Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Food Res Int ; 174(Pt 1): 113524, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37986511

RESUMEN

Hard-to-cook (HTC) is a textural defect that delays the softening of common bean seeds during cooking. While this defect is commonly associated with conventionally stored beans, soaking/cooking of beans in CaCl2 solutions or sodium acetate buffer can also prolong the cooking time of beans due to formation of Ca2+ crosslinked pectin retarding bean softening during cooking. In this study, the role of the cell wall-bound Mg2+/Ca2+ content and the degree of pectin methyl esterification (DM) was quantified, as important factors for bean texture-related changes stipulated in the pectin-cation-phytate hypothesis, the most plausible hypothesis of HTC development. Evaluation of texture changes during cooking of conventionally aged beans (35 °C and 83% RH for up to 20 weeks), beans soaked/cooked in CaCl2 solutions (0.01 to 0.1 M) or soaked in 0.1 M sodium acetate buffer (pH 4.4) revealed large bean-to-bean variations. Therefore a texture-based classification approach was used to better capture the relation between texture characteristics and cell wall polymer, in particular pectin, related changes. While cell wall-bound Ca2+ and pectin DM did not change/were not related to the texture variation during cooking of fresh beans, increased cell wall-bound Ca2+ and decreased pectin DM were associated with prolonged conventional storage of beans and their texture changes during subsequent cooking (due to pectin cross linking, retarding its solubilization during cooking). Exogenously added Ca2+ from pre-treating beans in CaCl2 solutions promoted to a great extent the cell wall-bound Ca2+ during soaking but even more so during cooking, complementing the harder texture associated with these beans during cooking (compared to conventionally stored and fresh beans). Similarly, free Ca2+ endogenously generated by phytase-catalysed phytate hydrolysis (beans treated by acetate buffer) promoted crosslinking of pectin by Ca2+ (cell wall-bound Ca2+), delaying softening of beans during cooking.


Asunto(s)
Phaseolus , Phaseolus/química , Cloruro de Calcio , Ácido Fítico/análisis , Acetato de Sodio/análisis , Calor , Culinaria , Pectinas/química , Verduras , Cationes , Pared Celular/química
2.
Food Res Int ; 173(Pt 2): 113377, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803715

RESUMEN

To establish the HTC defect development, the cooking kinetics of seeds of ten bean accessions (belonging to seven common bean market classes), fresh and conventionally aged (35 °C, 83% RH, 3 months) were compared to those obtained after soaking in specific salt solutions (in 0.1 M sodium acetate buffer at pH 4.4, 41 °C for 12 h, or 0.01 M CaCl2 at pH 6.2, 25 °C for 16 h and subsequently cooking in CaCl2 solution, or deionised water). The extent of phytate (inositol hexaphosphate, IP6) hydrolysis was evaluated to better understand the role of endogenous Ca2+ in the changes of the bean cooking kinetics. A significant decrease in the IP6 content was observed after conventional ageing and after soaking in a sodium acetate solution suggesting phytate hydrolysis (release of endogenous Ca2+). These changes were accompanied by an increase in the cooking time of the beans. Smaller changes in cooking times after soaking in a sodium acetate solution (compared to conventionally aged beans) was attributed to a lower ionisation level of the COOH groups in pectin (pH 4.4, being close to pKa value of pectin) limiting pectin Ca2+ cross-linking. In beans soaked in a CaCl2 solution, the uptake of exogenous cations increased the cooking times (with no IP6 hydrolysis). The change in cooking time of conventionally aged beans was strongly correlated with the extent of IP6 hydrolysis, although two groups of beans with low or high IP6 hydrolysis were distinguished. Comparable trends were observed when soaking in CaCl2 solution (r = 0.67, p = 0.14 or r = 0.97, p = 0.03 for two groups of beans with softer or harder texture during cooking). Therefore a test based on the Ca2+ sensitivity of the cooking times, implemented through a Ca2+ soaking experiment followed by cooking can be used as an accelerated test to predict susceptibility to HTC defect development during conventional ageing. On the other hand, a sodium acetate soaking experiment can be used to predict IP6 hydrolysis of conventionally aged bean accessions and changes of cooking times for these bean accessions (with exception of yellow bean-KATB1).


Asunto(s)
Phaseolus , Phaseolus/química , Manipulación de Alimentos , Ácido Fítico , Acetato de Sodio , Cloruro de Calcio , Culinaria , Pectinas/química
3.
J Environ Manage ; 347: 119086, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37801945

RESUMEN

The wastewater treatment performance in an inverted A2/O reactor supplemented with fermentation liquid of primary sludge was explored comparing to commercial carbon sources sodium acetate and glucose. Similar COD removal rate was observed with the effluent COD stably reaching the discharge standard for those 3 carbon sources. However, the fermentation liquid distributed more carbon source in the anaerobic zone. Fermentation liquid and sodium acetate tests achieved better nitrogen removal rate than glucose test. The fermentation liquid test showed the best biological phosphorus removal performance with the effluent phosphorus barely reaching the discharge standard. The microbial community characterization revealed that the fermentation liquid test was dominated by phylum Proteobacter in all the anoxic, anaerobic and aerobic zones. Denitrifying phosphorus accumulating organisms (PAOs) (i.e., genera Dechloromonas and unclassified_f__Rhodocyclaceae) were selectively enriched with high abundances (over 20%), which resulted in improved phosphorus removal efficiency. Moreover, the predicted abundances of enzymes involved in nitrogen and phosphorus removal were also enhanced by the fermentation liquid.


Asunto(s)
Aguas Residuales , Purificación del Agua , Aguas del Alcantarillado , Fermentación , Anaerobiosis , Acetato de Sodio , Reactores Biológicos , Purificación del Agua/métodos , Fósforo , Carbono , Nitrógeno , Glucosa , Eliminación de Residuos Líquidos/métodos , Desnitrificación
4.
Ecotoxicol Environ Saf ; 251: 114566, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36680991

RESUMEN

Interest combined chemical and microbial reduction for Cr(VI) remediation in contaminated sites has greatly increased. However, the effect of external carbon sources on Cr(VI) reduction during chemical-microbial reduction processes has not been studied. Therefore, in this study, the role of external sodium acetate (SA) in improving Cr(VI) reduction and stabilization in a representative Cr(VI)-spiked soils was systemically investigated. The results of batch experiments suggested that the soil Cr(VI) content declined from 1000 mg/kg to 2.6-5.1 mg/kg at 1-5 g C/kg SA supplemented within 15 days of reaction. The external addition of SA resulted in a significant increase in the relative abundances of Cr(VI)-reducing microorganisms, such as Tissierella, Proteiniclasticum and Proteiniclasticum. The relative abundance of Tissierella increased from 9.1% to 29.8% with the SA treatment at 5 g C/kg soil, which was the main contributors to microbial Cr(VI) reduction. Redundancy analysis indicated that pH and SA were the predominant factors affecting the microbial community in the SA treatments at 2 g C/kg soil and 5 g C/kg soil. Functional prediction suggested that the addition of SA had a positive effect on the metabolism of key substances involved in Cr(VI) microbial reduction. This work provides new insightful guidance on Cr(VI) remediation in contaminated soils.


Asunto(s)
Microbiota , Contaminantes del Suelo , Acetato de Sodio/farmacología , Suelo/química , Contaminantes del Suelo/análisis , Cromo/análisis
5.
Chemosphere ; 308(Pt 2): 136335, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36087719

RESUMEN

The algae-bacteria symbiosis system (ABS) is used to effectively solve the problems of low carbon/nitrogen (C/N) ratio, low biodegradability and high ammonia toxicity in swine digestion effluent. This study examined the effects of the concentration and type of carbon source on ABS in the pollutants removal especially ammonia. When C/N ratio was 30:1 and carbon source was sodium acetate, the ABS was most conducive to the removal of nitrogen, phosphorus and COD, and to the accumulation of biomass and lipids. To make the wastewater discharge meet the relevant standard, the ABS + mono-cultivation of algae reprocessing system (MAS), was applied to actual swine digestion effluent. Through adjusting the C/N ratio in ABS to 30:1, the biomass concentration was 2.06 times higher than that of raw wastewater, and the removal efficiencies of NH4+-N, TN, TP and COD increased by 1.43, 1.46, 1.95 and 1.28 times, respectively. The final concentrations of NH4+-N, TN, TP and COD after the treatment of ABS (C/N ratio of 30:1) + MAS, were 16.98 ± 1.07 mg L-1, 18.72 ± 1.81 mg L-1, 0.48 ± 0.01 mg L-1 and 263.49 ± 11.89 mg L-1, respectively, reached the Chinese discharge standards for livestock and poultry wastewater. Bacterial community analysis showed that the dominant species of the ABS (C/N ratio of 30:1) was Corynebacterium (genus level). This study revealed that adjusting the concentration and type of carbon source was helpful to the nutrient cycling and resource utilization of ABS, indicating a feasible technique for treating high ammonia nitrogen digestate.


Asunto(s)
Contaminantes Ambientales , Aguas Residuales , Amoníaco/análisis , Animales , Bacterias , Biomasa , Reactores Biológicos , Carbono , Digestión , Contaminantes Ambientales/análisis , Lípidos , Nitrógeno/análisis , Nutrientes/análisis , Fósforo , Acetato de Sodio , Porcinos , Simbiosis , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/análisis
6.
J Dairy Sci ; 105(11): 8824-8838, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36175230

RESUMEN

Acetate supplementation has been shown to increase milk fat yield in diets with low risk of biohydrogenation-induced milk fat depression. The interaction of acetate supplementation with specific dietary factors that modify rumen fermentation and short-chain fatty acid (FA) synthesis has not been investigated. The objective of this experiment was to determine the effect of acetate supplemented as sodium acetate at 2 dietary fiber levels. Our hypothesis was that acetate would increase milk fat production more in animals fed the low-fiber diet. Twelve lactating multiparous Holstein cows were arranged in a 4 × 4 Latin square design balanced for carryover effects with a 2 × 2 factorial arrangement of dietary fiber level and acetate supplementation with 21-d experimental periods. The high-fiber diet had 32% neutral detergent fiber and 21.8% starch, and the low-fiber diet had 29.5% neutral detergent fiber and 28.7% starch created by substitution of forages predominantly for ground corn grain. Acetate was supplemented in the diet at an average 2.8% of dry matter (DM) to provide approximately 10 mol/d of acetate as anhydrous sodium acetate. Acetate supplementation increased DM intake by 6%, with no effect on meal frequency or size. Furthermore, acetate supplementation slightly increased total-tract apparent DM digestibility and tended to increase organic matter digestibility. Acetate supplementation increased milk fat concentration and yield by 8.6 and 10.5%, respectively, but there was no interaction with dietary fiber. The increase in milk fat synthesis was associated with 46 and 85 g/d increases in the yield of de novo (<16C) and mixed source (16C) FA, respectively, with no changes in yield of preformed FA (>16C). There was a 9% increase in the concentration of milk mixed-source FA and a 7% decrease in milk preformed FA with acetate supplementation, regardless of dietary fiber level. Acetate supplementation also increased the concentrations of plasma acetate and ß-hydroxybutyrate, major metabolic substrates for mammary lipogenesis. Overall, acetate supplementation increased milk fat yield regardless of dietary fiber level through an increase mostly caused by an increase in longer-chain de novo FA, suggesting stimulation of mammary lipogenesis. The heightened mammary de novo lipogenesis was supported by an increase in the concentration of metabolic substrates in plasma.


Asunto(s)
Lactancia , Leche , Femenino , Bovinos , Animales , Leche/metabolismo , Lactancia/fisiología , Acetato de Sodio/farmacología , Alimentación Animal/análisis , Ácido 3-Hidroxibutírico/metabolismo , Detergentes/metabolismo , Digestión , Fibras de la Dieta/metabolismo , Rumen/metabolismo , Dieta/veterinaria , Conducta Alimentaria , Suplementos Dietéticos , Almidón/metabolismo
7.
Food Res Int ; 156: 111315, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35651071

RESUMEN

In this study, two chemical bean seed hardening methods were used to investigate the changes in cooking behavior associated with Ca2+ transport and phytate hydrolysis to better understand their role in the pectin-cation-phytate hypothesis. The texture evolution of fresh and hardened red kidney beans was evaluated, hardening being induced by soaking or in a CaCl2 solution (0.01 M, 0.05 M, 0.1 M) or sodium acetate buffer (0.1 M, pH 4.4, 41 °C). The beans soaked in a CaCl2 solution at higher concentrations or in sodium acetate buffer for a longer time exhibited a delayed cooking behavior. This study also explored the bio-chemical changes (calcium content in different bean substructures, phytate content and the pectin degree of methylesterification (DM) in the cotyledons) occurring in the beans during chemical hardening and cooking. The Ca2+ concentrations in the whole beans and cotyledons of beans soaked and cooked in CaCl2 solutions significantly increased while inositol hexaphosphate IP6 content showed no significant changes. This indicates that the delayed texture drop in this case results from the influx of exogenous Ca2+ in the cotyledons and seed coats during cooking while the IP6 was not hydrolyzed and did not release endogenous Ca2+. For beans soaked in sodium acetate buffer, phytate profiling showed increased hydrolysis of IP6 with longer soaking time, suggesting the migration of endogenous Ca2+ released from phytate hydrolysis contributing to the delayed cooking of these beans. These results indicate that both an exogenous Ca2+ influx during soaking and cooking and an endogenous Ca2+ replacement resulting from phytate hydrolysis can play an important role in the hardening of beans. In neither of the cases, a significant change in pectin DM was observed during chemical hardening, therefore limiting the delayed cooking to the role of Ca2+ transport. The outcome of both cases is inline with the basic principles of the pectin-cation-phytate hypothesis whereby pectin DM changes are hardly involved and different mechanisms of release/transport are involved.


Asunto(s)
Phaseolus , Ácido Fítico , Calcio/análisis , Cloruro de Calcio , Cationes , Manipulación de Alimentos/métodos , Calor , Hidrólisis , Pectinas/química , Phaseolus/química , Ácido Fítico/análisis , Semillas/química , Acetato de Sodio/análisis , Agua/química
8.
Environ Sci Pollut Res Int ; 29(52): 78862-78873, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35701696

RESUMEN

Acid mine drainage (AMD) is recognized as one of the most serious contamination sources in the nonferrous metal mining industry. In this study, aerobic strains VCZ02 and VCZ09, which were identified as Leclercia adecarboxylata and Klebsiella aerogenes, were screened from 11 strains of copper-zinc-resistant bacteria in the soil of the Dexing copper mine with Cu2+/Zn2+ removal rates of 46.32%/41.03% and 57.96%/67.05%, respectively. The composition of extracellular polymers plays an important role in the removal of heavy metals by these two strains. A mixed community consisting of VCZ02 and VCZ09 was coupled with Sagittaria trifolia L.var.sinensis (Sims) Mak to construct a microbial-plant coupled reactor to remediate AMD. Under the optimal condition of sodium acetate as carbon source, the pH of AMD increased from less than 5 to above 6.5, showing Cu2+/Zn2+ removal rates of 70-80% and above 30%, respectively. SEM-EDS results showed that VZC02 and VZC09 in the coupled reactor also helped with resisting the toxicity of heavy metals to plants by forming biofilms on the root surface and increasing the content of heavy metals on the surface of roots, thus improving the treatment effect of plants. This study provides a theoretical basis for the bioremediation of AMD and its application.


Asunto(s)
Carbono , Metales Pesados , Cobre , Acetato de Sodio , Metales Pesados/química , Ácidos/química , Suelo , Zinc , Polímeros
9.
Bioresour Technol ; 358: 127431, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35671911

RESUMEN

Both co-cultivation and co-substrate addition strategies have exhibited massive potential in microalgae-based antibiotic bioremediation. In this study, glucose and sodium acetate were employed as co-substrate in the cultivation of microalgae-bacteria consortium for enhanced sulfadiazine (SDZ) and sulfamethoxazole (SMX) removal. Glucose demonstrated a two-fold increase in biomass production with a maximum specific growth rate of 0.63 ± 0.01 d-1 compared with sodium acetate. The supplementation of co-substrate enhanced the degradation of SDZ significantly up to 703 ± 18% for sodium acetate and 290 ± 22% for glucose, but had almost no effect on SMX. The activities of antioxidant enzymes, including peroxidase, superoxide dismutase and catalase decreased with co-substrate supplementation. Chlorophyll a was associated with protection against sulfonamides and chlorophyll b might contribute to SDZ degradation. The addition of co-substrates influenced bacterial community structure greatly. Glucose enhanced the relative abundance of Proteobacteria, while sodium acetate improved the relative abundance of Bacteroidetes significantly.


Asunto(s)
Microalgas , Bacterias , Clorofila A/metabolismo , Suplementos Dietéticos , Glucosa/metabolismo , Microalgas/metabolismo , Acetato de Sodio/metabolismo , Acetato de Sodio/farmacología , Sulfadiazina/metabolismo , Sulfametoxazol/metabolismo , Sulfanilamida/metabolismo , Sulfonamidas/metabolismo , Sulfonamidas/farmacología
10.
Artículo en Inglés | MEDLINE | ID: mdl-35329358

RESUMEN

The major downfalls of the microalgal biorefinery are low volume of high value product accumulation, low biomass productivity and high cultivation costs. Here, we aimed to improve the biomass productivity of the industrially relevant Picochlorum sp. BDUG 100241 strain. The growth of Picochlorum sp. BDUG 100241 was investigated under different cultivations conditions, including photoautotrophic (with light), mixotrophic (1% glucose, with light) and heterotrophic (1% glucose, without light). Among them, Picochlorum sp. BDUG100241 showed the highest growth in the mixotrophic condition. Under different (1%) carbon sources' supplementation, including glucose, sodium acetate, glycerol, citric acid and methanol, Picochlorum sp. BDUG100241 growth was tested. Among them, sodium acetate was found to be most suitable carbon source for Picochlorum sp. BDUG 100241 growth, biomass (1.67 ± 0.18 g/L) and biomolecule productivity. From the different concentrations of sodium acetate (0, 2.5, 5.0, 7.5 and 10 g/L) tested, the maximum biomass production of 2.40 ± 0.20 g/L with the biomass productivity of 95 ± 5.00 mg/L/d was measured from 7.5 g/L in sodium acetate. The highest total lipid (53.50 ± 1.70%) and total carotenoids (0.75 ± 0.01 µg/mL) contents were observed at the concentration of 7.5 g/L and 5.0 g/L of sodium acetate as a carbon source, respectively. In conclusion, the mixotrophic growth condition containing 7.5 g/L of sodium acetate showed the maximum biomass yield and biomolecule accumulation compared to other organic carbon sources.


Asunto(s)
Chlorophyta , Microalgas , Biomasa , Carbono , Glucosa , Acetato de Sodio
11.
J Dairy Sci ; 104(7): 7572-7582, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33814140

RESUMEN

Supplementation with sodium acetate (NaAcet) increases milk fat production through an apparent stimulation of de novo lipogenesis in the mammary gland. Sodium acetate increases acetate supply to the mammary gland, but it also increases dietary cation-anion difference, which can also increase milk fat yield. The objective of this study was to determine if the effect of NaAcet on milk fat production was due to an increase in acetate supply or an increase in dietary cation-anion difference. The study included 12 multiparous cows in a replicated 3 × 3 Latin square design balanced for carryover effects, with 14-d experimental periods. Treatments were a basal total mixed ration (31.8% neutral detergent fiber, 14.8% crude protein, 25.5% starch, and 4.4% fatty acids on a dry matter basis) as a no-supplement control, acetate supplemented at 3.25% of dry matter as NaAcet, and sodium bicarbonate (NaHCO3) providing an equal amount of sodium to the NaAcet treatment. The NaAcet and NaHCO3 were mixed into the basal diet before feeding. Milk samples were taken at each milking during the last 3 d of each period. Plasma samples were taken every 9 h during the last 3 d (a total of 8 times) to determine concentrations of plasma metabolites and hormones. Eating behavior was monitored during the last week of each period using an automated system. The NaAcet and NaHCO3 treatments increased milk fat concentration and yield compared to the no-supplement control. The NaAcet treatment increased milk fat production predominantly by increasing the yield of de novo and mixed-source fatty acids. The NaHCO3 treatment increased the yield of preformed and de novo fatty acids, suggesting different mechanisms for the 2 treatments. The NaAcet treatment increased plasma acetate concentration in a period of the day concurrent with the highest dry matter intake. The NaAcet treatment increased milk fat production by stimulating the production of de novo fatty acids, a mechanism consistent with previous reports, possibly by increasing acetate supply to the mammary gland. The NaHCO3 treatment increased milk fat production by increasing the production of all biological categories of fatty acids, except for odd and branched-chain fatty acids, possibly by increasing overall diet digestibility.


Asunto(s)
Alimentación Animal , Leche , Alimentación Animal/análisis , Animales , Bovinos , Dieta/veterinaria , Suplementos Dietéticos , Digestión , Ácidos Grasos , Femenino , Lactancia , Rumen , Acetato de Sodio , Bicarbonato de Sodio
12.
Int J Mol Sci ; 21(18)2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32947916

RESUMEN

Diclofenac (DCF) constitutes one of the most significant ecopollutants detected in various environmental matrices. Biological clean-up technologies that rely on xenobiotics-degrading microorganisms are considered as a valuable alternative for chemical oxidation methods. Up to now, the knowledge about DCF multi-level influence on bacterial cells is fragmentary. In this study, we evaluate the degradation potential and impact of DCF on Pseudomonas moorei KB4 strain. In mono-substrate culture KB4 metabolized 0.5 mg L-1 of DCF, but supplementation with glucose (Glc) and sodium acetate (SA) increased degraded doses up to 1 mg L-1 within 12 days. For all established conditions, 4'-OH-DCF and DCF-lactam were identified. Gene expression analysis revealed the up-regulation of selected genes encoding biotransformation enzymes in the presence of DCF, in both mono-substrate and co-metabolic conditions. The multifactorial analysis of KB4 cell exposure to DCF showed a decrease in the zeta-potential with a simultaneous increase in the cell wall hydrophobicity. Magnified membrane permeability was coupled with the significant increase in the branched (19:0 anteiso) and cyclopropane (17:0 cyclo) fatty acid accompanied with reduced amounts of unsaturated ones. DCF injures the cells which is expressed by raised activities of acid and alkaline phosphatases as well as formation of lipids peroxidation products (LPX). The elevated activity of superoxide dismutase (SOD) and catalase (CAT) testified that DCF induced oxidative stress.


Asunto(s)
Antiinflamatorios no Esteroideos/metabolismo , Proteínas Bacterianas/metabolismo , Diclofenaco/metabolismo , Pseudomonas/metabolismo , Contaminantes Químicos del Agua/metabolismo , Antiinflamatorios no Esteroideos/farmacología , Proteínas Bacterianas/genética , Biodegradación Ambiental , Biotransformación/genética , Catalasa/genética , Catalasa/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Medios de Cultivo/farmacología , Diclofenaco/farmacología , Dioxigenasas/genética , Dioxigenasas/metabolismo , Inducción Enzimática/efectos de los fármacos , Ácidos Grasos/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Glucosa/farmacología , Peroxidación de Lípido/efectos de los fármacos , Lípidos de la Membrana/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Pseudomonas/efectos de los fármacos , Acetato de Sodio/farmacología , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Contaminantes Químicos del Agua/farmacología
13.
Enzyme Microb Technol ; 139: 109567, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32732026

RESUMEN

Sodium acetate has been most commonly used as the external carbon source to achieve successful performance of full-scale enhanced biological phosphorus removal (EBPR) processes, but its microbial mechanism for the improvement of phosphorus removal performance was still unclear. DNA based stable-isotope probing (DNA-SIP) is able to discriminate the metabolic activity of different microbes for specific substrates, thus it was applied to explore the different effects of sodium acetate on the community structure of Candidatus Accumulibacter (hereafter called Accumulibacter) and Candidatus Competibacter (hereafter called Competibacter) in a modified University of Cape Town (MUCT) process treating the real domestic sewage. Results showed that acetate addition significantly improved the abundance of Accumulibacter and Competibacter in MUCT. Accumulibacter clade IID exhibited the highest proportion in all clades before and after acetate supplementation but the proportion decreased from 95.4 % on day 23-66.3% on day 95. Contrarily, the proportion of clade IIF increased from 0.9% to 24%. DNA-SIP incubation found that the ratio of Accumulibacter in the heavy fractions to the total quantities increased faster than that of Competibacter, which successfully revealed the acetate assimilating precedence of Accumulibacter over Competibacter. Besides, the ratios of Accumulibacter clade IIF in heavy fraction increased by 22.3 %, exhibited a higher metabolic activity than other clades. Adequate acetate accomplied with high temperature possibly promoted the preferential proliferation of clade ⅡF, which provided a way to enrich clade IIF. This is the first study that successfully applied DNA-SIP to discriminate the acetate metabolic activity of Accumulibacter and Competibacter, and Accumulibacter clades.


Asunto(s)
Alphaproteobacteria/metabolismo , Fósforo/metabolismo , Acetato de Sodio/farmacología , Purificación del Agua , Alphaproteobacteria/genética , Isótopos de Carbono/química , Sondas de ADN/química , ADN Bacteriano/genética , Marcaje Isotópico/métodos , Aguas del Alcantarillado
14.
FEMS Microbiol Lett ; 367(16)2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32672823

RESUMEN

Vibrio cholerae is an etiological cause of cholera implicated in several pandemics. Antibacterial activity of plant extracts has been established. However, these extracts exhibit activity at a concentration that may alter organoleptic attributes of water and food, hence limiting their application. In this light, there is need to device ways of reducing plant extracts' effective levels in order to widen their application. Thus, this study was conducted to improve activities of plant ethanolic extracts through combination with other generally recognized as safe antimicrobials. Combination of plant extracts with sodium acetate (NaOAc) 0.4% at pH 7.0 reduced minimum inhibitory concentrations (MICs) of clove, lemon eucalyptus, rosemary and sage from 0.2 to 0.025%. At pH 6.4, combinations were more effective reducing MICs of clove, lemon eucalyptus, rosemary and sage from 0.2 to 0.0125% with NaOAc at 0.2%. At pH 7.0, the combination resulted in additive effect. Nevertheless, at pH 6.4, synergic effect was established. No interactive effect was observed with combinations involving glycine. Combination of plant extracts with NaOAc at mildly acidic pH creates a hurdle effect that may have potential application to control the growth of V. cholerae.


Asunto(s)
Antibacterianos/farmacología , Extractos Vegetales/farmacología , Vibrio cholerae/efectos de los fármacos , Técnicas de Química Analítica , Etanol/química , Pruebas de Sensibilidad Microbiana , Acetato de Sodio/química
15.
J Am Soc Nephrol ; 31(7): 1445-1461, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32482686

RESUMEN

BACKGROUND: Short-chain fatty acids derived from gut microbial fermentation of dietary fiber have been shown to suppress autoimmunity through mechanisms that include enhanced regulation by T regulatory cells (Tregs). METHODS: Using a murine kidney transplantation model, we examined the effects on alloimmunity of a high-fiber diet or supplementation with the short-chain fatty acid acetate. Kidney transplants were performed from BALB/c(H2d) to B6(H2b) mice as allografts in wild-type and recipient mice lacking the G protein-coupled receptor GPR43 (the metabolite-sensing receptor of acetate). Allograft mice received normal chow, a high-fiber diet, or normal chow supplemented with sodium acetate. We assessed rejection at days 14 (acute) and 100 (chronic), and used 16S rRNA sequencing to determine gut microbiota composition pretransplantation and post-transplantation. RESULTS: Wild-type mice fed normal chow exhibited dysbiosis after receiving a kidney allograft but not an isograft, despite the avoidance of antibiotics and immunosuppression for the latter. A high-fiber diet prevented dysbiosis in allograft recipients, who demonstrated prolonged survival and reduced evidence of rejection compared with mice fed normal chow. Allograft mice receiving supplemental sodium acetate exhibited similar protection from rejection, and subsequently demonstrated donor-specific tolerance. Depletion of CD25+ Tregs or absence of the short-chain fatty acid receptor GPR43 abolished this survival advantage. CONCLUSIONS: Manipulation of the microbiome by a high-fiber diet or supplementation with sodium acetate modified alloimmunity in a kidney transplant model, generating tolerance dependent on Tregs and GPR43. Diet-based therapy to induce changes in the gut microbiome can alter systemic alloimmunity in mice, in part through the production of short-chain fatty acids leading to Treg cell development, and merits study as a potential clinical strategy to facilitate transplant acceptance.


Asunto(s)
Fibras de la Dieta/administración & dosificación , Ácidos Grasos Volátiles/inmunología , Microbioma Gastrointestinal/inmunología , Rechazo de Injerto/prevención & control , Tolerancia Inmunológica/efectos de los fármacos , Linfocitos T Reguladores , Enfermedad Aguda , Aloinjertos/inmunología , Animales , Ácido Butírico/farmacología , Enfermedad Crónica , Suplementos Dietéticos , Disbiosis/etiología , Disbiosis/microbiología , Disbiosis/prevención & control , Microbioma Gastrointestinal/efectos de los fármacos , Rechazo de Injerto/patología , Rechazo de Injerto/fisiopatología , Supervivencia de Injerto/efectos de los fármacos , Supervivencia de Injerto/inmunología , Trasplante de Riñón/efectos adversos , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Acoplados a Proteínas G/genética , Acetato de Sodio/farmacología
16.
Fish Shellfish Immunol ; 98: 758-765, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31730927

RESUMEN

With the development of aquaculture industry, high-carbohydrate diet is used to stimulate protein-sparing effect and reduce feed cost. However, fish utilize carbohydrates poorly in general, and instead, high level of carbohydrates in the diet influence the growth condition of fish. How to alleviate the side effects of high carbohydrate diet on fish health has attracted more and more attentions. In the present study, Nile tilapia (Oreochromis niloticus) were fed with 25% and 45% of carbohydrate diet for eight weeks. Higher body weight but lower resistance to pathogen was found in 45% carbohydrate diet group. Higher expression level of inflammation cytokines, increased expression of total NF-κB protein and phosphorylated NF-κB protein (p-NF-κB) were detected in higher carbohydrate group. Concentration of short-chain fatty acids (SCFAs) was measured and the results indicated that high-carbohydrate diet decreased acetate content in the intestine. In order to detect the relationship between the decreased concentration of acetate and lower resistance to pathogen in high-carbohydrate group, 45% of carbohydrate diets (HC) supplemented with different concentrations of sodium acetate (HC + LA, 100 mmol/L; HC + MA, 200 mmol/L; HC + HA, 400 mmol/L) were used to raise Nile Tilapia for eight weeks. The results indicated that addition of 200 mmol/L sodium acetate (HC + MA) reduced the mortality when fish were challenged with Aeromonas hydrophila. Furthermore, we also found that addition of 200 mmol/L sodium acetate mainly inhibited p38 mitogen-activated protein kinase (p38MAPK) and NF-κB phosphorylation to decrease the expression level of inflammation cytokines (IL-8, IL-12, TNF-α and IL-1ß) in the intestine. The present study indicated that certain concentration of sodium acetate could alleviate high-carbohydrate induced intestinal inflammation mainly by suppressing MAPK activation and NF-κB phosphorylation.


Asunto(s)
Cíclidos/inmunología , Enfermedades de los Peces/inmunología , Inflamación/veterinaria , Enfermedades Intestinales/veterinaria , Sustancias Protectoras/farmacología , Transducción de Señal/efectos de los fármacos , Acetato de Sodio/farmacología , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Dieta de Carga de Carbohidratos/efectos adversos , Dieta de Carga de Carbohidratos/veterinaria , Suplementos Dietéticos/análisis , Relación Dosis-Respuesta a Droga , Enfermedades de los Peces/inducido químicamente , Enfermedades de los Peces/tratamiento farmacológico , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Enfermedades Intestinales/inducido químicamente , Enfermedades Intestinales/tratamiento farmacológico , Enfermedades Intestinales/inmunología , Intestinos/efectos de los fármacos , FN-kappa B/metabolismo , Sustancias Protectoras/administración & dosificación , Acetato de Sodio/administración & dosificación , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
17.
J Photochem Photobiol B ; 199: 111628, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31610432

RESUMEN

Plumbagin is the main pharmacologically active compound of carnivorous plants in the genera Drosera. It possesses various pharmacological activities, including anticancer and antimalarial activities, and is used in traditional medicine. In this study, we reported a sustainable production system of plumbagin by adding sodium acetate and L-alanine as precursors to in vitro cultures of Drosera burmannii Vahl and Drosera indica L. In addition, plumbagin production was reported in the cultures subjected to different color LED lights. The highest plumbagin level (aerial part 14.625 ±â€¯1.007 mg·g-1 DW and root part 1.806 ±â€¯0.258 mg·g-1 DW) was observed in D. indica cultured under blue LED light for 14 days, and further culturing did not increase plumbagin production. In addition, plumbagin enhancement by precursor feeding (9.850 ±â€¯0.250 mg·g-1 DW, 1.2-fold) was observed in the aerial part of D. indica treated with 50 mg·L-1 sodium acetate for 3 days. Comparing both plants, up to 700-fold higher plumbagin was observed in D. indica than in D. burmannii. Moreover, in both plants, the aerial part accumulated higher plumbagin (up to 10-fold) than the roots. This is the first report on the effect of artificial LED lights on the plumbagin level of Dorsera plants. The culturing of D. indica under blue LED light showed enhanced plumbagin levels and suggests a fast and simple system for the in vitro production of plumbagin.


Asunto(s)
Drosera/metabolismo , Naftoquinonas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Alanina/metabolismo , Luz , Extractos Vegetales/química , Raíces de Plantas/metabolismo , Acetato de Sodio/metabolismo , Factores de Tiempo
18.
Huan Jing Ke Xue ; 40(5): 2333-2340, 2019 May 08.
Artículo en Chino | MEDLINE | ID: mdl-31087874

RESUMEN

To investigate the changes in microbial community structure and metabolic properties of Accumulibacter under long-term Poly-P deficiency, an activated sludge enriched with Accumulibacter was inoculated into two SBR reactors, where sodium acetate and sodium propionate were used separately as organic carbon sources. The two reactors were operated for 60 days with an influent PO43--P concentration of 2.5 mg·L-1. The phosphorus removal performance, sludge production, and changes in the microbial community structure of the systems were analyzed. The results indicated that both SBR systems showed good performance of phosphorus and organic matter removal. However, microorganisms in both systems showed glycogen-accumulating metabolism properties under long-term Poly-P deficiency. In the unfavorable environment of long-term Poly-P deficiency, Accumulibacter Ⅰ maintained a high abundance (40%±7%) in the propionate SBR system, indicating that Accumulibacter Ⅰ had higher metabolic activity and its metabolic properties could be independent of Poly-P for survival under Poly-P deficiency for a long period. In comparison, propionate is more conducive to Accumulibacter adaptation to lower phosphorus loads, and Accumulibacter Ⅰ is more competitive than Accumulibacter Ⅱ under lower phosphorus loads.


Asunto(s)
Betaproteobacteria/metabolismo , Reactores Biológicos/microbiología , Fósforo/aislamiento & purificación , Aguas del Alcantarillado/microbiología , Carbono , Propionatos , Acetato de Sodio
19.
J Dairy Sci ; 102(6): 5172-5181, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30981489

RESUMEN

Acetate is a major source of energy and substrate for milk fat synthesis in the dairy cow. We recently reported a linear increase in milk fat yield and greater than a 30% net apparent transfer of acetate to milk fat with ruminal infusion of neutralized acetate. Additionally, ruminal acetate infusion linearly increases plasma ß-hydroxybutyrate. The objective of the current study was to investigate the ability of acetate and butyrate fed in a diet to increase milk fat synthesis. Twelve multiparous lactating Holstein cows were randomly assigned to treatments in a 3 × 3 Latin square design with 14-d periods that included a 7-d washout followed by 7 d of treatment. Cows were fed ad libitum a basal diet with a low risk for biohydrogenation-induced milk fat depression, and treatments were mixed into the basal diet. Treatments were 3.2% NaHCO3 (control), 2.9% sodium acetate, and 2.5% calcium butyrate (carbon equivalent to acetate treatment) as a percent of diet dry matter. Feeding sodium acetate increased dry matter intake by 2.7 kg, had no effect on milk yield, and increased milk fat yield by 90 g/d and concentration by 0.2 percentage units, compared with control. Calcium butyrate decreased dry matter intake by 2.6 kg/d, milk yield by 1.65 kg/d, and milk fat yield by 60 g/d, compared with control. Sodium acetate increased concentration and yield of 16 carbon mixed source fatty acids (FA) and myristic acid, while decreasing the concentration of preformed FA, compared with control. Calcium butyrate had no effect on concentration of milk FA by source, but increased concentration of trans-10 C18:1 in milk by 18%, indicating a shift in rumen biohydrogenation pathways. Our data demonstrate that milk fat yield and concentration can be increased by feeding sodium acetate at 2.9% of diet dry matter, but not by feeding calcium butyrate at an equivalent carbon mass.


Asunto(s)
Bovinos , Dieta/veterinaria , Suplementos Dietéticos , Isobutiratos/farmacología , Leche/metabolismo , Acetato de Sodio/farmacología , Alimentación Animal/análisis , Animales , Industria Lechera , Ácidos Grasos/metabolismo , Femenino , Lactancia , Distribución Aleatoria
20.
Water Res ; 125: 458-465, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28898703

RESUMEN

The requirement of trace elements (TE) in anaerobic digestion process is widely documented. However, little is understood regarding the specific requirement of elements and their critical concentrations under different operating conditions such as substrate characterisation and temperature. In this study, a flask batch trial using fractional factorial design is conducted to investigate volatile fatty acids (VFA) anaerobic degradation rate under the influence of the individual and combined effect of six TEs (Co, Ni, Mo, Se, Fe and W). The experiment inoculated with food waste digestate, spiked with sodium acetate and sodium propionate both to 10 g/l. This is followed by the addition of a selection of the six elements in accordance with a 26-2 fractional factorial principle. The experiment is conducted in duplicate and the degradation of VFA is regularly monitored. Factorial effect analysis on the experimental results reveals that within these experimental conditions, Se has a key role in promoting the degradation rates of both acetic and propionic acids; Mo and Co are found to have a modest effect on increasing propionic acid degradation rate. It is also revealed that Ni shows some inhibitory effects on VFA degradation, possibly due to its toxicity. Additionally, regression coefficients for the main and second order effects are calculated to establish regression models for VFA degradation.


Asunto(s)
Biodegradación Ambiental/efectos de los fármacos , Ácidos Grasos Volátiles/metabolismo , Oligoelementos/farmacología , Anaerobiosis , Reactores Biológicos , Cobalto/farmacología , Residuos de Alimentos , Hierro/farmacología , Molibdeno/farmacología , Níquel/farmacología , Propionatos/metabolismo , Proyectos de Investigación , Selenio/farmacología , Acetato de Sodio/metabolismo , Tungsteno/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA