Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Elife ; 132024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38334260

RESUMEN

Cellular metabolism plays an essential role in the regrowth and regeneration of a neuron following physical injury. Yet, our knowledge of the specific metabolic pathways that are beneficial to neuron regeneration remains sparse. Previously, we have shown that modulation of O-linked ß-N-acetylglucosamine (O-GlcNAc) signaling, a ubiquitous post-translational modification that acts as a cellular nutrient sensor, can significantly enhance in vivo neuron regeneration. Here, we define the specific metabolic pathway by which O-GlcNAc transferase (ogt-1) loss of function mediates increased regenerative outgrowth. Performing in vivo laser axotomy and measuring subsequent regeneration of individual neurons in C. elegans, we find that glycolysis, serine synthesis pathway (SSP), one-carbon metabolism (OCM), and the downstream transsulfuration metabolic pathway (TSP) are all essential in this process. The regenerative effects of ogt-1 mutation are abrogated by genetic and/or pharmacological disruption of OCM and the SSP linking OCM to glycolysis. Testing downstream branches of this pathway, we find that enhanced regeneration is dependent only on the vitamin B12 independent shunt pathway. These results are further supported by RNA sequencing that reveals dramatic transcriptional changes by the ogt-1 mutation, in the genes involved in glycolysis, OCM, TSP, and ATP metabolism. Strikingly, the beneficial effects of the ogt-1 mutation can be recapitulated by simple metabolic supplementation of the OCM metabolite methionine in wild-type animals. Taken together, these data unearth the metabolic pathways involved in the increased regenerative capacity of a damaged neuron in ogt-1 animals and highlight the therapeutic possibilities of OCM and its related pathways in the treatment of neuronal injury.


Asunto(s)
Caenorhabditis elegans , Transducción de Señal , Animales , Caenorhabditis elegans/fisiología , Neuronas/metabolismo , Procesamiento Proteico-Postraduccional , Carbono/metabolismo , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Acetilglucosamina/metabolismo
2.
Carbohydr Polym ; 315: 121019, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37230627

RESUMEN

Chitin, the second most abundant biopolymer, possesses diverse applications in the food, agricultural, and pharmaceutical industries due to its functional properties. However, the potential applications of chitin are limited owing to its high crystallinity and low solubility. N-acetyl chitooligosaccharides and lacto-N-triose II, the two types of GlcNAc-based oligosaccharides, can be obtained from chitin by enzymatic methods. With their lower molecular weights and improved solubility, these two types of GlcNAc-based oligosaccharides display more various beneficial health effects when compared to chitin. Among their abilities, they have exhibited antioxidant, anti-inflammatory, anti-tumor, antimicrobial, and plant elicitor activities as well as immunomodulatory and prebiotic effects, which suggests they have the potential to be utilized as food additives, functional daily supplements, drug precursors, elicitors for plants, and prebiotics. This review comprehensively covers the enzymatic methods used for the two types of GlcNAc-based oligosaccharides production from chitin by chitinolytic enzymes. Moreover, current advances in the structural characterization and biological activities of these two types of GlcNAc-based oligosaccharides are summarized in the review. We also highlight current problems in the production of these oligosaccharides and trends in their development, aiming to offer some directions for producing functional oligosaccharides from chitin.


Asunto(s)
Acetilglucosamina , Quitina , Quitina/química , Glucosamina , Oligosacáridos/farmacología , Antioxidantes/farmacología
3.
Biomolecules ; 12(12)2022 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-36551191

RESUMEN

In this study, we have tested the hypothesis that the expression and secretion of galectins are driven through mechanisms globally impacted by homeostatic regulation involving the post-translational modification of intracellular proteins with O-linked N-acetylglucosamine (O-GlcNAc). We showed that neutrophilic differentiation of HL-60 cells induced by all-trans retinoic acid (ATRA) and 6-diazo-5-oxo-L-norleucine (DON) was associated with a significant drop of cellular O-GlcNAc levels in serum-contained and serum-free cell culture media. Galectin gene and protein expression profiles in HL-60 cells were specifically modified by ATRA and by inhibitors of O-GlcNAc cycle enzymes, however overall trends for each drug were similar between cells growing in the presence or absence of serum except for LGALS9 and LGALS12. The secretion of four galectins (-1, -3, -9, and -10) by HL-60 cells in a serum-free medium was stimulated by O-GlcNAc-reducing ATRA and DON while O-GlcNAc-elevating thiamet G (O-GlcNAcase inhibitor) failed to change the basal levels of extracellular galectins. Taken together, these results demonstrate that O-GlcNAc homeostasis is essential not only for regulation of galectin expression in cells but also for the secretion of multiple members of this protein family, which can be an important novel aspect of unconventional secretion mechanisms.


Asunto(s)
Acetilglucosamina , Galectinas , Neutrófilos , Procesamiento Proteico-Postraduccional , Humanos , Acetilglucosamina/metabolismo , Diferenciación Celular , Galectinas/genética , Galectinas/metabolismo , Células HL-60 , N-Acetilglucosaminiltransferasas/genética , Neutrófilos/citología , Neutrófilos/metabolismo
4.
Aging Cell ; 21(10): e13711, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36124412

RESUMEN

Glucosamine feeding and genetic activation of the hexosamine biosynthetic pathway (HBP) have been linked to improved protein quality control and lifespan extension. However, as an energy sensor, the HBP has been implicated in tumor progression and diabetes. Given these opposing outcomes, it is imperative to explore the long-term effects of chronic HBP activation in mammals. Thus, we asked if HBP activation affects metabolism, coordination, memory, and survival in mice. N-acetyl-D-glucosamine (GlcNAc) supplementation in the drinking water had no adverse effect on weight in males but increased weight in young females. Glucose or insulin tolerance was not affected up to 20 months of age. Of note, we observed improved memory in young male mice supplemented with GlcNAc. Survival was not changed by GlcNAc treatment. To assess the effects of genetic HBP activation, we overexpressed the pathway's key enzyme GFAT1 and a constitutively activated mutant form in all mouse tissues. We detected elevated levels of the HBP product UDP-GlcNAc in mouse brains, but did not find any effects on behavior, memory, or survival. Together, while dietary GlcNAc supplementation did not extend survival in mice, it positively affected memory and is generally well tolerated.


Asunto(s)
Agua Potable , Insulinas , Acetilglucosamina/metabolismo , Animales , Femenino , Glucosamina , Glucosa/metabolismo , Glicosilación , Hexosaminas/metabolismo , Insulinas/metabolismo , Longevidad , Masculino , Mamíferos , Ratones , Uridina Difosfato/metabolismo
5.
Nat Chem Biol ; 18(10): 1087-1095, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35879546

RESUMEN

Oncogenic Kras-activated pancreatic ductal adenocarcinoma (PDAC) cells highly rely on an unconventional glutamine catabolic pathway to sustain cell growth. However, little is known about how this pathway is regulated. Here we demonstrate that Kras mutation induces cellular O-linked ß-N-acetylglucosamine (O-GlcNAc), a prevalent form of protein glycosylation. Malate dehydrogenase 1 (MDH1), a key enzyme in the glutamine catabolic pathway, is positively regulated by O-GlcNAcylation on serine 189 (S189). Molecular dynamics simulations suggest that S189 glycosylation on monomeric MDH1 enhances the stability of the substrate-binding pocket and strengthens the substrate interactions by serving as a molecular glue. Depletion of O-GlcNAcylation reduces MDH1 activity, impairs glutamine metabolism, sensitizes PDAC cells to oxidative stress, decreases cell proliferation and inhibits tumor growth in nude mice. Furthermore, O-GlcNAcylation levels of MDH1 are elevated in clinical PDAC samples. Our study reveals that O-GlcNAcylation contributes to pancreatic cancer growth by regulating the metabolic activity of MDH1.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Acetilglucosamina/metabolismo , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Glutamina/metabolismo , Malato Deshidrogenasa/metabolismo , Ratones , Ratones Desnudos , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Serina/metabolismo , Neoplasias Pancreáticas
6.
Biotechnol Lett ; 44(3): 473-483, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35072843

RESUMEN

OBJECTIVE: D-Glucosamine (GlcN) is an important amino sugar with various applications in medicine, food & beverages, nutritional supplements, and dairy products. This study aimed to produce GlcN from N-acetyl-D-glucosamine (GlcNAc) with an efficient deacetylase, and apply different strategies to enhance GlcN production. RESULTS: We screened a series of deacetylases that involved in the deacetylation of GlcNAc to form GlcN. A diacetylchitobiose deacetylase (TKDac) from Thermococcus kodakarensis exhibited high-efficient deacetylation activity for GlcNAc, yet mostly in the form of inclusion bodies. The soluble expression of TKDac was improved by a co-expressing molecular chaperone (groEL) and TKDac, and insertion of rare codon ATA encoding isoleucine. As such, the recombinant strain TKEL4 was constructed to express TKDac, and 48 g/L GlcN was achieved by TKDac-catalyzed deacetylation. To overcome the inhibition of byproduct (acetate), immobilized TKDac was carried out to produce GlcN from GlcNAc. The immobilized TKDac was conveniently re-used for several batches (above 8) with a 90% conversion rate. CONCLUSIONS: TKDac from T. kodakarensis was found to be an efficient deacetylase to produce GlcN. Co-expression of molecular chaperone and target protein, and insertion of rare codons were effective to improve the soluble expression of TKDac. The immobilized TKDac represents a promising method for future GlcN production.


Asunto(s)
Acetilglucosamina , Glucosamina , Acetilglucosamina/metabolismo , Catálisis , Glucosamina/metabolismo
7.
Mol Pharm ; 18(11): 4140-4147, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34657437

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic disease with poor prognosis. Evidence has shown that vimentin is a key regulator of lung fibrogenesis. 99mTc-labeled N-acetylglucosamine-polyethyleneimine (NAG-PEI), a vimentin-targeting radiotracer, was used for the early diagnosis of IPF, and NAG-PEI was also used as a therapeutic small interfering RNA (siRNA) delivery vector for the treatment of IPF in this study. Single-photon emission-computed tomography (SPECT) imaging of bleomycin (BM)- and silica-induced IPF mice with 99mTc-labeled NAG-PEI was performed to visualize pulmonary fibrosis and monitor the treatment efficiency of siRNA-loaded NAG-PEI, lipopolysaccharide (LPS, a tolerogenic adjuvant), or zymosan (ZYM, an immunostimulant). The lung uptakes of 99mTc-NAG-PEI in the BM- and silica-induced IPF mice were clearly and directly correlated with IPF progression. The lung uptake of 99mTc-NAG-PEI in the NAG-PEI/TGF-ß1-siRNA treatment group or LPS treatment group was evidently lower than that in the control group, while the lung uptake of 99mTc-NAG-PEI was significantly higher in the ZYM treatment group compared to that in the control group. These results demonstrate that NAG-PEI is a potent MicroSPECT imaging-guided theranostic platform for IPF diagnosis and therapy.


Asunto(s)
Fibrosis Pulmonar Idiopática/tratamiento farmacológico , ARN Interferente Pequeño/administración & dosificación , Radiofármacos/administración & dosificación , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Vimentina/antagonistas & inhibidores , Acetilglucosamina/administración & dosificación , Acetilglucosamina/química , Animales , Biodiversidad , Bleomicina/administración & dosificación , Bleomicina/toxicidad , Modelos Animales de Enfermedad , Femenino , Humanos , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/diagnóstico , Fibrosis Pulmonar Idiopática/patología , Pulmón/diagnóstico por imagen , Pulmón/efectos de los fármacos , Pulmón/patología , Ratones , Polietileneimina/administración & dosificación , Polietileneimina/química , ARN Interferente Pequeño/genética , Radiofármacos/química , Radiofármacos/farmacocinética , Dióxido de Silicio/administración & dosificación , Dióxido de Silicio/toxicidad , Tecnecio , Tomografía Computarizada de Emisión de Fotón Único , Factor de Crecimiento Transformador beta1/metabolismo , Vimentina/metabolismo
8.
Molecules ; 26(19)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34641427

RESUMEN

O-GlcNAcylation is a nutrient-driven post-translational modification known as a metabolic sensor that links metabolism to cellular function. Recent evidences indicate that the activation of O-GlcNAc pathway is a potential pro-survival pathway and that acute enhancement of this response is conducive to the survival of cells and tissues. 2-(4-Methoxyphenyl)ethyl-2-acetamido-2-deoxy-ß-d-pyranoside (SalA-4g), is a salidroside analogue synthesized in our laboratory by chemical structure-modification, with a phenyl ring containing a para-methoxy group and a sugar ring consisting of N-acetylglucosamine. We have previously shown that SalA-4g elevates levels of protein O-GlcNAc and improves neuronal tolerance to ischemia. However, the specific target of SalA-4g regulating O-GlcNAcylation remains unknown. To address these questions, in this study, we have focused on mitochondrial network homeostasis mediated by O-GlcNAcylation in SalA-4g's neuroprotection in primary cortical neurons under ischemic-like conditions. O-GlcNAc-modified mitochondria induced by SalA-4g demonstrated stronger neuroprotection under oxygen glucose deprivation and reoxygenation stress, including the improvement of mitochondrial homeostasis and bioenergy, and inhibition of mitochondrial apoptosis pathway. Blocking mitochondrial protein O-GlcNAcylation with OSMI-1 disrupted mitochondrial network homeostasis and antagonized the protective effects of SalA-4g. Collectively, these data demonstrate that mitochondrial homeostasis mediated by mitochondrial protein O-GlcNAcylation is critically involved in SalA-4g neuroprotection.


Asunto(s)
Acetilglucosamina/análogos & derivados , Metabolismo Energético , Isquemia/prevención & control , Mitocondrias/efectos de los fármacos , Proteínas Mitocondriales/química , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Acetilglucosamina/farmacología , Animales , Glucosa/metabolismo , Glicosilación , Homeostasis , Isquemia/metabolismo , Isquemia/patología , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Oxígeno/metabolismo , Procesamiento Proteico-Postraduccional , Ratas , Ratas Sprague-Dawley
9.
J Ethnopharmacol ; 281: 114562, 2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34438027

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional Chinese medicine formula Danggui-Shaoyao-San (DSS) has been reported to show therapeutic effect on dementia. AIM OF THE STUDY: The present study aims to investigate whether DSS treatment could alleviate diabetes-induced cognitive dysfunction, and explores its neuroprotective mechanism on db/db mice. MATERIALS AND METHODS: The female db/db mice were randomly divided into model group, DSS low-dose group and DSS high-dose group. Homologous female db/m mice were used as the control group. DSS was intragastric administrated for 15 weeks. Glucose tolerance, insulin tolerance, blood glucose and blood lipid levels were measured. Morris water maze was used to measure spatial learning and memory ability in mice. Nissl staining and Tunel staining were used to measure the changes of brain neurons, and ELISA kits were used to measure levels of inflammatory mediators (PGE2, TXB2 and LTB4). The kits detected oxidative stress (MDA, SOD, CAT, GSH-PX), nitrosative stress (NO, iNOS, TNOS) and glucose metabolism (LDH, PK, HK) levels. Western blot and immunofluorescence detected neurotrophic factors (PSD95, BDNF, NGF and SYN), apoptosis (Bcl-2, Bax, Bcl-xl, Caspase-3) and changes of ERα, O-GlcNAc, OGT, OGA levels. RESULTS: Morris water maze results showed that DSS could improve the learning and memory abilities of female db/db mice. Nissl staining showed that DSS could relieve hippocampal neurons damage of db/db mice. In addition, the serological tests showed that DSS could improve the impaired glucose tolerance and insulin resistance, while reduce hyperlipemia in db/db mice. Besides, DSS treatment increased the activities of SOD, GSH-PX, and CAT, and reduced MDA, NO, iNOs, tNOS, PGE2, TXB2 and LTB4 levels. Western blot and immunofluorescence results of PSD95, BDNF, NGF, and SYN showed that DSS could improve the expressions of neurotrophic factors. Meanwhile, Tunel staning and Western blot (Bcl-2, Bax, Bcl-xl, Caspase-3) results indicated that DSS could reduce neuronal apoptosis. Finally, Western blot (ERα, O-GlcNAc, OGA, and OGT) and immunofluorescence (ERα and O-GlcNAc) results indicated that DSS could increase the levels of ERα and OGA, decrease the levels of O-GlcNAc and OGT. CONCLUSION: DSS alleviate DE might be related to improve the abnormal O-GlcNAc-modification of ERα.


Asunto(s)
Acetilglucosamina/metabolismo , Encefalopatías/etiología , Complicaciones de la Diabetes/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Receptor alfa de Estrógeno/metabolismo , Fitoterapia , Animales , Disfunción Cognitiva/tratamiento farmacológico , Receptor alfa de Estrógeno/genética , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Prueba de Tolerancia a la Glucosa , Insulina/farmacología , Ratones , Ratones Endogámicos NOD , Prueba del Laberinto Acuático de Morris , Fármacos Neuroprotectores/farmacología
10.
Nutrients ; 13(1)2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33430126

RESUMEN

Micronutrient sensing is critical for cellular growth and differentiation. Deficiencies in essential nutrients such as iron strongly affect neuronal cell development and may lead to defects in neuronal function that cannot be remedied by subsequent iron supplementation. To understand the adaptive intracellular responses to iron deficiency in neuronal cells, we developed and utilized a Stable Isotopic Labeling of Amino acids in Cell culture (SILAC)-based quantitative phosphoproteomics workflow. Our integrated approach was designed to comprehensively elucidate the changes in phosphorylation signaling under both acute and chronic iron-deficient cell models. In addition, we analyzed the differential cellular responses between iron deficiency and hypoxia (oxygen-deprived) in neuronal cells. Our analysis identified nearly 16,000 phosphorylation sites in HT-22 cells, a hippocampal-derived neuronal cell line, more than ten percent of which showed at least 2-fold changes in response to either hypoxia or acute/chronic iron deficiency. Bioinformatic analysis revealed that iron deficiency altered key metabolic and epigenetic pathways including the phosphorylation of proteins involved in iron sequestration, glutamate metabolism, and histone methylation. In particular, iron deficiency increased glutamine-fructose-6-phosphate transaminase (GFPT1) phosphorylation, which is a key enzyme in the glucosamine biosynthesis pathway and a target of 5' AMP-activated protein kinase (AMPK), leading to reduced GFPT1 enzymatic activity and consequently lower global O-GlcNAc modification in neuronal cells. Taken together, our analysis of the phosphoproteome dynamics in response to iron and oxygen deprivation demonstrated an adaptive cellular response by mounting post-translational modifications that are critical for intracellular signaling and epigenetic programming in neuronal cells.


Asunto(s)
Acetilglucosamina/metabolismo , Deficiencias de Hierro , Neuronas/metabolismo , Animales , Puntos de Control del Ciclo Celular , Hipoxia de la Célula , Línea Celular , Daño del ADN , Reparación del ADN , Epigénesis Genética , Homeostasis , Inflamación/metabolismo , Metales/metabolismo , Ratones , Fosforilación , Proteínas Quinasas/metabolismo , Proteoma/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal
11.
J Med Chem ; 64(2): 1103-1115, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33404239

RESUMEN

O-GlcNAcase (OGA) has received increasing attention as an attractive therapeutic target for tau-mediated neurodegenerative disorders; however, its role in these pathologies remains unclear. Therefore, potent chemical tools with favorable pharmacokinetic profiles are desirable to characterize this enzyme. Herein, we report the discovery of a potent and novel OGA inhibitor, compound 5i, comprising an aminopyrimidine scaffold, identified by virtual screening based on multiple methodologies combining structure-based and ligand-based approaches, followed by sequential optimization with a focus on ligand lipophilicity efficiency. This compound was observed to increase the level of O-GlcNAcylated protein in cells and display suitable pharmacokinetic properties and brain permeability. Crystallographic analysis revealed that the chemical series bind to OGA via characteristic hydrophobic interactions, which resulted in a high affinity for OGA with moderate lipophilicity. Compound 5i could serve as a useful chemical probe to help establish a proof-of-concept of OGA inhibition as a therapeutic target for the treatment of tauopathies.


Asunto(s)
Acetilglucosamina/antagonistas & inhibidores , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/farmacología , beta-N-Acetilhexosaminidasas/antagonistas & inhibidores , Animales , Encéfalo/metabolismo , Línea Celular , Simulación por Computador , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/farmacocinética , Humanos , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Fármacos Neuroprotectores/farmacocinética , Relación Estructura-Actividad , Tauopatías/tratamiento farmacológico
12.
Mol Biotechnol ; 62(8): 387-399, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32572810

RESUMEN

D-Glucosamine is a commonly used dietary supplement that promotes cartilage health in humans. Metabolic flux analysis showed that D-glucosamine production could be increased by blocking three pathways involved in the consumption of glucosamine-6-phosphate and acetylglucosamine-6-phosphate. By homologous single-exchange, two key genes (nanE and murQ) of Escherichia coli BL21 were knocked out, respectively. The D-glucosamine yields of the engineered strains E. coli BL21ΔmurQ and E. coli BL21ΔnanE represented increases by factors of 2.14 and 1.79, respectively. Meanwhile, for bifunctional gene glmU, we only knocked out its glucosamine-1-phosphate acetyltransferase domain by 3D structural analysis to keep the engineered strain E. coli BL21glmU-Δgpa survival, which resulted in an increase in the production of D-glucosamine by a factor of 2.16. Moreover, for further increasing D-glucosamine production, two genes encoding rate-limiting enzymes, named glmS and gna1, were coexpressed by an RBS sequence in those engineered strains. The total concentrations of D-glucosamine in E. coli BL21 glmU-Δgpa', E. coli BL21ΔmurQ', and E. coli BL21ΔnanE' were 2.65 g/L, 1.73 g/L, and 1.38 g/L, which represented increases by factors of 8.83, 5.76, and 3.3, respectively.


Asunto(s)
Acetilglucosamina/metabolismo , Escherichia coli , Glucosamina/metabolismo , Ingeniería Metabólica/métodos , Acetilglucosamina/genética , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Técnicas de Inactivación de Genes , Glucosamina/genética , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Redes y Vías Metabólicas/genética , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo
13.
Biochem Biophys Res Commun ; 528(3): 466-472, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32499112

RESUMEN

Tau protein regulates, maintains and stabilizes microtubule assembly under normal physiological conditions. In certain pathological circumstances, tau is post-translationally modified predominantly via phosphorylation and glycosylation. Hyper-phosphorylation of tau in Alzheimer's disease (AD) resulted in aggregated neurofibrillary tangles (NFTs) formation. Unfortunately, absence of tau 3D structure makes difficult to understand exact mechanism involved in tau pathology. Here by using ab-initio modelling, we predicted a tau 3D structure that not only explains its binding with microtubules but also elucidates NFTs formation. O-linked ß-N-acetylglucosaminylation (O-ß-GlcNAc) is thought to regulate tau phosphorylation on single or proximal Ser/Thr residues (called as Yin-Yang sites). In this study, we not only validate the previously described three-serine residues (208, 238 and 400) as Yin-Yang sites but also predicted 22 more possible Ser/Thr O-glycosylation sites. Among them seventeen residues were predicted as possible Yin-Yang sites and are proposed to mediate NFT formation in AD. These predicted Yin-Yang sites may act as attractive therapeutic targets for the drug development in AD. Predicted 3D structure of tau441 was highly accessible for phosphorylation and hyperphosphorylation, and showed higher surface accessibility for interplay between O-ß-GlcNAc and phosphorylation modifications. Kinases and phosphatases involved in tau phosphorylation are conserved in human and other organisms. Homology modelling revealed conserved catalytic domain for both human and C. elegans O-GlcNAc transferase (OGT), suggesting that transgenic C. elegans expressing human tau may be a suitable model system to study these modifications.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Proteínas tau/química , Proteínas tau/metabolismo , Acetilglucosamina/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Sitios de Unión , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Glicosilación , Humanos , Modelos Animales , Modelos Moleculares , Ovillos Neurofibrilares/metabolismo , Fosforilación , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homología Estructural de Proteína , Proteínas tau/genética
14.
Reprod Fertil Dev ; 32(10): 941-947, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32586424

RESUMEN

The objective of this study was to minimise polyspermic penetration by increasing the perivitelline space (PVS) thickness through supplementation of the hyaluronic acid components glucuronic acid and N-acetyl-d-glucosamine (GlcNAc). Oocytes (n=4690) were supplemented during the first 24h and/or the remainder of maturation (final 16-18h) with 0.01mM glucuronic acid and 0.01mM GlcNAc and then evaluated for PVS thickness, hyaluronic acid, glutathione and glutathione peroxidase concentrations. Fertilised oocytes were evaluated for polyspermic penetration and embryo development. The PVS thickness and amount of hyaluronic acid was significantly (P<0.05) greater in oocytes supplemented with 0.01mM glucuronic acid and 0.01mM GlcNAc during the second part or all of maturation compared with the other treatments. In addition, polyspermic penetration was significantly (P<0.05) less in oocytes supplemented with 0.01mM glucuronic acid and 0.01mM GlcNAc during the second part or all of maturation compared with the other treatments. Supplementing 0.01mM glucuronic acid and GlcNAc during maturation significantly (P<0.05) increased the percentage of cleaved embryos by 48h after IVF and blastocysts formed by 144h after IVF compared those not supplemented. These results indicate that supplementing PVS components during maturation decreases polyspermic penetration by increasing PVS thickness.


Asunto(s)
Acetilglucosamina/farmacología , Fertilización/fisiología , Ácido Glucurónico/farmacología , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Oocitos/ultraestructura , Sus scrofa/fisiología , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/ultraestructura , Femenino , Glutatión/análisis , Glutatión Peroxidasa/metabolismo , Ácido Hialurónico/análisis , Oocitos/efectos de los fármacos , Oocitos/fisiología , Zona Pelúcida/efectos de los fármacos , Zona Pelúcida/ultraestructura
15.
ACS Chem Biol ; 15(5): 1242-1251, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32155044

RESUMEN

Selective chemical probes enable individual investigation of penicillin-binding proteins (PBPs) and provide critical information about their enzymatic activity with spatial and temporal resolution. To identify scaffolds for novel probes to study peptidoglycan biosynthesis in Bacillus subtilis, we evaluated the PBP inhibition profiles of 21 ß-lactam antibiotics from different structural subclasses using a fluorescence-based assay. Most compounds readily labeled PBP1, PBP2a, PBP2b, or PBP4. Almost all penicillin scaffolds were coselective for all or combinations of PBP2a, 2b, and 4. Cephalosporins, on the other hand, possessed the lowest IC50 values for PBP1 alone or along with PBP4 (ceftriaxone, cefoxitin) and 2b (cefotaxime) or 2a, 2b, and 4 (cephalothin). Overall, five selective inhibitors for PBP1 (aztreonam, faropenem, piperacillin, cefuroxime, and cefsulodin), one selective inhibitor for PBP5 (6-aminopenicillanic acid), and various coselective inhibitors for other PBPs in B. subtilis were discovered. Surprisingly, carbapenems strongly inhibited PBP3, formerly shown to have low affinity for ß-lactams and speculated to be involved in ß-lactam resistance in B. subtilis. To investigate the specific roles of PBP3, we developed activity-based probes based on the meropenem core and utilized them to monitor the activity of PBP3 in living cells. We showed that PBP3 activity localizes as patches in single cells and concentrates as a ring at the septum and the division site during the cell growth cycle. Our activity-based approach enabled spatial resolution of the transpeptidation activity of individual PBPs in this model microorganism, which was not possible with previous chemical and biological approaches.


Asunto(s)
Antibacterianos/química , Bacillus subtilis/enzimología , Inhibidores Enzimáticos/química , Proteínas de Unión a las Penicilinas/antagonistas & inhibidores , beta-Lactamas/química , Acetilglucosamina/metabolismo , Antibacterianos/farmacología , Bacillus subtilis/metabolismo , División Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Colorantes Fluorescentes/química , Glicosilación , Humanos , Iluminación , Ácidos Murámicos/metabolismo , Imagen Óptica , Relación Estructura-Actividad , beta-Lactamas/farmacología
16.
Front Endocrinol (Lausanne) ; 11: 621888, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33597927

RESUMEN

The centrosome apparatus is vital for spindle assembly and chromosome segregation during mitotic divisions. Its replication, disjunction and separation have to be fine-tuned in space and time. A multitude of post-translational modifications (PTMs) have been implicated in centrosome modulation, including phosphorylation, ubiquitination and acetylation. Among them is the emerging O-linked N-acetylglucosamine (O-GlcNAc) modification. This quintessential PTM has a sole writer, O-GlcNAc transferase (OGT), and the only eraser, O-GlcNAcase (OGA). O-GlcNAc couples glucose metabolism with signal transduction and forms a yin-yang relationship with phosphorylation. Evidence from proteomic studies as well as single protein investigations has pinpointed a role of O-GlcNAc in centrosome number and separation, centriole number and distribution, as well as the cilia machinery emanating from the centrosomes. Herein we review our current understanding of the sweet modification embedded in centrosome dynamics and speculate that more molecular details will be unveiled in the future.


Asunto(s)
Acetilglucosamina/metabolismo , Centrosoma/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Animales , Cilios/metabolismo , Humanos
17.
J Cell Physiol ; 234(5): 7320-7329, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30417926

RESUMEN

Current treatments for hair follicle (HF) disruption are based on 5-α reductase inhibitors and prostaglandin modulators. Botanicals and nutraceutical compounds interfere with hair loss or stimulate its partial regrowth. Here, we used in vitro cocultures to investigate the activity of Serenoa repens ( SR) and N-acetyl glucosamine + milk proteins (NAG/Lac) on the paracrine interactions between human microvascular endothelial cells (HMVEC) and HF dermal papilla cells (FDPC). Both SR and NAG/Lac-induced endothelial tubulogenesis were enhanced by FDPC. SR promoted proliferation of both the cell types, while NAG/Lac was effective on endothelium. Vascular endothelial growth factor production, enhanced by SR, was further augmented by FDPC. In FDPC 5-α reductase-II and ß-catenin expressions were modified by SR and less by NAG/Lac, with no additional effect by HMVEC. SR and NAG/Lac prevented lipid peroxidation, whereas NAG/Lac was effective on interleukin 1ß production. Finally, SR and NAG/Lac differentially affected HMVEC permeability and tight junction proteins content. These data provide a mechanistic background for the potential use of these compounds as promoters of HF vascularization.


Asunto(s)
Acetilglucosamina/farmacología , Inductores de la Angiogénesis/farmacología , Células Endoteliales/efectos de los fármacos , Folículo Piloso/efectos de los fármacos , Proteínas de la Leche/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Comunicación Paracrina/efectos de los fármacos , Extractos Vegetales/farmacología , Serenoa , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Células Endoteliales/metabolismo , Folículo Piloso/citología , Folículo Piloso/metabolismo , Humanos , Interleucina-1beta/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Permeabilidad , Extractos Vegetales/aislamiento & purificación , Serenoa/química , Transducción de Señal , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
18.
Molecules ; 23(9)2018 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-30205615

RESUMEN

Postmenopausal osteoporosis has seriously affected the life quality of elderly women. A natural polymer, chitin, obtained from shells of crab and shrimp, has been widely used in the biomedical field owing to its nontoxicity, biocompatibility, and biodegradability. In this study, natural N-acetyl-d-glucosamine (NAG) was prepared from liquefied chitin. The protective activities of NAG in postmenopausal osteoporosis were evaluated on Sprague Dawley rats and osteoblast-based models. Results showed that oral administration of NAG boosted trabecular bone volume and trabecular numbers. Additionally, the calcium content in the femur and tibia increased, and femoral biomechanical properties improved. Furthermore, NAG supplementation significantly lowered alkaline phosphatase levels and increased calcium content in the serum of ovariectomized rats. In vitro studies showed that NAG markedly promoted cell proliferation and stimulated osteoblast differentiation of mouse calvaria origin MC3T3-E1 cells with increased alkaline phosphatase activity in a concentration-dependent manner. Moreover, NAG effectively protected osteoblasts from oxidative damage induced by hydrogen peroxide. In conclusion, our data provide an additional foundation for dietary supplementation of NAG, which could protect and reverse osteopenia in postmenopausal women.


Asunto(s)
Acetilglucosamina/administración & dosificación , Fosfatasa Alcalina/metabolismo , Osteoblastos/citología , Osteoporosis Posmenopáusica/prevención & control , Ovariectomía/efectos adversos , Acetilglucosamina/farmacología , Administración Oral , Animales , Calcio/análisis , Calcio/sangre , Línea Celular , Suplementos Dietéticos , Modelos Animales de Enfermedad , Femenino , Fémur/química , Humanos , Ratones , Osteoblastos/efectos de los fármacos , Osteogénesis , Osteoporosis Posmenopáusica/etiología , Osteoporosis Posmenopáusica/metabolismo , Ratas , Ratas Sprague-Dawley , Tibia/química , Regulación hacia Arriba
19.
Plant Physiol ; 177(3): 938-952, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29760197

RESUMEN

Glycosylinositol phosphorylceramides (GIPCs), which have a ceramide core linked to a glycan headgroup of varying structures, are the major sphingolipids in the plant plasma membrane. Recently, we identified the major biosynthetic genes for GIPC glycosylation in Arabidopsis (Arabidopsis thaliana) and demonstrated that the glycan headgroup is essential for plant viability. However, the function of GIPCs and the significance of their structural variation are poorly understood. Here, we characterized the Arabidopsis glycosyltransferase GLUCOSAMINE INOSITOLPHOSPHORYLCERAMIDE TRANSFERASE1 (GINT1) and showed that it is responsible for the glycosylation of a subgroup of GIPCs found in seeds and pollen that contain GlcNAc and GlcN [collectively GlcN(Ac)]. In Arabidopsis gint1 plants, loss of the GlcN(Ac) GIPCs did not affect vegetative growth, although seed germination was less sensitive to abiotic stress than in wild-type plants. However, in rice, where GlcN(Ac) containing GIPCs are the major GIPC subgroup in vegetative tissue, loss of GINT1 was seedling lethal. Furthermore, we could produce, de novo, "rice-like" GlcN(Ac) GIPCs in Arabidopsis leaves, which allowed us to test the function of different sugars in the GIPC headgroup. This study describes a monocot GIPC biosynthetic enzyme and shows that its Arabidopsis homolog has the same biochemical function. We also identify a possible role for GIPCs in maintaining cell-cell adhesion.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glicosiltransferasas/metabolismo , Oryza/crecimiento & desarrollo , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Pared Celular/química , Pared Celular/metabolismo , Ceramidas/metabolismo , Regulación de la Expresión Génica de las Plantas , Glicosiltransferasas/genética , Oryza/genética , Oryza/metabolismo , Filogenia , Plantas Modificadas Genéticamente , Polen/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Semillas/metabolismo
20.
Cell Physiol Biochem ; 45(5): 2054-2070, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29533936

RESUMEN

BACKGROUND/AIMS: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potential anti-cancer agent due to its selective toxicity. However, many human non-small cell lung cancer (NSCLC) cells are partially resistant to TRAIL, thereby limiting its clinical application. Therefore, there is a need for the development of novel adjuvant therapeutic agents to be used in combination with TRAIL. METHODS: In this study, the effect of N-acetyl-glucosamine (GlcNAc), a type of monosaccharide derived from chitosan, combined with TRAIL was evaluated in vitro and in vivo. Thirty NSCLC clinical samples were used to detect the expression of death receptor (DR) 4 and 5. After GlcNAc and TRAIL co-treatment, DR expression was determined by real-time PCR and western blotting. Cycloheximide was used to detect the protein half-life to further understand the correlation between GlcNAc and the metabolic rate of DR. Non-reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to detect receptor clustering, and the localization of DR was visualized by immunofluorescence under a confocal microscope. Furthermore, a co-immunoprecipitation assay was performed to analyze the formation of death-inducing signaling complex (DISC). O-linked glycan expression levels were evaluated following DR5 overexpression and RNA interference mediated knockdown. RESULTS: We found that the clinical samples expressed higher levels of DR5 than DR4, and GlcNAc co-treatment improved the effect of TRAIL-induced apoptosis by activating DR5 accumulation and clustering, which in turn recruited the apoptosis-initiating protease caspase-8 to form DISC, and initiated apoptosis. Furthermore, GlcNAc promoted DR5 clustering by improving its O-glycosylation. CONCLUSION: These results uncovered the molecular mechanism by which GlcNAc sensitizes cancer cells to TRAIL-induced apoptosis, thereby highlighting a novel effective agent for TRAIL-mediated NSCLC-targeted therapy.


Asunto(s)
Acetilglucosamina/farmacología , Apoptosis/efectos de los fármacos , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/toxicidad , Células A549 , Acetilglucosamina/uso terapéutico , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Caspasa 8/metabolismo , Línea Celular Tumoral , Glicosilación/efectos de los fármacos , Humanos , Inmunoprecipitación , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Ratones Desnudos , Microscopía Confocal , Poli(ADP-Ribosa) Polimerasas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/antagonistas & inhibidores , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Ligando Inductor de Apoptosis Relacionado con TNF/uso terapéutico , Trasplante Heterólogo , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA