Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Agric Food Chem ; 72(2): 1162-1169, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38166105

RESUMEN

Olive (Olea europea L.) is one of the oldest and most important fruit tree species cultivated in the Mediterranean region. Various plant tissues, drupes, and olive oil contain several phenolics (including verbascoside, although it is present in the plant at a low level) that are well-known for their highly beneficial effects on human health. An in vitro olive cell suspension culture (cultivar Cellina di Nardò, "CdN") was established, characterized for its growth and morphological features. Furthermore, a vital and relatively uniform population of protoplasts was generated from the olive suspension culture to investigate their cellular characteristics during growth. The polyphenolic extract of the in vitro "CdN" olive cells contained almost exclusively verbascoside, as revealed by the UPLC-ESI-MS analysis. The content of verbascoside reached up to 100 mg/g DW, with an average production rate of approximately 50 mg/g DW over one year of culture. This level of production has not been previously reported in a limited number of previous studies. This remarkable production of verbascoside was associated with an exceptionally high antioxidant capacity. The high level of verbascoside production and purity of the extract make this system a promising tool for secondary metabolite production.


Asunto(s)
Glucósidos , Olea , Polifenoles , Humanos , Olea/metabolismo , Fenoles/metabolismo , Aceite de Oliva/metabolismo , Técnicas de Cultivo de Célula , Extractos Vegetales/metabolismo
2.
Nutrients ; 15(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38068746

RESUMEN

Camellia seed oil (CO) is used as edible oil in southern China because of its excellent fatty acid composition and abundant bioactive compounds. Chronic kidney disease (CKD) is one of the most common chronic degenerative diseases in China, and active compounds in vegetable oil, like virgin olive oil, have been demonstrated to be efficacious in the management of CKD. In this study, virgin CO was refined using a standard process. The refining had minimal impact on the fatty acid composition, but significantly reduced the presence of bioactive compounds like polyphenols in CO. Sprague-Dawley (SD) rats fed with high fat diet (Group G) were treated with either virgin (Group Z) or refined CO (Group R). The oral administration of CO alleviated lipid accumulation and decreased body and kidney weight gain. Furthermore, treatment with virgin CO increased the renal ATP content. The renal expression levels of AMPK and key enzymes involved in fatty acid oxidation (CPT-1 and ACOX1) and glycolysis (HK, PFK, PK and GAPDH) were up-regulated in Group Z, thereby enhancing the ATP production. Virgin CO treatment downregulated the expression level of SREBP2 and its downstream target genes, such as ACC, FAS, and HMGCR, which reduced lipid synthesis. These findings indicate that virgin CO improves glycolipid metabolism and restores energy homeostasis in the kidneys of rats fed with a high-fat diet by modulating the AMPK-SREBP-signaling pathway, suggesting the potential of active compounds in virgin CO for managing the renal failure associated with glycolipid dysmetabolism.


Asunto(s)
Camellia , Insuficiencia Renal Crónica , Ratas , Animales , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Ratas Sprague-Dawley , Aceites de Plantas/farmacología , Aceites de Plantas/metabolismo , Aceite de Oliva/metabolismo , Metabolismo de los Lípidos , Riñón/metabolismo , Ácidos Grasos/metabolismo , Insuficiencia Renal Crónica/metabolismo , Glucolípidos/metabolismo , Adenosina Trifosfato/metabolismo , Hígado/metabolismo
3.
Animal ; 17(6): 100815, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37167820

RESUMEN

The use of alternative feed ingredients from the Agro-industry could be an efficient tool to improve the sustainability of dairy cow production. Since the richness in polyphenols, olive oil pomace (OOP), produced during olive oil milling, seems a promising by-product to ameliorate milk's nutritional value. The aim of this study was to test the use of OOP produced by means of a new technology (biphasic with stone deprivation) in dairy cow feeding strategy to evaluate the effect on animal performances, rumen microbiota, biohydrogenation processes and milk quality by a multidisciplinary approach. Forty multiparous Italian-Friesian dairy cows, at middle lactation, were randomly allotted into two homogenous groups and fed respectively a commercial diet (CON) and the experimental diet (OOPD) obtained by adding OOP to CON as partial replacement of maize silage. The two diets were formulated to be isoproteic and isoenergetic. The same diets were tested also in an in vitro trial aimed to evaluate their rumen degradability (% DEG). The dietary supplementation with OOP did not affect DM intake, rumen % DEG and milk production. The milk's nutritional quality was improved by increasing several important functional fatty acids (FAs; i.e., linoleic acid, conjugated linoleic acid, oleic acid, vaccenic acid). This finding was related to a decrease in rumen liquor biohydrogenation rate of unsaturated FAs. The stochiometric relation between volatile FA production in the rumen and methanogenesis suggested that OOP lowers the methane potential production (CON = 0.050 mol/L vs OOPD = 0.024 mol/L, SEM = 0.005, P = 0.0011). Rumen microbiota and fungi community did not be strongly altered by OOP dietary inclusion because few bacteria were affected at the genus level only. Particularly, Acetobacter, Prevotellaceae_UCG-004, Prevotellaceae_UCG-001, Eubacterium coprostanoligenes, Lachnospira, Acetitomaulatum, Lachnospiraceae_NK3A20 group were more abundant with OOPD condition (P < 0.05). Data reported in this study confirm that the use of OOP in dairy cow feeding can be an interesting strategy to improve milk nutritional quality increasing functional FA content without compromising the rumen degradability of the diet or causing strong perturbation of rumen ecosystem and maintaining animal performances.


Asunto(s)
Microbiota , Leche , Animales , Bovinos , Femenino , Alimentación Animal/análisis , Dieta/veterinaria , Ácidos Grasos/metabolismo , Fermentación , Lactancia , Aceite de Oliva/metabolismo , Rumen/metabolismo , Ensilaje/análisis
4.
Appl Biochem Biotechnol ; 195(10): 5966-5979, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36729297

RESUMEN

BACKGROUND: Some herbal natural products play an important role in protecting organisms from the toxic effect of some xenobiotics. The present study was designed to evaluate the potential therapeutic effects of Ottelione A (OTTE) against carbon tetrachloride(CCl4)-induced toxicity in mice. METHODS: Adult male Swiss albino mice were divided into six groups: group I was used as a normal control received olive oil; group II received DMSO; group III received OTTE; group IV received CCl4 in olive oil, (injected i.p) 3 times/week for 6 weeks; group V received the same CCl4 regimen as group IV followed by OTTE injected for 15 days, and group VI first received OTTE injected for 15 days followed by the same CCl4 regimen as group IV. Some biochemical and histological parameters were investigated. RESULTS: Our results showed that the administration of CCl4 caused hepatotoxicity, as monitored by the significant increase in biochemical parameters concerning the olive oil group. Treatment with OTTE appeare d to be effective against hepatotoxic and liver changes induced by CCl4, as evidenced by the improvement of the same parameters. CONCLUSION: Ottelione A (OTTE) has good antioxidant and therapeutic properties, which can help in preventing CCl4-induced hepatotoxicity in both pre-treatment and post-treatment modes.


Asunto(s)
Tetracloruro de Carbono , Enfermedad Hepática Inducida por Sustancias y Drogas , Ratones , Masculino , Animales , Tetracloruro de Carbono/toxicidad , Tetracloruro de Carbono/metabolismo , Aceite de Oliva/farmacología , Aceite de Oliva/metabolismo , Extractos Vegetales/química , Antioxidantes/farmacología , Hígado/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Estrés Oxidativo
5.
Molecules ; 28(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36615551

RESUMEN

In this study, three oil-in-water nanoemulsions were tested in two stages: In the first stage, three levels (on the substrate dry matter (DM)), namely 3%, 6%, and 9%, of three different oils, olive oil (OO), corn oil (CO), and linseed oil (LO), in raw and nanoemulsified (N) forms were used separately in three consecutive rumen batch cultures trials. The second stage, which was based on the first stage's results, consisted of a batch culture trial that compared the raw and nanoemulsified (N) forms of all three oils together, provided at 3% of the DM. In the first stage, NOO, NCO, and NLO preserved higher unsaturated fatty acid (UFA) and less saturated fatty acid (SFA) compared to OO, CO, and LO, respectively; noticeably, NCO had UFA:SFA = 1.01, 1.16, and 1.34 compared to CO, which had UFA:SFA = 0.66, 0.69, and 0.72 when supplemented at 3%, 6%, 9% of DM, respectively. In the second stage, UFA:SFA = 1.04, 1.12, and 1.07 for NOO, NCO, NLO, as compared to UFA:SFA = 0.69, 0.68, and 0.72 for OO, CO, and LO supplemented at 3% of DM. In conclusion, oil-in-water nanoemulsions showed an ability to decrease the transformation of UFA to SFA in the biohydrogenation environment without affecting the rumen microorganisms.


Asunto(s)
Técnicas de Cultivo Celular por Lotes , Ácidos Grasos , Animales , Ácidos Grasos/química , Fermentación , Dieta , Rumen/metabolismo , Ácidos Grasos Insaturados/metabolismo , Suplementos Dietéticos , Aceite de Linaza , Aceite de Oliva/metabolismo , Aceite de Maíz/metabolismo , Agua/metabolismo
6.
Chin J Integr Med ; 29(4): 316-324, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34816365

RESUMEN

OBJECTIVE: To observe the effect of amygdalin on liver fibrosis in a liver fibrosis mouse model, and the underlying mechanisms were partly dissected in vivo and in vitro. METHODS: Thirty-two male mice were randomly divided into 4 groups, including control, model, low- and high-dose amygdalin-treated groups, 8 mice in each group. Except the control group, mice in the other groups were injected intraperitoneally with 10% carbon tetrachloride (CCl4)-olive oil solution 3 times a week for 6 weeks to induce liver fibrosis. At the first 3 weeks, amygdalin (1.35 and 2.7 mg/kg body weight) were administered by gavage once a day. Mice in the control group received equal quantities of subcutaneous olive oil and intragastric water from the fourth week. At the end of 6 weeks, liver tissue samples were harvested to detect the content of hydroxyproline (Hyp). Hematoxylin and eosin and Sirius red staining were used to observe the inflammation and fibrosis of liver tissue. The expressions of collagen I (Col-I), alpha-smooth muscle actin (α-SMA), CD31 and transforming growth factor ß (TGF-ß)/Smad signaling pathway were observed by immunohistochemistry, quantitative real-time polymerase chain reaction and Western blot, respectively. The activation models of hepatic stellate cells, JS-1 and LX-2 cells induced by TGF-ß1 were used in vitro with or without different concentrations of amygdalin (0.1, 1, 10 µmol/L). LSECs. The effect of different concentrations of amygdalin on the expressions of liver sinusoidal endothelial cells (LSECs) dedifferentiation markers CD31 and CD44 were observed. RESULTS: High-dose of amygdalin significantly reduced the Hyp content and percentage of collagen positive area, and decreased the mRNA and protein expressions of Col-I, α-SMA, CD31 and p-Smad2/3 in liver tissues of mice compared to the model group (P<0.01). Amygdalin down-regulated the expressions of Col-I and α-SMA in JS-1 and LX-2 cells, and TGFß R1, TGFß R2 and p-Smad2/3 in LX-2 cells compared to the model group (P<0.05 or P<0.01). Moreover, 1 and 10 µmol/L amygdalin inhibited the mRNA and protein expressions of CD31 in LSECs and increased CD44 expression compared to the model group (P<0.05 or P<0.01). CONCLUSIONS: Amygdalin can dramatically alleviate liver fibrosis induced by CCl4 in mice and inhibit TGF-ß/Smad signaling pathway, consequently suppressing HSCs activation and LSECs dedifferentiation to improve angiogenesis.


Asunto(s)
Amigdalina , Factor de Crecimiento Transformador beta , Ratas , Masculino , Ratones , Animales , Factor de Crecimiento Transformador beta/metabolismo , Amigdalina/farmacología , Amigdalina/uso terapéutico , Células Endoteliales/metabolismo , Aceite de Oliva/metabolismo , Aceite de Oliva/farmacología , Aceite de Oliva/uso terapéutico , Ratas Wistar , Proteínas Smad/metabolismo , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Hígado , Factor de Crecimiento Transformador beta1/metabolismo , Transducción de Señal , Colágeno Tipo I/metabolismo , Tetracloruro de Carbono , Células Estrelladas Hepáticas
7.
Biotechnol Appl Biochem ; 70(1): 469-477, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35748559

RESUMEN

The current study explored the hepatoprotective and immunomodulatory effects of Linalool (Lin) against carbon tetrachloride (CCl4 )-induced toxicity in mice. Four study groups (n = 8 each) were used: (1) a negative control group and (2) a toxicity control group (single dose of CCl4 administered on day 14 as 1 mL/kg of CCL4 in 1% olive oil). Intraperitoneally (i.p.)), and two experimental groups where mice were treated with either (3) Lin (25 mg/kg b.w., orally, daily for 15 days) or (4) pretreated with Lin (25 mg/kg b.w., orally, daily for 14 days) and intoxicated with CCl4 (1 mL/kg of CCL4 in 1% olive oil. i.p.) on day 14. The levels of the anti-inflammatory cytokine interleukin 10 (IL-10), the proinflammatory cytokines TNF-α, IL-6, and TGF-1ß, and the histopathology of the liver were assessed. According to our findings, IL-10 concentrations were significantly increased in Lin-treated groups, while other cytokine levels were marked by a considerable decrease in the toxicity model group (CCl4 -treated group). Histopathological examinations of liver tissues showed that the Lin-treated groups had an almost normal structure. The current findings showed that Lin could inhibit CCl4 -induced liver injury in mice, which warrants further investigation of Lin as a potential protective and therapeutic agent against hepatotoxicity.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Interleucina-10 , Ratas , Ratones , Animales , Interleucina-10/metabolismo , Interleucina-10/farmacología , Extractos Vegetales/química , Aceite de Oliva/metabolismo , Aceite de Oliva/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Estrés Oxidativo , Antioxidantes/farmacología , Hígado
8.
Am J Physiol Regul Integr Comp Physiol ; 324(2): R171-R182, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36503254

RESUMEN

A high-fat (HF) diet causes fatty liver, hyperlipidemia, and hypercholesterolemia, and cottonseed oil (CSO) has been shown to improve liver and plasma lipids in human and mouse models. The purpose of this study was to determine the effect of CSO vs. olive oil (OO)-enriched diets on lipid levels in a HF-diet model of fatty liver disease. We placed mice on a HF diet to induce obesity and fatty liver, after which mice were placed on CSO or OO diets, with chow and HF (5.1 kcal/g) groups as control. When CSO- and OO-fed mice were given isocaloric diets with the HF group, there were no differences in body weight, plasma, or hepatic lipids. However, when the CSO and OO diets were reduced in calories (4.0 kcal/g), CSO and OO groups reduced body weight. The CSO group had lower plasma total cholesterol (-56 ± 6%, P < 0.01), free cholesterol (-53 ± 7%, P < 0.01), triglycerides (-61 ± 14%, P < 0.01), and LDL (-42 ± 16%, P = 0.01) vs. HF group whereas the OO diet lowered LDL (-18 ± 12%, P = 0.05) vs. HF. Furthermore, the CSO diet decreased hepatic total cholesterol (-40 ± 12%, P < 0.01), free cholesterol (-23 ± 11%, P = 0.04), and triglycerides (-47 ± 12%, P = 0.02). There were no significant changes in lipogenesis and fatty acid oxidation among the groups. However, the CSO group increased lipid oxidative gene expression in liver and dihydrosterculic acid increased PPARα target genes with in vitro models. Taken together, consuming a reduced calorie diet enriched in CSO reduces liver and plasma lipid profiles in an obese model of fatty liver.


Asunto(s)
Aceite de Semillas de Algodón , Enfermedad del Hígado Graso no Alcohólico , Animales , Masculino , Ratones , Peso Corporal , Colesterol , Aceite de Semillas de Algodón/metabolismo , Aceite de Semillas de Algodón/farmacología , Dieta Alta en Grasa , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Aceite de Oliva/farmacología , Aceite de Oliva/metabolismo , Triglicéridos
9.
Zhongguo Zhong Yao Za Zhi ; 47(22): 6127-6136, 2022 Nov.
Artículo en Chino | MEDLINE | ID: mdl-36471937

RESUMEN

To investigate the therapeutic effect of Jingfang Granules on carbon tetrachloride(CCl_4)-induced liver fibrosis in mice and its mechanism. Forty-nine 8-week-old male C57 BL/6 J mice were randomly divided into a blank group, a CCl_4 group, a silybin group(positive control, 100 mg·kg~(-1))+CCl_4, a Jingfang high-dose(16 g·kg~(-1)) group, a Jingfang high-dose(16 g·kg~(-1))+CCl_4 group, a Jingfang medium-dose(8 g·kg~(-1))+CCl_4 group, and a Jingfang low-dose(4 g·kg~(-1))+CCl_4 group, with 7 mice in each group. The mice in the blank group and Jingfang high-dose group were intraperitoneally injected olive oil solution, and mice in other groups were intraperitoneally injected with 10% CCl_4 olive oil solution(5 mL·kg~(-1)) to induce liver fibrosis, twice a week with an interval of 3 d, for 8 weeks. At the same time, except for the blank group and CCl_4 group, which were given deionized water, the mice in other groups were given the corresponding dose of drugs by gavage once daily for 8 weeks with the gavage volume of 10 mL·kg~(-1). All mice were fasted and freely drank for 12 h after the last administration, and then the eyeballs were removed for blood collection. The liver and spleen were collected, and the organ index was calculated. The levels of alanine aminotransferase(ALT), aspartate aminotransferase(AST), total bile acid(TBA), and triglyceride(TG) in the serum of mice were detected by an automated analyzer. Tumor necrosis factor-α(TNF-α), interleukin-6(IL-6) and interleukin-1ß(IL-1ß) levels were detected by enzyme-linked immunosorbent assay(ELISA). Kits were used to detect the contents of superoxide dismutase(SOD), malondialdehyde(MDA), and glutathione(GSH) in the liver tissue. Pathological changes in the liver tissue were observed by hematoxylin-eosin(HE), Masson, and Sirius red staining. Western blot was used to detect protein expressions of transforming growth factor-ß(TGF-ß), α-smooth muscle actin(α-SMA) and Smad4 in the liver tissue. The results indicated that Jingfang Granules significantly reduced the organ index, levels of ALT, AST, TBA,TG, TNF-α, IL-6, and IL-1ß in the serum, and the content of MDA in the liver tissue of mice with CCl_4-induced liver fibrosis. Jingfang Granules also significantly increased the content of SOD and GSH in the liver tissue. Meanwhile, Jingfang Granules down-regulated the protein levels of TGF-ß, α-SMA, and Smad4. Furthermore, Jingfang Granules had no significant effect on the liver tissue morphology and the above indexes in the normal mice. In conclusion, Jingfang Granules has obvious therapeutic effect on CCl_4-induced liver fibrosis, and its mechanism may be related to reducing the expression of pro-inflammatory factors, anti-oxidation, and regulating TGF-ß/Smad4 signaling pathway.


Asunto(s)
Interleucina-6 , Factor de Necrosis Tumoral alfa , Ratones , Masculino , Animales , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Aceite de Oliva/metabolismo , Aceite de Oliva/farmacología , Aceite de Oliva/uso terapéutico , Tetracloruro de Carbono/efectos adversos , Tetracloruro de Carbono/metabolismo , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Hígado , Superóxido Dismutasa/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
10.
Nutrients ; 14(12)2022 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-35745276

RESUMEN

Mauritia flexuosa (Buriti) pulp oil contains bioactive substances and lipids that are protective against cardiovascular and inflammatory diseases. We performed physical and chemical analyses to verify its quality and stability. Buriti oil was stable according to the Rancimat test, presenting an induction period of 6.6 h. We evaluated the effect of supplementation with crude buriti oil and olive oil on metabolic parameters in 108 Swiss mice for 90 days. We investigated six groups: extra virgin olive oil (EVOO) 1 and 2 (1000 and 2000 mg/kg), buriti oil (BO) 1 and 2 (1000 and 2000 mg/kg), synergic (S) (BO1 + EVOO1), and control (water dose 1000 mg/kg). The animals were euthanized to examine their blood, livers, and fats. The supplementation did not interfere with food consumption, weight gain, and histological alterations in the liver. Group S showed the strongest relationship with the fractions HDL-c and non-HDL-c, indicating a possible cardioprotective effect. Moreover, we observed significantly higher IL-6 levels in the control, EVOO2, and BO1 groups than in the EVOO1 group. Resistin was also significantly higher for the synergic treatment than for the control. We conclude that BO combined with EVOO could be an excellent food supplement for human consumption.


Asunto(s)
Arecaceae , Animales , Arecaceae/química , Suplementos Dietéticos , Hígado/metabolismo , Ratones , Modelos Teóricos , Aceite de Oliva/metabolismo , Aceites de Plantas/química
11.
J Complement Integr Med ; 19(3): 599-606, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35751565

RESUMEN

OBJECTIVES: Favism is a metabolic disease and this study aimed to compare between olive oil and almond oil to ameliorate blood parameters, liver function, blood and liver antioxidants and DNA, and liver histology in favism rats. METHODS: Animals were 36 male albino rats. They classified to 2 equal (normal and favism) groups. Normal group classified to 3 equal subgroups; Control, Olive oil, and Almond oil subgroups: normal rats orally administrated with 1 mL/100 g of saline, olive oil, and almond oil, respectively. Favism group was subdivided into 3 equal subgroup; favism, favism + olive oil, and favism + almond oil subgroups: favism rats orally administrated with no treatment, 1 mL/100 g olive oil, and 1 mL/100 g almond oil, respectively. All treatments were administrated orally by oral gavage once a day for 1 month. RESULTS: The hemoglobin, hematocrite, the blood cells, glucose and glucose-6-phosphate dehydrogenase, aspartate and alanine aminotransferase, total proteins, albumin, and globulin in serum were decreased in favism. The glutathione, superoxide dismutase, and glutathione peroxidase in blood and liver were decreased in favism while alkaline phosphatase and total bilirubin in serum were increased in favism. The blood and liver malondialdehyde was increased in favism. Furthermore, oral administration with both oils in favism rats restored all these parameters to be approached the control levels. Also, both oils preserved blood and liver DNA and liver histology. CONCLUSIONS: Almond oil restored blood parameters, liver function, blood and liver antioxidants and DNA, and liver histology more efficiently than olive oil in favism.


Asunto(s)
Antioxidantes , Favismo , Animales , Masculino , Alanina Transaminasa , Albúminas/metabolismo , Fosfatasa Alcalina/metabolismo , Antioxidantes/metabolismo , Antioxidantes/farmacología , Ácido Aspártico/metabolismo , Bilirrubina/metabolismo , ADN/metabolismo , Glucosa/metabolismo , Glucosafosfato Deshidrogenasa/metabolismo , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Hígado/metabolismo , Malondialdehído/metabolismo , Aceite de Oliva/metabolismo , Estrés Oxidativo , Aceites de Plantas/farmacología , Superóxido Dismutasa/metabolismo , Ratas
12.
Poult Sci ; 101(5): 101748, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35278756

RESUMEN

Genetic selection for rapid growth in broilers has inadvertently resulted in increased susceptibility to heat stress, particularly in male birds. Increased oxidative stress associated with hyperthermia may be reduced by avian uncoupling protein (avUCP), which has been proposed to modulate free radical production. However, the relationship between avUCP expression and current heat stress management strategies is unclear. Embryonic acclimation or thermal manipulation (TM) and dietary fat source are 2 heat stress interventions that may alter avUCP expression and oxidative stress, but the literature is inconclusive. The objective of this trial was to investigate the effect of TM and dietary fat source on avUCP gene expression and oxidative damage in the breast meat of market age broilers before and after acute heat challenge. The influence of bird sex was also evaluated as broilers exhibit a high degree of sexual dimorphism in growth and stress susceptibility. Concentration of thiobarbituric acid reactive substances (TBARS) was measured as a marker of oxidative damage. Embryonic TM occurred from incubation d 7 to 16 for 12 h daily at 39.5°C. Dietary treatments were applied during the finisher period using either poultry fat, soya oil, or olive oil supplemented at 4.5% in the diet. Acute heat stress (AHS) occurred on d 43 at 32°C for 4 h. Bird performance was decreased by TM, but no significant differences were noted between dietary fat source treatments. Neither avUCP nor TBARS concentrations were significantly influenced by TM or dietary fat source. Downregulation of avUCP was observed following AHS, concurrent with an increase in TBARS concentration. Male birds exhibited higher levels of both avUCP expression and TBARS compared to females and a significant interaction was noted for heat stress by sex, with avUCP expression being greatest in males prior to AHS. The increase in avUCP expression and TBARS concentrations in male birds may be associated with an increased susceptibility to stress arising from the increased growth rate noted for male broilers.


Asunto(s)
Pollos , Trastornos de Estrés por Calor , Animales , Pollos/fisiología , Dieta/veterinaria , Suplementos Dietéticos , Trastornos de Estrés por Calor/veterinaria , Respuesta al Choque Térmico , Masculino , Proteínas Desacopladoras Mitocondriales/metabolismo , Aceite de Oliva/metabolismo , Estrés Oxidativo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
13.
Eur Rev Med Pharmacol Sci ; 26(5): 1717-1728, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35302221

RESUMEN

OBJECTIVE: In this study, the protective effect of sodium copper chlorophyllin and nebivolol was evaluated in a mice model of CCL4 induced hepatotoxicity. Silymarin was used as a traditional hepatoprotective drug. MATERIALS AND METHODS: Thirty (30) mice were used as they were divided into five groups: the first group was the control group which received distilled water + olive oil, the second group which received 1.5 ml/kg of CCl4 diluted in olive oil three times a week, the third group which received CCl4 + Silymarin 50 mg/kg/day, the fourth group which received CCl4 + nebivolol 4 mg/kg/day, and the fifth group which received 1.5 ml/kg of CCl4+ Cu-chlorophyllin 50 mg/kg/day. The drugs were given by intraperitoneal route for 5 weeks. The detection, quantification of CCl4 induced hepatotoxicity and possible protective effect of either silymarin, nebivolol, or sodium copper chlorophyllin were assessed using biochemical analysis of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total protein, lipid profile, an assay of oxidants and antioxidants, assay of interleukin 6 (IL6) and tumor necrosis factor-alpha (TNF-α), and histopathological examination. RESULTS: The administration of carbon tetrachloride (CCl4) produced pronounced liver impairment. It significantly increased ALT, AST, ALP, malondialdehyde, and serum nitric oxide levels compared to normal control group besides a decrease in total protein, serum catalase, tissue SOD, and GSH levels. IL-6 and TNF-α levels were significantly higher while total cholesterol was significantly lower in mice receiving CCL4 compared to the normal control group. CCL4 induced severe hyperemia and congestion inside the portal area with leukocytic infiltration, hepatic degeneration, and bridge fibrosis. CONCLUSIONS: Co-administration of either silymarin, nebivolol, or sodium copper chlorophyllin with CCl4 was able to ameliorate up to almost contradict CCl4 induced hepatic injury through their anti-inflammatory and antioxidant activities.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Silimarina , Alanina Transaminasa , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Aspartato Aminotransferasas , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Clorofilidas , Hígado/metabolismo , Ratones , Nebivolol/metabolismo , Nebivolol/farmacología , Aceite de Oliva/metabolismo , Aceite de Oliva/farmacología , Extractos Vegetales/farmacología , Silimarina/farmacología , Factor de Necrosis Tumoral alfa/metabolismo
14.
J Nutr Biochem ; 99: 108833, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34339818

RESUMEN

Breast cancer is the most common malignancy in women worldwide, and environmental factors, especially diet, have a role in the etiology of this disease. This work aimed to investigate the influence of high fat diets (rich in corn oil or extra virgin olive oil -EVOO-) and the timing of dietary intervention (from weaning or after induction) on tumor metabolism in a seven,12-dimethylbenz[a]anthracene (DMBA)-induced breast cancer model in rat. The effects of lipids (oils and fatty acids) have also been investigated in MCF-7 cells. The results have confirmed different effects on tumor progression depending on the type of lipid. Molecular analysis at mRNA, protein and activity level of enzymes of the main metabolic pathways have also shown differences among groups. Thus, the animals fed with the EVOO-enriched diet developed tumors with less degree of clinical and morphological malignancy and showed modified glucose and mitochondrial metabolism when compared to the animals fed with the corn oil-enriched diet. Paradoxically, no clear influence on lipid metabolism by the high fat diets was observed. Considering previous studies on proliferation and apoptosis in the same samples, the results suggest that metabolic changes have a role in the molecular context that results in the modulation of different signaling pathways. Moreover, metabolic characteristics, without the context of other pathways, may not reflect tumor malignancy. The time of dietary intervention plays also a role, suggesting the importance of metabolic plasticity and the relation with mammary gland status when the tumor is induced.


Asunto(s)
Neoplasias de la Mama/dietoterapia , Neoplasias de la Mama/metabolismo , Aceite de Oliva/metabolismo , Animales , Apoptosis , Neoplasias de la Mama/patología , Neoplasias de la Mama/fisiopatología , Proliferación Celular , Aceite de Maíz/metabolismo , Dieta Alta en Grasa , Femenino , Regulación Neoplásica de la Expresión Génica , Glucosa/metabolismo , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley
15.
J Oleo Sci ; 70(8): 1157-1164, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34349090

RESUMEN

Liquid chicken oil is similar to the human lipid ratio, and is similar to the ideal fatty acids ratio suggested by Hayes, but its benefits remain unclear (Hwang, K.N.; Tung, H.P.; Shaw, H.M. J. Oleo. Sci. 69, 199-206 (2020)). Using soybean oil as a control, liquid chicken oil, coconut oil, lard oil, and olive oil, were tested on SD rats with the rodent diet 5001 plus 1% of high cholesterol addition and moderate 10 % of test oils. Positive results showed that a 10% liquid chicken oil diet reduced LDL and triglycerides, atherogenic index while increasing superoxide dismutase more than the soybean oil control (0.05 ≦ p < 0.10). Moreover, increment of hepatic endogenous glutathione peroxidase was found to be significantly different from the soybean oil control (p < 0.05). In this study, liquid chicken oil had more benefits than vegetable soybean dietary oil, with little evidence of hyperlipidemia. Comparison of the test oils with categories of fatty acids to the idea ratio SFA : MUFA : PUFA = 1 : 1.5 : 1, scored by its average weight implied a parallel trend of lipidemia and hepatic antioxidant activity to its score. It is difficult to use the test of rat to reflect human physiology, it remain 19% different of the fatty acids ratio from human ratio, however, this study reveal that the healthiness of a dietary oil seems relate well to its compatibility to the idea ratio or the host oil ratio, in this case, it is the human ratio.


Asunto(s)
Grasas Insaturadas en la Dieta/metabolismo , Animales , Peso Corporal/efectos de los fármacos , Catalasa/metabolismo , Pollos , Cocos/química , Grasas de la Dieta/análisis , Grasas de la Dieta/metabolismo , Grasas Insaturadas en la Dieta/análisis , Glutatión Peroxidasa/metabolismo , Hígado/efectos de los fármacos , Hígado/enzimología , Hígado/metabolismo , Masculino , Olea/química , Aceite de Oliva/análisis , Aceite de Oliva/metabolismo , Ratas Sprague-Dawley , Aceite de Soja/análisis , Aceite de Soja/metabolismo , Glycine max/química , Superóxido Dismutasa/metabolismo
17.
Nutrients ; 13(2)2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33572630

RESUMEN

The brain renin-angiotensin system (RAS) has been recently involved in the homeostatic regulation of energy. Our goal was to analyse the influence of a diet rich in saturated fatty acids (butter) against one enriched in monounsaturated fatty acids (olive oil) on hypothalamic RAS, and their relationship with the metabolism of fatty acids. Increases in body weight and visceral fat, together with an increase in aminopeptidase A expression and reductions in AngII and AngIV were observed in the hypothalamus of animals fed with the butter diet. In this group, a marked reduction in the expression of genes related to lipid metabolism (LPL, CD36, and CPT-1) was observed in liver and muscle. No changes were found in terms of body weight, total visceral fat and the expression of hepatic genes related to fatty acid metabolism in the olive oil diet. The expressions of LPL and CD36 were reduced in the muscles, although the decrease was lower than in the butter diet. At the same time, the fasting levels of leptin were reduced, no changes were observed in the hypothalamic expression of aminopeptidase A and decreases were noted in the levels of AngII, AngIV and AngIII. These results support that the type of dietary fat is able to modify the hypothalamic profile of RAS and the body energy balance, related to changes in lipid metabolism.


Asunto(s)
Mantequilla , Hipotálamo/metabolismo , Metabolismo de los Lípidos , Aceite de Oliva/metabolismo , Sistema Renina-Angiotensina/fisiología , Angiotensina II/análogos & derivados , Angiotensina II/metabolismo , Angiotensina III/metabolismo , Animales , Peso Corporal , Antígenos CD36/metabolismo , Dieta Alta en Grasa , Metabolismo Energético , Ayuno/metabolismo , Expresión Génica , Glutamil Aminopeptidasa/metabolismo , Grasa Intraabdominal/crecimiento & desarrollo , Leptina/metabolismo , Metabolismo de los Lípidos/genética , Lipoproteína Lipasa/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , Músculo Esquelético/metabolismo , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Aumento de Peso
18.
Food Funct ; 11(10): 9114-9128, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33025998

RESUMEN

It has recently emerged that myokines may be an important skeletal muscle adaptive response to obesogenic diets in sedentary subjects (who do not exercise). This study aimed to assess the influence of various high fat (HF) diets rich in either crude palm oil (cPO), refined palm oil (rPO), olive oil (OO) or lard on the modulation of myokine gene expression in the gastrocnemius. Five groups of 8 rats were each fed HF or control diet for 12 weeks. Systemic parameters concerning glucose, insulin, inflammation, cholesterol, triglycerides (TG) and transaminases were assessed by routine methods or ELISA. Akt and ACC phosphorylation were analyzed by WB in the soleus. Mitochondrial density, inflammation, and the gene expression of 17 myokines and the apelin receptor (Apj) were assessed by qPCR in the gastrocnemius. We found that HF diet-fed rats were insulin resistant and Akt phosphorylation decreased in the soleus muscle, but without any change in Glut4 gene expression. Systemic (IL-6) and muscle inflammation (NFκB and IκB) were not affected by the HF diets as well as TBARS, and ASAT level was enhanced with OO diet. Soleus pACC phosphorylation and gastrocnemius mitochondrial density were not significantly altered. The gene expression of some myokines was respectively increased (myostatin and Il-15) and decreased (Fndc5 and apelin) with the HF diets, whatever the type of fat used. The gene expression of two myokines with anti-inflammatory properties, Il-10 and myonectin, was dependent on the type of fat used and was most increased respectively with cPO or both rPO and OO diets. In conclusion, high-fat diets can differentially modulate the expression of some myokines, either in a dependent manner or independently of their composition.


Asunto(s)
Grasas de la Dieta/metabolismo , Músculo Esquelético/metabolismo , Aceite de Oliva/metabolismo , Aceite de Palma/metabolismo , Animales , Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/metabolismo , Metabolismo de los Lípidos , Masculino , Mitocondrias/genética , Mitocondrias/metabolismo , Ratas , Ratas Wistar
19.
Epigenetics ; 15(12): 1348-1360, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32594836

RESUMEN

The metabolism of DNA methylation is reported to be sensitive to oxidant molecules or oxidative stress. Hypothesis: early-life oxidative stress characterized by the redox potential of glutathione influences the DNA methylation level. The in vivo study aimed at the impact of modulating redox potential of glutathione on DNA methylation. Newborn guinea pigs received different nutritive modalities for 4 days: oral nutrition, parenteral nutrition including lipid emulsion Intralipid (PN-IL) or SMOFLipid (PN-SF), protected or not from ambient light. Livers were collected for biochemical determinations. Redox potential (p < 0.001) and DNA methylation (p < 0.01) were higher in PN-infused animals and even higher in PN-SF. Their positive correlation was significant (r2 = 0.51; p < 0.001). Methylation activity was higher in PN groups (p < 0.01). Protein levels of DNA methyltransferase (DNMT)-1 were lower in PN groups (p < 0.01) while those of both DNMT3a isoforms were increased (p < 0.01) and significantly correlated with redox potential (r2 > 0.42; p < 0.001). The ratio of SAM (substrate) to SAH (inhibitor) was positively correlated with the redox potential (r2 = 0.36; p < 0.001). In conclusion, early in life, the redox potential value strongly influences the DNA methylation metabolism, resulting in an increase of DNA methylation as a function of increased oxidative stress. These results support the notion that early-life oxidative stress can reprogram the metabolism epigenetically. This study emphasizes once again the importance of improving the quality of parenteral nutrition solutions administered early in life, especially to newborn infants. Abbreviation of Title: Parenteral nutrition and DNA methylation.


Asunto(s)
Metilación de ADN , Glutatión/metabolismo , Hígado/metabolismo , Estrés Oxidativo , Animales , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Emulsiones/administración & dosificación , Emulsiones/metabolismo , Emulsiones/farmacología , Aceites de Pescado/administración & dosificación , Aceites de Pescado/metabolismo , Aceites de Pescado/farmacología , Cobayas , Hígado/efectos de los fármacos , Hígado/crecimiento & desarrollo , Masculino , Aceite de Oliva/administración & dosificación , Aceite de Oliva/metabolismo , Aceite de Oliva/farmacología , Nutrición Parenteral , Fosfolípidos/administración & dosificación , Fosfolípidos/metabolismo , Fosfolípidos/farmacología , Aceite de Soja/administración & dosificación , Aceite de Soja/metabolismo , Aceite de Soja/farmacología , Triglicéridos/administración & dosificación , Triglicéridos/metabolismo , Triglicéridos/farmacología
20.
Molecules ; 25(10)2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-32443449

RESUMEN

The health advantages of extra-virgin olive oil (EVOO) are ascribed mainly to the antioxidant ability of the phenolic compounds. Secoiridoids, hydroxytyrosol, tyrosol, phenolic acid, and flavones, are the main nutraceutical substances of EVOO. Applications of beneficial microbes and/or their metabolites impact the plant metabolome. In this study the effects of application of selected Trichoderma strains or their effectors (secondary metabolites) on the phenolic compounds content and antioxidant potential of the EVOOs have been evaluated. For this purpose, Trichoderma virens (strain GV41) and Trichoderma harzianum (strain T22), well-known biocontrol agents, and two their metabolites harzianic acid (HA) and 6-pentyl-α-pyrone (6PP) were been used to treat plants of Olea europaea var. Leccino and var. Carolea. Then the nutraceutical potential of EVOO was evaluated. Total phenolic content was estimated by Folin-Ciocalteau's assay, metabolic profile by High-Resolution Mass spectroscopy (HRMS-Orbitrap), and antioxidant activity by DPPH and ABTS assays. Our results showed that in the cultivation of the olive tree, T22 and its metabolites improve the nutraceutical value of the EVOOs modulating the phenolic profile and improving antioxidants activity.


Asunto(s)
Hypocreales/metabolismo , Valor Nutritivo , Olea/química , Aceite de Oliva/química , Antioxidantes/química , Suplementos Dietéticos , Olea/metabolismo , Olea/microbiología , Aceite de Oliva/metabolismo , Fenoles/química , Polifenoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA