree oil samples, GC-MS analysis was used to profile 37 of the main volatile constituents present, demonstrating that the samples conformed to ISO specifications. Three chemometric regression techniques (PLSR, PCR and SVR) were trialled on the MIR spectra, along with a variety of pre-processing techniques. The best-performing full-wavelength PLSR model showed excellent prediction of eucalyptus oil content, with an R2CV of 0.999 and RMSECV of 1.08 % v/v. The RMSECV could be further improved to 0.82 % v/v through a moving window wavenumber optimisation process. The results suggest that MIR spectroscopy combined with PLSR can be used to predict eucalyptus oil adulteration in Australian tea tree oil samples with a high level of accuracy.


Asunto(s)
Melaleuca , Aceites Volátiles , Aceite de Árbol de Té , Australia , Aceite de Eucalipto , Melaleuca/química , Aceites Volátiles/química , Espectrofotometría Infrarroja , Aceite de Árbol de Té/química
10.
Molecules ; 27(12)2022 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-35744913

RESUMEN

The COVID-19 pandemic has highlighted the relevance of proper disinfection procedures and renewed interest in developing novel disinfectant materials as a preventive strategy to limit SARS-CoV-2 contamination. Given its widely known antibacterial, antifungal, and antiviral properties, Melaleuca alternifolia essential oil, also named Tea tree oil (TTO), is recognized as a potential effective and safe natural disinfectant agent. In particular, the proposed antiviral activity of TTO involves the inhibition of viral entry and fusion, interfering with the structural dynamics of the membrane and with the protein envelope components. In this study, for the first time, we demonstrated the virucidal effects of TTO against the feline coronavirus (FCoVII) and the human coronavirus OC43 (HCoV-OC43), both used as surrogate models for SARS-CoV-2. Then, to atomistically uncover the possible effects exerted by TTO compounds on the outer surface of the SARS-CoV-2 virion, we performed Gaussian accelerated Molecular Dynamics simulations of a SARS-CoV-2 envelope portion, including a complete model of the Spike glycoprotein in the absence or presence of the three main TTO compounds (terpinen-4-ol, γ-terpinene, and 1,8-cineole). The obtained results allowed us to hypothesize the mechanism of action of TTO and its possible use as an anti-coronavirus disinfectant agent.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Desinfectantes , Melaleuca , Aceite de Árbol de Té , Antivirales/farmacología , Desinfectantes/farmacología , Humanos , Melaleuca/química , Pandemias , SARS-CoV-2 , Aceite de Árbol de Té/química , Aceite de Árbol de Té/farmacología
11.
Phytochem Anal ; 33(6): 831-837, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35557478

RESUMEN

INTRODUCTION: The essential oils of tea tree (Melaleuca alternifolia) leaves mainly contain eucalyptol, α-terpinene, γ -terpinene, and terpinen-4-ol and have anti-bacterial, anti-fungal, anti-infective, and anti-inflammatory actions. The essential oils of lemon grass (Cymbopogon citratus) leaves mainly contain neral, geranial, and geraniol and have anti-microbial and anti-fungal activities and hypocholesterolemic effect. OBJECTIVES: The present study describes the use of low-toxicity solvents called betaine-based deep eutectic solvents (DESs) for efficient extraction of essential oils from tea tree and lemon grass. H2 O and EtOH were used for extraction as control methods. METHODOLOGY: Quantitative analysis was performed using gas chromatography-mass spectrometry (GC-MS) in selected ion monitoring mode. Scanning electron micrography (SEM) and antioxidant assays for extracted samples were also conducted. RESULTS: The results indicated that extraction for tea tree using betaine/sucrose (molar ratio 2:1) improved the yields of terpinolene and eucalyptol 2.5- and 1.9-fold, respectively, compared with the control method. In lemon grass, extraction using betaine/sucrose (molar ratio 2:1) improved the yields of neral and geranial 1.9- and 1.7-fold, respectively, compared with the control method. CONCLUSION: These results demonstrated the effective extraction of essential oils from plant leaves under milder conditions than those needed for the conventional methods. The environmentally benign DESs for the extraction would be applicable to the food and cosmetic industries.


Asunto(s)
Cymbopogon , Melaleuca , Aceites Volátiles , Aceite de Árbol de Té , Betaína , Cymbopogon/química , Disolventes Eutécticos Profundos , Eucaliptol , Melaleuca/química , Aceites Volátiles/química , Solventes , Sacarosa , , Aceite de Árbol de Té/química , Árboles
12.
Int J Mol Sci ; 22(21)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34768755

RESUMEN

Fungal skin infections are currently a major clinical problem due to their increased occurrence and drug resistance. The treatment of fungal skin infections is based on monotherapy or polytherapy using the synergy of the therapeutic substances. Tea tree oil (TTO) may be a valuable addition to the traditional antifungal drugs due to its antifungal and anti-inflammatory activity. Ketoconazole (KTZ) is an imidazole antifungal agent commonly used as a treatment for dermatological fungal infections. The use of hydrogels and organogel-based formulations has been increasing for the past few years, due to the easy method of preparation and long-term stability of the product. Therefore, the purpose of this study was to design and characterize different types of Pluronic® F-127 gel formulations containing KTZ and TTO as local delivery systems that can be applied in cases of skin fungal infections. The influence of TTO addition on the textural, rheological, and bioadhesive properties of the designed formulations was examined. Moreover, the in vitro release of KTZ, its permeation through artificial skin, and antifungal activity by the agar diffusion method were performed. It was found that obtained gel formulations were non-Newtonian systems, showing a shear-thinning behaviour and thixotropic properties with adequate textural features such as hardness, compressibility, and adhesiveness. Furthermore, the designed preparations with TTO were characterized by beneficial bioadhesive properties. The presence of TTO improved the penetration and retention of KTZ through the artificial skin membrane and this effect was particularly visible in hydrogel formulation. The developed gels containing TTO can be considered as favourable formulations in terms of drug release and antifungal activity.


Asunto(s)
Antifúngicos/farmacología , Geles/química , Cetoconazol/farmacología , Poloxámero/química , Aceite de Árbol de Té/química , Aceite de Árbol de Té/farmacología , Adhesividad , Animales , Antifúngicos/química , Candida parapsilosis/efectos de los fármacos , Química Farmacéutica , Liberación de Fármacos , Cetoconazol/química , Cinética , Lecitinas/química , Ratones , Microscopía Electrónica de Rastreo , Modelos Biológicos , Modelos Teóricos , Reología , Piel/metabolismo
13.
Int J Biol Macromol ; 193(Pt B): 2038-2046, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34774596

RESUMEN

A functional carrageenan/agar-based film was prepared by combining tea tree oil Pickering emulsion (PET) and zinc sulfide nanoparticles (ZnSNP). PET was formulated using tea tree essential oil stabilized with nanocellulose fibers. PET and ZnSNPs were uniformly dispersed in the binary polymer matrix and formed compatible films. The incorporation of ZnSNPs improved the mechanical strength, whereas PET slightly decreased the strength, but the combined addition of ZnSNP and PET maintained the mechanical strength with slightly improved flexibility. The addition of ZnSNP and PET, alone or in combination, slightly improved the water vapor barrier, water resistance, and thermal stability of the film. In addition, the carrageenan/agar-based composite membrane showed distinct antioxidant and antibacterial activity. The ZnSNP and PET incorporated binary composite films with enhanced physical and functional properties are likely to be used in active food packaging applications.


Asunto(s)
Agar/química , Carragenina/química , Emulsiones/química , Nanopartículas/química , Aceites Volátiles/química , Sulfuros/química , Aceite de Árbol de Té/química , Compuestos de Zinc/química , Antibacterianos/química , Antioxidantes/química , Embalaje de Alimentos/métodos , Nanocompuestos/química , Permeabilidad , Vapor
14.
Drug Deliv ; 28(1): 1972-1981, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34565260

RESUMEN

Crotamiton (CRT) is a commonly approved drug prescribed for the scabies treatment in many countries across the globe. However, poor aqueous solubility and low bioavailability, and side effects restrict its use. To avoid such issues, an appropriate carrier system is necessary which can address the aforementioned challenges for attaining enhanced biopharmaceutical attributes. The current study intends to provide a detailed account on the development and evaluation of CRT-loaded microemulsion (ME) hydrogel formulation containing tea tree oil (TTO) for improved drug delivery for scabies treatment in a safe and effective manner. Pseudo-ternary phase diagrams were constructed with TTO as the oily phase, and Cremophor®EL was used as the surfactant in a mass ratio 2:1 with co-surfactants (mixture of phospholipid 90G and Transcutol®P), and aqueous solution as the external phase. The optimized drug-loaded ME formulation was evaluated for skin penetration, retention, compliance, and dermatokinetics. The nonirritant behavior of the formulation was revealed by skin histopathology, which showed no changes in normal skin histology. In comparison to the conventional product, dermatokinetic experiments revealed that CRT has greater penetration and distribution in the epidermis of the mice skin. The findings imply that the proposed lipid-based ME hydrogel can aid in the resolution of CRT issues by providing a better and safer delivery option to epidermis and deeper epidermis in substantial quantities.


Asunto(s)
Emulsiones/química , Hidrogeles/química , Escabiosis/tratamiento farmacológico , Aceite de Árbol de Té/química , Toluidinas/farmacocinética , Animales , Química Farmacéutica , Portadores de Fármacos , Estabilidad de Medicamentos , Concentración de Iones de Hidrógeno , Ratones , Propiedades de Superficie , Tensoactivos/química , Toluidinas/administración & dosificación
15.
Molecules ; 26(18)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34577081

RESUMEN

The quality control of essential oils (EO) principally aims at revealing the presence of adulterations and at quantifying compounds that are limited by law by evaluating EO chemical compositions, usually in terms of the normalised relative abundance of selected markers, for comparison to reference values reported in pharmacopoeias and/or international norms. Common adulterations of EO consist of the addition of cheaper EO or synthetic materials. This adulteration can be detected by calculating the percent normalised areas of selected markers or the enantiomeric composition of chiral components. The dilution of the EO with vegetable oils is another type of adulteration. This adulteration is quite devious, as it modifies neither the qualitative composition of the resulting EO nor the marker's normalised percentage abundance, which is no longer diagnostic, and an absolute quantitative analysis is required. This study aims at verifying the application of the two above approaches (i.e., normalised relative abundance and absolute quantitation) to detect EO adulterations, with examples involving selected commercial EO (lavender, bergamot and tea tree) adulterated with synthetic components, EO of different origin and lower economical values and heavy vegetable oils. The results show that absolute quantitation is necessary to highlight adulteration with heavy vegetable oils, providing that a reference quantitative profile is available.


Asunto(s)
Citrus/química , Lavandula/química , Melaleuca/química , Aceites Volátiles/química , Control de Calidad , Monoterpenos Acíclicos/análisis , Contaminación de Medicamentos , Cromatografía de Gases y Espectrometría de Masas , Isomerismo , Monoterpenos/análisis , Aceites Volátiles/análisis , Aceites de Plantas/análisis , Aceites de Plantas/química , Estándares de Referencia , Aceite de Árbol de Té/análisis , Aceite de Árbol de Té/química
16.
Regul Toxicol Pharmacol ; 124: 104999, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34242706

RESUMEN

Tea tree oil (TTO) is a popular topical use to treat skin infections. However, its poor aqueous solubility and stability have substantially limited its widespread application, including oral administration that might be therapeutic for enteric infections. In this study, mechanical ultrasonic methods were used to prepare TTO nanoemulsion (nanoTTO) with a mean droplet diameter of 161.80 nm ± 3.97, polydispersity index of 0.21 ± 0.01, and zeta potential of -12.33 ± 0.72 mV. The potential toxicity of nanoTTO was assessed by studying the oral median lethal dose (LD50) and repeated 28-day oral toxicity to provide a reference for in vivo application. Results showed that nanoTTO had no phase separation under a centrifugation test and displayed good stability during storage at -20, 4 and 25 °C over 60 days. Repeated-dose 28-day oral toxicity evaluation revealed no significant effects on growth and behavior. Assessments of hematology, clinical biochemistry, and histopathology indicated no obvious adverse effects in mice at 50, 100 and 200 mg/mL. These data suggest that nanoTTO can be considered a potential antimicrobial agent by oral administration due to its inhibitory effect on bacteria and relatively lower toxicity.


Asunto(s)
Nanopartículas/toxicidad , Aceite de Árbol de Té/toxicidad , Administración Oral , Administración Tópica , Animales , Estabilidad de Medicamentos , Emulsiones , Dosificación Letal Mediana , Masculino , Ratones , Nanopartículas/administración & dosificación , Nanopartículas/química , Tamaño de la Partícula , Aceite de Árbol de Té/administración & dosificación , Aceite de Árbol de Té/química , Pruebas de Toxicidad Aguda , Pruebas de Toxicidad Subaguda
17.
Int J Biol Macromol ; 186: 365-376, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34246681

RESUMEN

Chitosan - tea tree essential oil (TTEO) films were obtained as a new biodegradable material. Malic acid or lactic acid solvents were evaluated to obtain easy-removing films. The microstructure by SEM and FT-IR, the thermal properties by TGA/DSC, the mechanical properties, the water vapor permeability, the antioxidant (DPPH• and ABTS•+) activity and the optical properties of the formulated films were evaluated. A complete dissolution of the film in water was obtained. The elongation to break was higher in the films with malic acid (145.88-317.33%), comparing with those with lactic acid (25.54-44.08%). Chitosan film obtained in malic acid with TTEO showed the highest antioxidant activity. The colour and transparency of the samples did not suffer significant variations by TTEO addition. Films showed good UV-barrier properties, with a slightly improvement by TTEO addition. The films obtained showed a great potential for food packaging applications.


Asunto(s)
Antioxidantes/farmacología , Quitosano/química , Embalaje de Alimentos , Aceite de Árbol de Té/farmacología , Antioxidantes/química , Benzotiazoles/química , Compuestos de Bifenilo/química , Color , Módulo de Elasticidad , Ácido Láctico/química , Malatos/química , Picratos/química , Solubilidad , Solventes/química , Ácidos Sulfónicos/química , Propiedades de Superficie , Aceite de Árbol de Té/química , Resistencia a la Tracción , Agua/química
18.
Int J Biol Macromol ; 183: 668-680, 2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-33930450

RESUMEN

The high incidence and costs of chronic wounds in the elderly have motivated the search for innovations to improve product performance and the healing process while reducing costs. In this study, bioadhesive nanostructured lipid carriers (NLC) were developed for the co-encapsulation of compounds with antioxidant (α-tocopherol and quercetin) and antimicrobial (tea tree oil) activity for management of wounds. The NLC was produced with shea butter and argan oil, and modified with sodium alginate or chitosan to confer bioadhesive properties. Spherical nanoparticles of ~307-330 nm and zeta potential varying from -21.2 to +11.8 mV were obtained. Thermal analysis demonstrated that the lipid matrix reduced tea tree oil thermal loss (~1.8-fold). Regardless of the type of polysaccharide employed, the NLCs promoted cutaneous localization of antioxidants in damaged (subjected to incision) skin, with a ~74 to 180-fold higher delivery into the skin compared to percutaneous delivery. This result is consistent with the similar bioadhesive properties of chitosan or sodium alginate-modified NLC. Nanoencapsulation of tea tree oil did not preclude its antimicrobial effects against susceptible and resistant strains of S. aureus and P. aeruginosa, while co-encapsulation of antioxidants increased the NLC-induced fibroblasts migration, supporting their potential usefulness for management of wounds.


Asunto(s)
Alginatos/química , Antiinfecciosos/farmacología , Antioxidantes/farmacología , Quitosano/química , Portadores de Fármacos , Lípidos/química , Nanopartículas , Cicatrización de Heridas/efectos de los fármacos , Animales , Antiinfecciosos/química , Antioxidantes/química , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Embrión de Pollo , Composición de Medicamentos , Fibroblastos/efectos de los fármacos , Humanos , Lípidos/aislamiento & purificación , Aceites de Plantas/química , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo , Quercetina/química , Quercetina/farmacología , Sapotaceae/química , Piel/efectos de los fármacos , Piel/metabolismo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Aceite de Árbol de Té/química , Aceite de Árbol de Té/farmacología , alfa-Tocoferol/química , alfa-Tocoferol/farmacología
19.
Molecules ; 26(7)2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33807380

RESUMEN

Preparation and characterization of microemulsions consisting of a plant-derived alkyl polyglycoside (APG) surfactant and the essential oil of Melaleuca alternifolia (tea tree) was studied. This nonionic APG surfactant used was Triton CG-110 with a CMC at 1748 ppm at 25 °C. Tea tree oil (TTO) was extracted from tea tree leaves by Triton CG-110-assisted hydrodistillation method. The preparation of the microemulsion was aided by the construction of pseudo-ternary phase diagrams, which were investigated at the different weight ratios of surfactant mixtures (Smix = Triton CG-110/PPG) as 0.6:1, 1.8:1, 1:0 with hydrodistilled and commercial TTO by water titration method at room temperature. Particularly, structure of microemulsion was identified by electrical conductivity and viscosity. Moreover, shelf stability of some microemulsion made of 1% TTO with various concentration of Triton CG-110/PPG (1.8:1 w/w) were monitored for over a two-month period with dynamic light scattering. These results showed that microemulsion made of 1% TTO, 9% Triton CG-110/PPG (1.8:1 w/w) was insensitive with time and temperature of storage.


Asunto(s)
Emulsiones/química , Melaleuca/química , Tensoactivos/química , Aceite de Árbol de Té/química , Química Farmacéutica , Solubilidad , Viscosidad
20.
Nanotechnology ; 32(27)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33770766

RESUMEN

Tea tree oil, a natural antibacterial compound, cannot be used effectively because of its volatile nature. In this work, a biocompatible carrier was prepared and loaded with tea tree essential oil. The carrier was prepared via the electrostatic or chemical action of aminated mesoporous silica and sodium rosin for achieving a low volatilization rate of tea tree essential oil. A synergistic antibacterial effect was observed between sodium rosin and tea tree essential oil. This method utilized the positive charge of the amino group and the condensation reaction with the carboxyl group to achieve physical and chemical interactions with sodium rosin. Fourier Transform Infrared, Brunauer-Emmet-Teller, Zeta potential, SEM, TEM, and TG were performed to characterize the structure and properties of the samples. Compared to the electrostatic effect, the chemically modified system exhibited a longer sustained release, and the sustained release curve followed the Korsmeyer-Peppas release model. Also, the antibacterial properties of the chemically modified system exhibited better minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) respectively, the MIC and MBC forE. coliwere 0.3 mg ml-1and 0.6 mg ml-1respectively, forS. aureuswere 0.15 mg ml-1and 0.3 mg ml-1respectively. More strikingly, the sample also demonstrated long-term antibacterial performance. Therefore, this work provides a new way for the delivery of volatile antibacterial drugs to achieve sustained-release and long-lasting antibacterial effects.


Asunto(s)
Antibacterianos/química , Resinas de Plantas/química , Dióxido de Silicio/química , Aceite de Árbol de Té/química , Antibacterianos/farmacología , Portadores de Fármacos/química , Liberación de Fármacos , Sinergismo Farmacológico , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Porosidad , Resinas de Plantas/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Staphylococcus aureus/efectos de los fármacos , Aceite de Árbol de Té/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA