Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Chemosphere ; 354: 141712, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38484991

RESUMEN

The effects of oxyanions selenite (SeO32-) in soils are of high concern in ecotoxicology and microbiology as they can react with mineral particles and microorganisms. This study investigated the evolution of the actinomycete Kitasatospora sp. SeTe27 in response to selenite. To this aim, we used the Adaptive Laboratory Evolution (ALE) technique, an experimental approach that mimics natural evolution and enhances microbial fitness for specific growth conditions. The original strain (wild type; WT) isolated from uncontaminated soil gave us a unique model system as it has never encountered the oxidative damage generated by the prooxidant nature of selenite. The WT strain exhibited a good basal level of selenite tolerance, although its growth and oxyanion removal capacity were limited compared to other environmental isolates. Based on these premises, the WT and the ALE strains, the latter isolated at the end of the laboratory evolution procedure, were compared. While both bacterial strains had similar fatty acid profiles, only WT cells exhibited hyphae aggregation and extensively produced membrane-like vesicles when grown in the presence of selenite (challenged conditions). Conversely, ALE selenite-grown cells showed morphological adaptation responses similar to the WT strain under unchallenged conditions, demonstrating the ALE strain improved resilience against selenite toxicity. Whole-genome sequencing revealed specific missense mutations in genes associated with anion transport and primary and secondary metabolisms in the ALE variant. These results were interpreted to show that some energy-demanding processes are attenuated in the ALE strain, prioritizing selenite bioprocessing to guarantee cell survival in the presence of selenite. The present study indicates some crucial points for adapting Kitasatospora sp. SeTe27 to selenite oxidative stress to best deal with selenium pollution. Moreover, the importance of exploring non-conventional bacterial genera, like Kitasatospora, for biotechnological applications is emphasized.


Asunto(s)
Actinobacteria , Selenio , Ácido Selenioso/toxicidad , Selenito de Sodio/metabolismo , Selenito de Sodio/toxicidad , Actinobacteria/genética , Actinobacteria/metabolismo , Bacterias/metabolismo , Selenio/metabolismo , Oxidación-Reducción
2.
Sci Rep ; 14(1): 5513, 2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448523

RESUMEN

As a typical sub-deep reservoir in the upper reaches of the Yangtze River in the southwest region, Zhangjiayan Reservoir is also an important source of drinking water. Exploring the role of microorganisms in the material cycle of water bodies is of great significance for preventing the exacerbation of eutrophication in the reservoir. In this study, water samples from the overlying water of five points in the reservoir were collected four times in spring (April), summer (July), autumn (November), and winter (January) of 2022-2023 using a gas-tight water sampler. Physicochemical factors were measured, and the microbial community structure was analyzed by high-throughput MiSeq sequencing of the V3-V4 hypervariable region of 16S rRNA gene in order to explore the relationship between physicochemical factors and microbial community structure and the dominant microbial populations that affect eutrophication of the reservoir. The following results were obtained through analysis. Among the 20 overlying water samples from Zhangjiayan Reservoir, a total of 66 phyla, 202 classes, 499 orders, 835 families, 1716 genera, and 27,904 ASVs of the bacterial domain were detected. The phyla Proteobacteria and Actinobacteria were dominant in the microbial community of the overlying water in Zhangjiayan Reservoir. At the genus level, hgcI_clade and Actinobacteria had the highest abundance and was the dominant population. The microbial community in the water of Zhangjiayan Reservoir has a high level of diversity. The diversity index ranked by numerical order was winter > autumn > summer > spring. Significant differences were found in the composition and structure of the microbial community between the spring/summer and autumn/winter seasons (p < 0.05). Total phosphorus, dissolved total phosphorus, soluble reactive phosphorus, and dissolved oxygen have a significant impact on the composition and structure of the microbial community (p < 0.01). The bacterial community in the overlying water of Zhangjiayan Reservoir showed a mainly positive correlation. Sphingomonas, Brevundimonas, and Blastomonas were the central populations of the bacterial community in the overlying water of Zhangjiayan Reservoir. This study indicates that environmental factors, such as phosphorus and other nutrients, have a significant impact on the formation of the microbial community structure in different seasons. Sphingomonas, Brevundimonas, and Blastomonas are key populations that may have a significant impact on eutrophication in Zhangjiayan Reservoir.


Asunto(s)
Actinobacteria , Caulobacteraceae , Microbiota , Humanos , Estaciones del Año , ARN Ribosómico 16S/genética , Microbiota/genética , Agua , Actinobacteria/genética , Fósforo
3.
J Basic Microbiol ; 64(4): e2300585, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38346247

RESUMEN

This study aimed to isolate biosurfactant-producing and hydrocarbon-degrading actinomycetes from different soils using glycerol-asparagine and starch-casein media with an antifungal agent. The glycerol-asparagine agar exhibited the highest number of actinomycetes, with a white, low-opacity medium supporting pigment production and high growth. Biosurfactant analyses, such as drop collapse, oil displacement, emulsification, tributyrin agar test, and surface tension measurement, were conducted. Out of 25 positive isolates, seven could utilize both olive oil and black oil for biosurfactant production, and only isolate RP1 could produce biosurfactant when grown in constrained conditions with black oil as the sole carbon source and inducer, demonstrating in situ bioremediation potential. Isolate RP1 from oil-spilled garden soil is Gram-staining-positive with a distinct earthy odor, melanin formation, and white filamentous colonies. It has a molecular size of ~621 bp and 100% sequence similarity to many Streptomyces spp. Morphological, biochemical, and 16 S rRNA analysis confirmed it as Streptomyces sp. RP1, showing positive results in all screenings, including high emulsification activity against kerosene (27.2%) and engine oil (95.8%), oil displacement efficiency against crude oil (7.45 cm), and a significant reduction in surface tension (56.7 dynes/cm). Streptomyces sp. RP1 can utilize citrate as a carbon source, tolerate sodium chloride, resist lysozyme, degrade petroleum hydrocarbons, and produce biosurfactant at 37°C in a 15 mL medium culture, indicating great potential for bioremediation and various downstream industrial applications with optimization.


Asunto(s)
Actinobacteria , Petróleo , Streptomyces , Actinobacteria/genética , Actinobacteria/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Actinomyces/metabolismo , Biodegradación Ambiental , Agar , Glicerol , Asparagina , Hidrocarburos/metabolismo , Petróleo/metabolismo , Carbono , Tensoactivos/química
4.
J Appl Microbiol ; 134(8)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37580141

RESUMEN

AIM: This study evaluated the phylogenetic diversity, plant growth promotion capacity, antifungal activity, and biocontrol potential of culturable actinobacterial endophytes isolated from the medicinal plant Aconitum carmichaelii Debeaux. METHODS AND RESULTS: Isolation of actinobacteria from healthy A. carmichaelii plants was carried out on six different media. Full-length 16S rRNA gene was amplified by PCR from the genomic DNA of each strain. Indole-3-acetic acid and siderophore production were quantitatively assessed by the Salkowski and Chrome Azurol S methods, respectively. Rice seeds germination and seedling growth were employed to evaluate plant growth promotion capacities of candidate strains. Dual-culture assay and pot experiments were performed to investigate the antifungal and biocontrol potential of isolates. We obtained 129 actinobacterial isolates from A. carmichaelii, and they belonged to 49 species in 7 genera. These strains exhibited diverse plant growth promotion ability, among which one strain significantly enhanced rice seeds germination, while 31 strains significantly facilitated rice seedling growth. SWUST-123 showed strong antifungal activity against four pathogens in vitro and was most compatible with Qingchuan cultivar. SWUST-123 reduced around 40% of southern blight disease occurrence compared to blank control treatment. . CONCLUSION: Aconitum carmichaelii harbored genetically diverse actinobacterial endophytes exhibiting diverse plant growth promotion and antifungal potential, some of which can be served as good candidates for biofertilizers and biocontrol agents.


Asunto(s)
Aconitum , Actinobacteria , Actinobacteria/genética , Filogenia , ARN Ribosómico 16S/genética , Antifúngicos/farmacología , Bacterias , Plantones/genética , Variación Genética , Endófitos , Raíces de Plantas/microbiología
5.
J Appl Microbiol ; 134(8)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37468449

RESUMEN

AIMS: This study aimed to isolate and characterize endophytic plant growth-promoting (PGP) actinomycetes from the wild medicinal plant Zygophyllum album. METHODS AND RESULTS: Eight actinomycetes were isolated, identified, and screened for their PGP activities to improve the growth and production of wheat plants under low N-inputs. Based on 16S rRNA analysis, the isolated actinobacteria showed high diversity and had multiple in vitro PGP attributes. In pot experiments, Streptomyces sp. NGB-Act4 and NGB-Act6 demonstrated the highest significant PGP activities to enhance the growth of wheat plants under reduced N-inputs. Under various field conditions (high-fertility clay soils and low-fertility sandy soils), in combination with 50% N-dose, the two streptomycetes showed significant increases in grain N% and grain yield of the wheat crop compared with the 50% N-fertilized treatment. Irrespective of soil type, wheat plants inoculated with strain NGB-Act4 produced grain yield and grain N% significantly greater than or comparable to the full N-dose treatment. CONCLUSIONS: This is the first field report on the successful use of endophytic streptomycetes as an effective strategy to improve wheat yield and reduce the use of synthetic N fertilizers.


Asunto(s)
Actinobacteria , Actinomycetales , Streptomyces , Triticum/microbiología , Suelo , ARN Ribosómico 16S/genética , Desarrollo de la Planta , Grano Comestible , Actinobacteria/genética , Actinomycetales/genética
6.
FEMS Microbiol Ecol ; 99(5)2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-36977576

RESUMEN

There is increasing evidence that microbes can help ameliorate plant growth under environmental stress. Still, it is largely unknown what microbes and potential functions are involved in sustaining turfgrass, the major component of urban/suburban landscapes, under drought. We examined microbial responses to water deficits in bulk soil, rhizosphere, and root endosphere of bermudagrass by applying evapotranspiration (ET)-based dynamic irrigation twice per week during the growing season to create six treatments (0%, 40%, 60%, 80%, 100%, and 120% ET) and respective drought-stressed soil conditions. Bacterial and fungal communities were analyzed via marker gene amplicon sequencing and thereafter drought-reshaped potential functions of the bacterial community were projected. Slight yet significant microbial responses to irrigation treatments were observed in all three microhabitats. The root endophytic bacterial community was most responsive to water stress. No-irrigation primarily increased the relative abundance of root endophytic Actinobacteria, especially the genus Streptomyces. Irrigation at ≤40% ET increased the relative abundances of PICRUSt2-predicted functional genes encoding 1-aminocyclopropane-1-carboxylic acid deaminase, superoxide dismutase, and chitinase in root endosphere. Our data suggest that the root endophytic Actinobacteria are likely the key players to improve bermudagrass fitness under drought by modulating phytohormone ethylene production, scavenging reactive oxygen species, or ameliorating nutrient acquisition.


Asunto(s)
Actinobacteria , Cynodon , Deshidratación , Microbiota , Raíces de Plantas , Actinobacteria/efectos de los fármacos , Actinobacteria/genética , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/genética , Cynodon/microbiología , Microbiota/efectos de los fármacos , Microbiota/genética , Raíces de Plantas/microbiología , Rizosfera , Suelo/química , Microbiología del Suelo , Agua/farmacología , Biodiversidad , Genes Bacterianos/genética
7.
Rev Argent Microbiol ; 54(4): 326-334, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35725666

RESUMEN

Diverse habitats have been screened for novel antimicrobial actinomycetes, while others remain unexplored. In this study, we analyzed the bioactivities of actinomycetes cultured from rhizosphere soils of the desert plant Artemisia tridentata and the nearby bulk soils. Actinomycetes were screened for antifungal and antibacterial activities toward a panel of plant pathogens; all comparisons were between activities of rhizosphere soil isolates toward those of its counterpart bulk soil. A selected group of the strongest antifungal isolates were also tested against two antifungal-drug resistant strains of Candida albicans. 16S rDNA partial sequences and phylogenetic analysis of isolates that showed broad-spectrum antifungal activities were performed. Forty-two out of 200 and two soil isolated actinomycetes were selected for their strong antifungal activities. The highest proportion of isolates (p<0.05) from rhizosphere soil of an old plant showed antagonism against gram-positive bacteria (0.483 and 0.224 proportions against Bacillus subtilis and Rathayibacter tritici, respectively), and phytopathogenic fungi (0.259, 0.431, and 0.345 proportions against Fusarium oxysporum, Rhizoctonia solani and Pythium ultimum, respectively), while the highest antagonism against the gram-negative bacteria predominated in isolates from the bulk soils. Isolates from a rhizosphere soil of a young plant were characterized for strong antagonist activities against Fusarium oxysporum (0.333 proportion, p<0.05). Phylogenetic analysis of 16S rDNA sequences showed that isolates that exhibited strong antifungal activity were genetically similar. We conclude that the rhizosphere soil of A. tridentata is an excellent source for discovery of actinomycetes with potentially novel antifungal compounds.


Asunto(s)
Actinobacteria , Artemisia , Streptomyces , Filogenia , Microbiología del Suelo , Antifúngicos , Artemisia/genética , Artemisia/microbiología , Actinomyces/genética , Actinobacteria/genética , Rizosfera , Suelo , ADN Ribosómico/genética , Enfermedades de las Plantas/microbiología
8.
Molecules ; 27(10)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35630600

RESUMEN

Calotropis procera (C. procera) is a wild shrub that is a medicinal plant found in abundance throughout Saudi Arabia. In this study, we investigated the phytochemical composition and antigenotoxic properties of the ethanolic extract of C. procera, in addition to the antimicrobial activity of the plant and its rhizospheric actinobacteria effects against pathogenic microorganisms. Soil-extract medium supplemented with glycerol as a carbon source and starch-casein agar medium was used for isolation of actinobacteria from rhizosphere. From the plant, a total of 31 compounds were identified using gas chromatography/mass spectrometry (GC-MS). The main components were α-amyrin (39.36%), lupeol acetate (17.94%), phytol (13.32%), hexadecanoic acid (5.55%), stigmasterol (3.16%), linolenic acid (3.04%), and gombasterol A (2.14%). C. procera plant extract's antimicrobial activity was investigated using an agar well-diffusion assay and minimum inhibitory concentration (MIC) against six pathogenic microbial strains. The plant extract of C. procera was considered significantly active against Staphylococcus aureus, Klebsiella pneumonia, and Escherichia coli, with inhibition zones of 18.66 mm, 21.26 mm, and 21.93 mm, respectively. The plant extract was considered to be a moderate inhibitor against Bacillus subtilis, with MIC ranging from 0.60-1.50 mg/mL. On the other hand, the isolated actinobacteria were considered to be a moderate inhibitor against S. aureus (MIC of 86 µg/mL), and a potent inhibitor, strain CALT_2, against Candida albicans (MIC of 35 µg/mL). The 16S rRNA gene sequence analysis showed that the potential strains belonged to the genus Streptomyces. The effect of C. procera extract against cyclophosphamide (CP)-induced genotoxicity was examined by evaluating chromosome abnormalities in mouse somatic cells and DNA fragmentation assays. The current study revealed that oral pretreatment of C. procera (50, 100, and 200 mg/kg b.w.) for 1, 7, and 14 days to cyclophosphamide-treated animals significantly reduced chromosomal abnormalities as well as DNA fragmentation in a dose-dependent manner. Moreover, C. procera extract had antimicrobial and antigenotoxic effects against CP-induced genotoxicity.


Asunto(s)
Actinobacteria , Antiinfecciosos , Calotropis , Streptomyces , Actinobacteria/genética , Agar , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/química , Calotropis/química , Ciclofosfamida , Ratones , Extractos Vegetales/química , ARN Ribosómico 16S , Rizosfera , Staphylococcus aureus , Streptomyces/genética
9.
Environ Res ; 212(Pt A): 113135, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35364041

RESUMEN

Baseline assessments of marine microbial studies are very limited around ecologically sensitive areas of the Nuclear Power Plant (NPP) site with respect to their occurrence, distribution, role in adaptation, and their potential remediation process. The distribution and diversity of marine microbes are largely dependent on the physicochemical parameters relating to a specific area, especially spore-producing marine actinobacteria are a source for indigenous bioremediation agents. Marine actinobacterial diversity with conventional and 16 S rRNA gene analysis was done with different pre-treatment conditions and selective media. Totally, 170 different strains are identified in genera level and it belongs to 18 genera with dominant by Streptomyces sp. (75species) followed by Nocardiposis sp, (18species) Rhodococcus sp. (14species). Multiple k-dominance plots simplified the perception of marine actinobacteria according to genera level influence to standard stock. This is the first kind of study in India and the results could act as baseline inventory in terms of microbial diversity around NPP sites. Further, a potential strain of Actinomadura sp. (T5S13) produced 243.7 mg/L of EPS and remediate the Uranium radionuclides. The functional group shifting and adsorption nature were also confirmed by SEM with EDS analysis.


Asunto(s)
Actinobacteria , Uranio , Actinobacteria/genética , Bacterias/genética , ADN Bacteriano , Plantas de Energía Nuclear , Filogenia , ARN Ribosómico 16S/genética
10.
Can J Microbiol ; 68(5): 353-366, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35080442

RESUMEN

Atractylodes macrocephala Koidz. (AMK) is widely used in traditional Chinese medicine owing to its pharmacological activity. Here, we aimed to characterize the differentially expressed genes (DEGs) of one- and three-year growth (OYG and TYG) rhizomes of AMK, combined with endophytic bacterial diversity analysis using high-throughput RNA sequencing. A total of 114 572 unigenes were annotated using six public databases. In all, 3570 DEGs revealed a clear difference, of which 936 and 2634 genes were upregulated and downregulated, respectively. The results of KEGG pathway analysis indicated that DEGs corresponding to terpenoid synthesis gene were downregulated in TYG rhizomes. In addition, 414 424 sequences corresponding to the 16S rRNA gene were divided into 1267 operational taxonomic units (OTUs). Moreover, the diversity of endophytic bacteria changed with species in the OYG (773) and TYG (1201) rhizomes at the OTU level, and Proteobacteria, Actinobacteria, and Bacteroidetes were the dominant phyla. A comparison of species differences among different growth years revealed that some species were significantly different, such as Actinomycetes, Variovorax, and Cloacibacterium. Interestingly, the decrease in the function-related metabolism of terpenoids and polyketides was correlated with the low expression of terpene synthesis genes in TYG rhizomes, as assessed using PICRUSt2. These data provide a scientific basis for elucidating the mechanisms underlying metabolite accumulation and endophytic bacterial diversity in relation to the growth years in AMK.


Asunto(s)
Actinobacteria , Atractylodes , Actinobacteria/genética , Atractylodes/genética , Atractylodes/metabolismo , Bacterias/genética , Endófitos/genética , Expresión Génica , ARN Ribosómico 16S/genética , Rizoma/genética
11.
Folia Microbiol (Praha) ; 67(1): 81-89, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34529264

RESUMEN

The endophytic actinobacteria associated with Artemisia herba-alba (synonym: Seriphidium herba-alba) are highly diverse. This study aimed to illustrate the extent of their differences from the free-living actinobacteria in the surrounding environment. A selection of eighteen actinobacteria inhabiting A. herba-alba were compared with twenty and ten actinobatceria isolates from the surrounding desert and groundwater, respectively, representing six genera. Antagonistic and enzymatic activities, plant growth-promoting traits, and the occurrence of biosynthetic genes were compared among the isolates. Data were analyzed statistically using principal component analysis (PCA) and were visualized using heat map. Endophytic strains showed higher antimicrobial activity and production of plant growth promoters compared to desert and groundwater strains. Polyketide synthase and non-ribosomal peptide synthetase gene clusters were detected at higher frequencies in the endophytic strains (8 and 11 strains, respectively) than the desert strains (1 and 2 strains, respectively). In contrast, both gene clusters were not detected in the groundwater strains. The PCA revealed unique metabolic characteristics of the endophytes. The heatmap clustered the endophytic strains apart from the free-living strains, indicating distinctive qualitative and quantitative bioactivities. Analysis of 16S rRNA genes confirmed the chemotaxonomic identity of all but two strains, with > 94.5% similarity. Six endophytes displayed < 99.5% similarity with their closest type strains, which might indicate species novelty. This study provides an evidence of functional differences and possible species novelty of the endophytic actinobacteria inhabiting A. herba-alba, compared with the free-living species.


Asunto(s)
Actinobacteria , Artemisia , Actinobacteria/genética , Endófitos/genética , Filogenia , ARN Ribosómico 16S/genética
12.
Mar Drugs ; 19(12)2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34940687

RESUMEN

Mangrove actinomycetia are considered one of the promising sources for discovering novel biologically active compounds. Traditional bioactivity- and/or taxonomy-based methods are inefficient and usually result in the re-discovery of known metabolites. Thus, improving selection efficiency among strain candidates is of interest especially in the early stage of the antibiotic discovery program. In this study, an integrated strategy of combining phylogenetic data and bioactivity tests with a metabolomics-based dereplication approach was applied to fast track the selection process. A total of 521 actinomycetial strains affiliated to 40 genera in 23 families were isolated from 13 different mangrove soil samples by the culture-dependent method. A total of 179 strains affiliated to 40 different genera with a unique colony morphology were selected to evaluate antibacterial activity against 12 indicator bacteria. Of the 179 tested isolates, 47 showed activities against at least one of the tested pathogens. Analysis of 23 out of 47 active isolates using UPLC-HRMS-PCA revealed six outliers. Further analysis using the OPLS-DA model identified five compounds from two outliers contributing to the bioactivity against drug-sensitive A. baumannii. Molecular networking was used to determine the relationship of significant metabolites in six outliers and to find their potentially new congeners. Finally, two Streptomyces strains (M22, H37) producing potentially new compounds were rapidly prioritized on the basis of their distinct chemistry profiles, dereplication results, and antibacterial activities, as well as taxonomical information. Two new trioxacarcins with keto-reduced trioxacarcinose B, gutingimycin B (16) and trioxacarcin G (20), together with known gutingimycin (12), were isolated from the scale-up fermentation broth of Streptomyces sp. M22. Our study demonstrated that metabolomics tools could greatly assist classic antibiotic discovery methods in strain prioritization to improve efficiency in discovering novel antibiotics from those highly productive and rich diversity ecosystems.


Asunto(s)
Actinobacteria/genética , Antibacterianos/farmacología , Humedales , Animales , Antibacterianos/química , Organismos Acuáticos , China , Evaluación Preclínica de Medicamentos , Metabolómica , Pruebas de Sensibilidad Microbiana
13.
BMC Microbiol ; 21(1): 335, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34876006

RESUMEN

BACKGROUND: The native potatoes (Solanum tuberosum subsp. tuberosum L.) grown in Chile (Chiloé) represent a new, unexplored source of endophytes to find potential biological control agents for the prevention of bacterial diseases, like blackleg and soft rot, in potato crops. RESULT: The objective of this study was the selection of endophytic actinobacteria from native potatoes for antagonistic activity against Pectobacterium carotovorum subsp. carotovorum and Pectobacterium atrosepticum, and their potential to suppress tissue maceration symptoms in potato tubers. This potential was determined through the quorum quenching activity using a Chromobacterium violaceaum ATCC 12472 Wild type (WT) bioassay and its colonization behavior of the potato plant root system (S. tuberosum) by means of the Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) targeting technique. The results showed that although Streptomyces sp. TP199 and Streptomyces sp. A2R31 were able to inhibit the growth of the pathogens, only the Streptomyces sp. TP199 isolate inhibited Pectobacterium sp. growth and diminished tissue maceration in tubers (p ≤ 0.05). Streptomyces sp. TP199 had metal-dependent acyl homoserine lactones (AHL) quorum quenching activity in vitro and was able to colonize the root endosphere 10 days after inoculation. CONCLUSIONS: We concluded that native potatoes from southern Chile possess endophyte actinobacteria that are potential agents for the disease management of soft rot and blackleg.


Asunto(s)
Actinobacteria/fisiología , Antibiosis/fisiología , Endófitos/fisiología , Solanum tuberosum/microbiología , Actinobacteria/clasificación , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Agentes de Control Biológico/aislamiento & purificación , Chile , Endófitos/clasificación , Endófitos/genética , Endófitos/aislamiento & purificación , Pectobacterium/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Tubérculos de la Planta/microbiología , Percepción de Quorum , Streptomyces/clasificación , Streptomyces/genética , Streptomyces/aislamiento & purificación , Streptomyces/fisiología
14.
Nat Commun ; 12(1): 5308, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34489463

RESUMEN

Climate change is altering the frequency and severity of drought events. Recent evidence indicates that drought may produce legacy effects on soil microbial communities. However, it is unclear whether precedent drought events lead to ecological memory formation, i.e., the capacity of past events to influence current ecosystem response trajectories. Here, we utilize a long-term field experiment in a mountain grassland in central Austria with an experimental layout comparing 10 years of recurrent drought events to a single drought event and ambient conditions. We show that recurrent droughts increase the dissimilarity of microbial communities compared to control and single drought events, and enhance soil multifunctionality during drought (calculated via measurements of potential enzymatic activities, soil nutrients, microbial biomass stoichiometry and belowground net primary productivity). Our results indicate that soil microbial community composition changes in concert with its functioning, with consequences for soil processes. The formation of ecological memory in soil under recurrent drought may enhance the resilience of ecosystem functioning against future drought events.


Asunto(s)
Sequías/estadística & datos numéricos , Microbiota/fisiología , Microbiología del Suelo , Suelo/química , Agua/análisis , Acidobacteria/clasificación , Acidobacteria/genética , Acidobacteria/aislamiento & purificación , Actinobacteria/clasificación , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Altitud , Austria , Bacteroidetes/clasificación , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Biomasa , Carbono/análisis , Chloroflexi/clasificación , Chloroflexi/genética , Chloroflexi/aislamiento & purificación , Pradera , Humanos , Nitrógeno/análisis , Fósforo/análisis , Planctomycetales/clasificación , Planctomycetales/genética , Planctomycetales/aislamiento & purificación , Proteobacteria/clasificación , Proteobacteria/genética , Proteobacteria/aislamiento & purificación , Azufre/análisis , Verrucomicrobia/clasificación , Verrucomicrobia/genética , Verrucomicrobia/aislamiento & purificación
15.
Mar Drugs ; 19(8)2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34436297

RESUMEN

A new versatile actinobacterium designated as strain NJES-13 was isolated from the feces of the Antarctic emperor penguin. This new isolate was found to produce two active gephyromycin analogues and bioflocculanting exopolysaccharides (EPS) metabolites. Phylogenetic analysis based on pairwise comparison of 16S rRNA gene sequences showed that strain NJES-13 was closely related to Mobilicoccus pelagius Aji5-31T with a gene similarity of 95.9%, which was lower than the threshold value (98.65%) for novel species delineation. Additional phylogenomic calculations of the average nucleotide identity (ANI, 75.9-79.1%), average amino acid identity (AAI, 52.4-66.9%) and digital DNA-DNA hybridization (dDDH, 18.6-21.9%), along with the constructed phylogenomic tree based on the up-to-date bacterial core gene (UBCG) set from the bacterial genomes, unequivocally separated strain NJES-13 from its close relatives within the family Dermatophilaceae. Hence, it clearly indicated that strain NJES-13 represented a putative new actinobacterial species isolated from the gut microbiota of mammals inhabiting the Antarctic. The obtained complete genome of strain NJES-13 consisted of a circular 3.45 Mb chromosome with a DNA G+C content of 67.0 mol%. Furthering genome mining of strain NJES-13 showed the presence of five biosynthetic gene clusters (BGCs) including one type III PKS responsible for the biosynthesis of the core of gephyromycins, and a series of genes encoding for bacterial EPS biosynthesis. Thus, based on the combined phylogenetic and active metabolites characterization presented in this study, we confidently conclude that strain NJES-13 is a novel, fresh actinobacterial candidate to produce active gephyromycins and microbial bioflocculanting EPS, with potential pharmaceutical, environmental and biotechnological implications.


Asunto(s)
Actinobacteria/genética , Antraquinonas/metabolismo , Hidrocarburos Aromáticos con Puentes/metabolismo , Spheniscidae , Animales , Regiones Antárticas , Organismos Acuáticos , Técnicas de Tipificación Bacteriana , Heces/microbiología , Humanos , Filogenia , Fitoterapia , ARN Ribosómico 16S/genética
16.
Antonie Van Leeuwenhoek ; 114(10): 1497-1516, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34324106

RESUMEN

Biosynthesis of silver nanoparticles (AgNPs) from marine actinobacteria offers a promising avenue for exploring bacterial extracts as reducing and stabilizing agents. We report extracellular extracts of Rhodococcus rhodochrous (MOSEL-ME29) and Streptomyces sp. (MOSEL-ME28), identified by 16S rRNA gene sequencing for synthesis of AgNPs. Ultrafine silver nanoparticles were biosynthesized using the extracts of R. rhodochrous and Streptomyces sp. and their possible therapeutic applications were studied. The physicochemical properties of nanoparticles were established by HR-SEM/TEM, SAED, UV-Vis, EDS, XRD, and FTIR. UV-Vis spectra displayed characteristic absorption at 430 nm and 412 nm for AgNPs from Streptomyces sp. (S-AgNPs) and Rhodococcus sp. (R-AgNPs), respectively. HR-SEM/TEM, XRD, EDS analysis confirmed the spherical shape, crystalline nature, and elemental formation of silver. Crystallite or grain size was deduced as 5.52 nm for R-AgNPs and 35 nm for S-AgNPs. Zeta-potential indicated electrostatic negative charge for AgNPs, while FTIR revealed the presence of diverse functional groups. Disc diffusion assay indicated the broad-spectrum antibacterial potential of S-AgNPs with the maximum inhibition of B. subtilis while R-AgNPs revealed potency against P. aeruginosa at 10 µg/mL concentration. Biogenic AgNPs revealed antileishmanial activity and the IC50 was calculated as 164 µg/mL and 184 µg/mL for R-AgNPs and S-AgNPs respectively. Similarly, the R-AgNPs and S-AgNPs revealed anti-cancer potential against HepG2 and the IC50 was calculated as 49 µg/mL and 69 µg/mL for R-AgNPs and S-AgNPs, respectively. Moreover, the antioxidant activity showed significant results. MTT assay on RD cells, L20B cells, and Hep-2C indicated intensification in viability by reducing the concentration of R-AgNPs and S-AgNPs. The R-AgNPs and S-AgNPs inhibited sabin-like poliovirus (1TCID50 infection in RD cells). Furthermore, hemocompatibility at low concentrations has been confirmed. Hence, it is concluded that biogenic-AgNPs has the potential to be used in diverse biological applications and that the marine actinobacteria are an excellent resource for fabrication of AgNPs.


Asunto(s)
Actinobacteria , Nanopartículas del Metal , Actinobacteria/genética , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Extractos Vegetales , ARN Ribosómico 16S/genética , Rhodococcus , Plata/farmacología
17.
Artículo en Inglés | MEDLINE | ID: mdl-34170217

RESUMEN

A novel actinobacterium, designated CFH 10395T, was isolated from the foregut of grass carp (Ctenopharyngodon idella), which had been fed with ginseng extract supplement. The taxonomic position was investigated by a polyphasic approach. Cells of CFH 10395T were Gram-staining-positive, aerobic, ovoid-shaped, non-spore-forming and non-motile. On the basis of the results of 16S rRNA gene sequence analysis, CFH 10395T was most closely related to Brachybacterium endophyticum KCTC 49087T, Brachybacterium squillarum JCM 16464T and Brachybacterium paraconglomeratum JCM 17781T (97.85%, 97.51 and 97.29% similarity, respectively). CFH 10395T grew at 4-37 °C, pH 5.0-9.0 and in the presence of up to 10.0 % NaCl (w/v). The dominant menaquinone was MK-7. The whole-cell sugars were rhamnose, glucose, mannose and galactose. meso-diaminopimelic acid was the diagnostic diamino acid in the cell-wall peptidoglycan. The major fatty acids were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The genome size was 3.99 Mbp with a DNA G+C content of 71.9 mol%. On the basis of the results of phylogenetic analysis, physiological properties, chemotaxonomic characteristics, low average nucleotide identity (ANI) and digital DDH (dDDH) results [ANI calculated using MUMmer (ANIm) <87 %, ANI calculated using blast (ANIb) <83 % and dDDH <23 %], it is concluded that CFH 10395T represents a novel species of the genus Brachybacterium, for which the name Brachybacterium subflavum sp. nov., is proposed. The type strain is CFH 10395T (=CGMCC 1.13804T=KCTC 49235T).


Asunto(s)
Actinobacteria/clasificación , Actinobacteria/aislamiento & purificación , Carpas/microbiología , Filogenia , Actinobacteria/genética , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/análisis , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Fosfolípidos/análisis , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
18.
ACS Chem Biol ; 16(5): 915-928, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33913701

RESUMEN

Glycopeptide antibiotics (GPAs) are last defense line drugs against multidrug-resistant Gram-positive pathogens. Natural GPAs teicoplanin and vancomycin, as well as semisynthetic oritavancin, telavancin, and dalbavancin, are currently approved for clinical use. Although these antibiotics remain efficient, emergence of novel GPA-resistant pathogens is a question of time. Therefore, it is important to investigate the natural variety of GPAs coming from so-called "rare" actinobacteria. Herein we describe a novel GPA producer-Nonomuraea coxensis DSM 45129. Its de novo sequenced and completely assembled genome harbors a biosynthetic gene cluster (BGC) similar to the dbv BGC of A40926, the natural precursor to dalbavancin. The strain produces a novel GPA, which we propose is an A40926 analogue lacking the carboxyl group on the N-acylglucosamine moiety. This structural difference correlates with the absence of dbv29-coding for an enzyme responsible for the oxidation of the N-acylglucosamine moiety. Introduction of dbv29 into N. coxensis led to A40926 production in this strain. Finally, we successfully applied dbv3 and dbv4 heterologous transcriptional regulators to trigger and improve A50926 production in N. coxensis, making them prospective tools for screening other Nonomuraea spp. for GPA production. Our work highlights genus Nonomuraea as a still untapped source of novel GPAs.


Asunto(s)
Actinobacteria/química , Antibacterianos/química , Proteínas Bacterianas/química , Glicopéptidos/química , Proteínas Recombinantes/química , Actinobacteria/genética , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/farmacología , Secuencia de Bases , Simulación por Computador , Evaluación Preclínica de Medicamentos , Regulación Bacteriana de la Expresión Génica , Genómica/métodos , Glucosamina/química , Glicopéptidos/farmacología , Familia de Multigenes , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Espectrometría de Masas en Tándem , Teicoplanina/análogos & derivados , Teicoplanina/química , Teicoplanina/farmacología
19.
Arch Microbiol ; 203(6): 3055-3059, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33783591

RESUMEN

A novel actinomycete strain, designated strain QMT-12T, was isolated from the rhizospheric soils of Fagopyrum tataricum and characterized using a polyphasic approach. Strain QMT-12T was found to have morphological features typical of the genus Streptomyces. The predominant fatty acids included C18:1 cis9 (35.9%), Summed feature 6 (C18:2 cis9, 12/C18:0 a or C18:0 anteiso/C18:2 c) (30.6%) and C16:0 (16.3%). The whole-cell sugars were arabinose and glucose. The whole-cell-wall amino acids included alanine, aspartate, glutamic acid, glycine and LL-diaminopimelic acid. The menaquinones were MK-9, MK-9(H2), MK-9(H4), MK-9(H6) and MK-9(H8). The diagnostic phospholipids consisted of diphosphatidyl glycerol, phosphatidylethanolamine, phosphatidyl methyl ethanolamine, phospholipids, phosphotidyl inositol, phosphotidylinositol mannosides, and phospholipids of unknown structure containing glucosamine. The full-length 16S rRNA gene sequence analysis showed that strain QMT-12T belonged to the genus Streptomyces and had 98.2, 98.1, 98.1 and ≤ 98.0% similarities to Streptomyces camponoticapitis 2H-TWYE14T, Streptomyces scopuliridis NRRL B-24574T, Streptomyces inhibens NEAU-D10T and other Streptomyces species with validly published and correct names, respectively. Phylogenetic analysis indicated that strain QMT-12T was closely related to Streptomyces inhibens NEAU-D10T. However, the average nucleotide identity value and the digital DNA-DNA hybridization value between strain QMT-12T and S. inhibens NEAU-D10T were 85.0 and 22.3%, respectively, well below 95-96% and 70% cut-off point recommended for delineating species. Based on its phenotypic and genotypic characteristics, strain QMT-12T (= CICC 11056T = JCM 33963T) represents the type strain of a novel species, for which the name Streptomyces liangshanensis sp. nov. is proposed.


Asunto(s)
Actinobacteria , Fagopyrum , Rizosfera , Microbiología del Suelo , Streptomyces , Actinobacteria/genética , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Fagopyrum/microbiología , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Especificidad de la Especie , Streptomyces/clasificación , Streptomyces/genética
20.
Cell Rep Med ; 2(3): 100206, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33763652

RESUMEN

Extremely low birth weight (ELBW) infants often develop an altered gut microbiota composition, which is related to clinical complications, such as necrotizing enterocolitis and sepsis. Probiotic supplementation may reduce these complications, and modulation of the gut microbiome is a potential mechanism underlying the probiotic effectiveness. In a randomized, double-blind, placebo-controlled trial, we assessed the effect of Lactobacillus reuteri supplementation, from birth to post-menstrual week (PMW)36, on infant gut microbiota. We performed 16S amplicon sequencing in 558 stool samples from 132 ELBW preterm infants at 1 week, 2 weeks, 3 weeks, 4 weeks, PMW36, and 2 years. Probiotic supplementation results in increased bacterial diversity and increased L. reuteri abundance during the 1st month. At 1 week, probiotic supplementation also results in a lower abundance of Enterobacteriaceae and Staphylococcaceae. No effects were found at 2 years. In conclusion, probiotics may exert benefits by modulating the gut microbiota composition during the 1st month in ELBW infants.


Asunto(s)
Suplementos Dietéticos , Microbioma Gastrointestinal/genética , Recien Nacido con Peso al Nacer Extremadamente Bajo/crecimiento & desarrollo , Recien Nacido Extremadamente Prematuro/crecimiento & desarrollo , Limosilactobacillus reuteri/fisiología , Probióticos/administración & dosificación , Actinobacteria/clasificación , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Bacteroidetes/clasificación , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Biodiversidad , Heces/microbiología , Femenino , Firmicutes/clasificación , Firmicutes/genética , Firmicutes/aislamiento & purificación , Fusobacterias/clasificación , Fusobacterias/genética , Fusobacterias/aislamiento & purificación , Humanos , Lactante , Masculino , Proteobacteria/clasificación , Proteobacteria/genética , Proteobacteria/aislamiento & purificación , ARN Ribosómico 16S/genética , Verrucomicrobia/clasificación , Verrucomicrobia/genética , Verrucomicrobia/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA