Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Drug Des Devel Ther ; 14: 4423-4438, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33122887

RESUMEN

INTRODUCTION: Berberrubine (BRB), an isoquinoline alkaloid, is a major constituent of medicinal plants Coptis chinensis Franch or Phellodendron chinense Schneid. BRB exhibits various pharmacological activities, whereas exposure to BRB may cause toxicity in experimental animals. METHODS: In this study, we thoroughly investigated the liver injury induced by BRB in mice and rats. To explore the underlying mechanism, a study of the metabolic activation of BRB was conducted. Furthermore, covalent modifications of cysteine residues of proteins were observed in liver homogenate samples of animals after exposure to BRB, by application of an exhaustive proteolytic digestion method. RESULTS: It was demonstrated that BRB-induced hepatotoxicities in a time- and dose-dependent manner, based on the biochemical parameters ALT and AST. H&E stained histopathological examination showed the occurrence of obvious edema in liver of mice after intraperitoneal (i.p.) administration of BRB at a single dose of 100 mg/kg. Slight hepatotoxicity was also observed in rats given the same doses of BRB after six weeks of gavage. As a result, four GSH adducts derived from reactive metabolites of BRB were detected in microsomal incubations with BRB fortified with GSH as a trapping agent. Moreover, four cys-based adducts derived from reaction of electrophilic metabolites of BBR with proteins were found in livers. CONCLUSION: These results suggested that the formation of protein adducts originating from metabolic activation of BRB could be a crucial factor of the mechanism of BRB-induced toxicities.


Asunto(s)
Berberina/análogos & derivados , Hígado/efectos de los fármacos , Activación Metabólica/efectos de los fármacos , Animales , Berberina/sangre , Berberina/metabolismo , Berberina/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Relación Dosis-Respuesta a Droga , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos , Microsomas Hepáticos/química , Microsomas Hepáticos/metabolismo , Estructura Molecular , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad
2.
Anticancer Res ; 39(5): 2369-2375, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31092429

RESUMEN

BACKGROUND/AIM: Benzo[a]pyrene (BaP), an environmental pollutant produced by combustion processes, induces expression of cytochrome P450 (CYP) 1A1 via the activation of aryl hydrocarbon receptor (AHR). Induced CYP1A1 is involved in BaP metabolism, resulting in either detoxification or metabolic activation in a context-dependent manner. The effect of diallyl trisulfide (DATS), a garlic-derived organosulfur compound, on BaP metabolism has not been investigated. MATERIALS AND METHODS: The combined effect of DATS and BaP on BaP metabolism in hepatocyte-derived HepG2 cells was examined. RESULTS: DATS enhanced BaP-induced CYP1A1 and CYP1B1 mRNA expression, BaP hydroxylation and BaP-DNA adduct formation. Combined treatment of BaP and DATS also increased reactive oxygen species levels. DATS enhanced BaP-induced AHR recruitment and histone H3 acetylation on the CYP1A1 promoter. CONCLUSION: DATS combined treatment enhances BaP metabolic activation through an AHR-modulating mechanism.


Asunto(s)
Compuestos Alílicos/farmacología , Benzo(a)pireno/farmacología , Citocromo P-450 CYP1A1/genética , Receptores de Hidrocarburo de Aril/genética , Sulfuros/farmacología , Activación Metabólica/efectos de los fármacos , Compuestos Alílicos/química , Aductos de ADN/efectos de los fármacos , Aductos de ADN/genética , Ajo/química , Regulación de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Humanos , Especies Reactivas de Oxígeno/metabolismo , Sulfuros/química
3.
Toxicol Appl Pharmacol ; 359: 82-90, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30248417

RESUMEN

Obesity is highly correlated with several metabolic disorders. Adipocyte differentiation is a key process in determining obesogenesis. 14-Deoxy-11,12-didehydroandrographolide (deAND) is a diterpenoid rich in Andrographis paniculata (Burm.f.) Nees., a herbal medicine commonly used to treat colds, infections, and liver diseases. We investigated whether deAND inhibits the adipogenesis of 3T3-L1 cells and the underlying mechanisms. We found that deAND (0-15 µM) dose-dependently inhibits the mRNA and protein expression of peroxisome proliferator-activated receptor γ, sterol regulatory element-binding protein 1c, fatty acid synthase, and stearoyl-CoA desaturase-1. Cellular lipid accumulation was decreased by deAND, and the early phase of adipocyte differentiation was critical for this inhibition. Immunoblotting revealed that deAND attenuated differentiation medium-induced protein kinase A (PKA) and cAMP response element-binding protein (CREB) activation, which leads to down-regulating C/EBPß transcription. Moreover, deAND inhibited ERK- and GSK3ß-mediated C/EBPß transcriptional activity. Flow cytometry analysis showed that deAND impaired the progression of mitotic clonal expansion (MCE) by arresting the cell cycle at the G0/G1 phase, while the expression of cyclin D1, cyclin E, CDK6, and CDK2 was attenuated. deAND increased the phosphorylation of AMPK and raptor, an mTOR-interacting partner, which inhibited the mTOR-driven phosphorylation of P70S6K and eukaryotic translation initiation factor 4E binding protein. In the presence of compound C, deAND modulation of AMPK-mTOR signaling and inhibition of cell cycle regulator expression were reversed. Our results reveal that the anti-adipogenic effect of deAND is likely through inhibition of the PKA-CREB-C/EBPß and AMPK/mTOR pathways, which leads to down-regulating C/EBPß-driven lipogenic protein expression and halting MCE progression.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Adipocitos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Proteína beta Potenciadora de Unión a CCAAT/antagonistas & inhibidores , Diterpenos/farmacología , Mitosis/efectos de los fármacos , Células 3T3-L1 , Activación Metabólica/efectos de los fármacos , Andrographis/química , Animales , Células Clonales/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Transducción de Señal/efectos de los fármacos , Células Madre/efectos de los fármacos
4.
Phytomedicine ; 23(7): 714-24, 2016 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-27235710

RESUMEN

BACKGROUND: Lup-20(29)-en-3H-ol (Lupeol), a dietary pentacyclic triterpenoid has been shown to possess multiple medicinal activities including anti-inflammatory, anti-oxidant and anti-carcinogenic effects. Mancozeb is a widely used broad-spectrum fungicide with well-known carcinogenic hazards in rodents. PURPOSE: The present study has been designed to investigate the protective effects of lupeol against mancozeb-induced genotoxicity and apoptosis in cultured human lymphocytes (CHLs). METHODS: The genotoxic effect of mancozeb was evaluated by chromosomal aberration and micronucleus assays. The cell cycle kinetics and intracellular reactive oxygen species (ROS) generation was measured by flow cytometry. The levels of anti-oxidant enzymes and lipid peroxidation (LPO) were estimated by enzymatic assays. The localization of p65NF-κB was measured by immunocytochemical analysis. The differential expression of genes associated with genotoxicity was measured by qRT-PCR. RESULTS: Mancozeb exposure (5µg/ml) for 24h caused significant induction of chromosomal aberrations (CAs) and micronuclei (MN) formation in CHLs. Pre-and post-treatment (25 and 50µg/ml) of lupeol for 24h significantly (p<0.05) reduced the frequency of CAs and MN induction, in a dose-dependent manner in mancozeb treated CHLs. Concomitantly, lupeol pre-treatment for 24h significantly increased the levels of anti-oxidant enzymes, superoxide dismutase (SOD) and catalase and decreased ROS generation and LPO. Additionally, lupeol pre-treatment significantly reduced mancozeb-induced apoptosis as shown by Sub-G1 peak analysis and annexin V-PI assay, in a dose dependent manner. Moreover, pre-treatment with lupeol attenuated mancozeb-induced NF-κB activation in CHLs. Furthermore, the results of qRT-PCR showed that lupeol pre-treatment significantly (p<0.05) decreased mancozeb-induced expression of DNA damage (p53, MDM2, COX-2, GADD45α and p21) and increased expression of DNA repair responsive genes (hOGG1 and XRCC1) in CHLs. CONCLUSION: Taken together, our findings suggest that lupeol could attenuate mancozeb-induced oxidative stress, which in turn could inhibit NF-κB activation and thus provide protection against mancozeb-induced genotoxicity and apoptosis. So, lupeol could be used as a potent anti-oxidant regimen against pesticide induced genotoxicity in agricultural farm workers.


Asunto(s)
Antimutagênicos/farmacología , Fungicidas Industriales/toxicidad , Linfocitos/efectos de los fármacos , Maneb/toxicidad , Mutágenos/toxicidad , Triterpenos Pentacíclicos/farmacología , Zineb/toxicidad , Activación Metabólica/efectos de los fármacos , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Células Cultivadas , Aberraciones Cromosómicas/efectos de los fármacos , Daño del ADN , Humanos , Pruebas de Micronúcleos , FN-kappa B/efectos de los fármacos
5.
Nat Commun ; 7: 11040, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-27010513

RESUMEN

Target engagement is a critical factor for therapeutic efficacy. Assessment of compound binding to native target proteins in live cells is therefore highly desirable in all stages of drug discovery. We report here the first compound library screen based on biophysical measurements of intracellular target binding, exemplified by human thymidylate synthase (TS). The screen selected accurately for all the tested known drugs acting on TS. We also identified TS inhibitors with novel chemistry and marketed drugs that were not previously known to target TS, including the DNA methyltransferase inhibitor decitabine. By following the cellular uptake and enzymatic conversion of known drugs we correlated the appearance of active metabolites over time with intracellular target engagement. These data distinguished a much slower activation of 5-fluorouracil when compared with nucleoside-based drugs. The approach establishes efficient means to associate drug uptake and activation with target binding during drug discovery.


Asunto(s)
Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/farmacología , Fluorouracilo/metabolismo , Espacio Intracelular/metabolismo , Timidilato Sintasa/antagonistas & inhibidores , Activación Metabólica/efectos de los fármacos , Azacitidina/análogos & derivados , Azacitidina/farmacología , Bioensayo , Desaminación/efectos de los fármacos , Decitabina , Humanos , Células K562 , Cinética , Fosforilación/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/análisis , Bibliotecas de Moléculas Pequeñas/farmacología , Timidilato Sintasa/metabolismo , Factores de Tiempo
6.
Drug Metab Dispos ; 44(5): 720-31, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26965985

RESUMEN

Acetaminophen (APAP) overdose is the leading cause of drug-induced acute liver failure in Western countries. Glycyrrhizin (GL), a potent hepatoprotective constituent extracted from the traditional Chinese medicine liquorice, has potential clinical use in treating APAP-induced liver failure. The present study determined the hepatoprotective effects and underlying mechanisms of action of GL and its active metabolite glycyrrhetinic acid (GA). Various administration routes and pharmacokinetics-pharmacodynamics analyses were used to differentiate the effects of GL and GA on APAP toxicity in mice. Mice deficient in cytochrome P450 2E1 enzyme (CYP2E1) or receptor interacting protein 3 (RIPK3) and their relative wild-type littermates were subjected to histologic and biochemical analyses to determine the potential mechanisms. Hepatocyte death mediated by tumor necrosis factorα(TNFα)/caspase was analyzed by use of human liver-derived LO2 cells. The pharmacokinetics-pharmacodynamics analysis using various administration routes revealed that GL but not GA potently attenuated APAP-induced liver injury. The protective effect of GL was found only with intraperitoneal and intravenous administration and not with gastric administration. CYP2E1-mediated metabolic activation and RIPK3-mediated necroptosis were unrelated to GL's protective effect. However, GL inhibited hepatocyte apoptosis via interference with TNFα-induced apoptotic hepatocyte death. These results demonstrate that GL rapidly attenuates APAP-induced liver injury by directly inhibiting TNFα-induced hepatocyte apoptosis. The protective effect against APAP-induced liver toxicity by GL in mice suggests the therapeutic potential of GL for the treatment of APAP overdose.


Asunto(s)
Acetaminofén/efectos adversos , Apoptosis/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Ácido Glicirrínico/farmacología , Hígado/efectos de los fármacos , Sustancias Protectoras/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Activación Metabólica/efectos de los fármacos , Animales , Línea Celular , Citocromo P-450 CYP2E1/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
7.
Chem Res Toxicol ; 29(3): 359-66, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26886724

RESUMEN

8-Epidiosbulbin E acetate (EEA), a furanoid, was unexpectedly found to be the most abundant diterpenoid lactone in certain varieties of Dioscorea bulbifera L. (DB), a traditional herbal medicine widely used in Asian nations. This herb has been reported to cause liver injury in humans and experimental animals. The occurrence of EEA in DB was dependent on its commercial source. The present study shows that EEA exhibits time- and dose-dependent liver injury in mice. Pretreatment with ketoconazole prevented the animals from developing EEA-induced liver injury, caused 7- and 13-fold increases in the plasma Cmax and AUC of EEA, and decreased urinary excretion of glutathione conjugates derived from EEA. Pretreatment with buthionine sulfoximine exacerbated EEA-induced hepatotoxicity. In order to define the role of EEA's furan moiety in EEA-induced hepatotoxicity, we synthesized tetrahydro-EEA by catalytic hydrogenation of the furan moiety. No liver injury was observed in the animals given the same doses of tetrahydro-EEA as those used with EAA. The results indicate that EEA itself does not appear to be hepatotoxic but that the electrophilic intermediate generated by the metabolic activation of the furan ring mediated by cytochromes P450 is responsible for EEA-induced liver injury.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Diterpenos/metabolismo , Diterpenos/toxicidad , Activación Metabólica/efectos de los fármacos , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Sistema Enzimático del Citocromo P-450/metabolismo , Diterpenos/administración & dosificación , Relación Dosis-Respuesta a Droga , Cetoconazol/administración & dosificación , Cetoconazol/farmacología , Masculino , Ratones , Ratones Endogámicos , Estructura Molecular , Factores de Tiempo
8.
Mar Drugs ; 13(2): 741-55, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25636157

RESUMEN

The high incidence of cardiovascular disease and vitamin D deficiency in chronic kidney disease patients is well known. Vitamin D activation by omega-3 fatty acid (FA) supplementation may explain the cardioprotective effects exerted by omega-3 FA. We hypothesized that omega-3 FA and 25-hydroxyvitamin D (25(OH)D) supplementation may increase 1,25-dihydroxyvitamin D (1,25(OH)2D) levels compared to 25(OH)D supplementation alone in hemodialysis (HD) patients that have insufficient or deficient 25(OH)D levels. We enrolled patients that were treated for at least six months with 25(OH)D < 30 ng/mL (NCT01596842). Patients were randomized to treatment for 12 weeks with cholecalciferol supplemented with omega-3 FA or a placebo. Levels of 25(OH)D and 1,25(OH)2D were measured after 12 weeks. The erythrocyte membrane FA contents were also measured. Levels of 25(OH)D were increased in both groups at 12 weeks compared to baseline. The 1,25(OH)2D levels at 12 weeks compared to baseline showed a tendency to increase in the omega-3 FA group. The oleic acid and monounsaturated FA content decreased, while the omega-3 index increased in the omega-3 FA group. Omega-3 FA supplementation may be partly associated with vitamin D activation, although increased 25(OH)D levels caused by short-term cholecalciferol supplementation were not associated with vitamin D activation in HD patients.


Asunto(s)
Ácidos Grasos Omega-3/farmacología , Diálisis Renal/efectos adversos , Vitamina D/metabolismo , Activación Metabólica/efectos de los fármacos , Anciano , Colecalciferol/farmacología , Dieta , Suplementos Dietéticos , Método Doble Ciego , Membrana Eritrocítica/efectos de los fármacos , Membrana Eritrocítica/metabolismo , Femenino , Humanos , Hidroxicolecalciferoles/metabolismo , Masculino , Persona de Mediana Edad , Ácido Oléico/sangre , Proyectos Piloto , Deficiencia de Vitamina D/tratamiento farmacológico , Deficiencia de Vitamina D/etiología , Vitaminas/farmacología
9.
Drug Metab Dispos ; 42(10): 1727-36, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25024403

RESUMEN

Diosbulbin B (DIOB), a furan-containing diterpenoid lactone, is the most abundant component of Dioscorea bulbifera L. (DB), a traditional Chinese medicine herb. Administration of purified DIOB or DB extracts has been reported to cause liver injury in animals. The mechanisms of DIOB-induced hepatotoxicity remain unknown. The major objective of this study was to identify reactive metabolites of DIOB. A DIOB-derived cis-enedial was trapped by N-acetyl lysine (NAL) and glutathione (GSH) or N-acetyl cysteine (NAC) in rat and human liver microsomal incubation systems after exposure to DIOB. Four metabolites (M1-M4) associated with GSH were detected by liquid chromatography coupled to tandem mass spectrometry. Apparently, M1 was derived from both NAL and GSH. M2 and M3 resulted from the reaction of GSH without the involvement of NAL. Two molecules of GSH participated in the formation of M4. M2 and M3 were also detected in bile and urine of rats given DIOB. M5, a DIOB-derived NAC/NAL conjugate, was detected in microsomal incubations with DIOB fortified with NAC and NAL as trapping agents. Biomimetic M1-M5 were prepared by oxidation of DIOB with Oxone for metabolite identification. Microsomal incubation study demonstrated that ketoconazole inhibited the production of the enedial in a concentration-dependent manner, and CYP3A4 was found to be the enzyme responsible for the metabolic activation of DIOB. The metabolism study facilitates the understanding of the role of bioactivation of DIOB in its hepatotoxicity.


Asunto(s)
Citocromo P-450 CYP3A/metabolismo , Compuestos Heterocíclicos de 4 o más Anillos/metabolismo , Acetilcisteína/metabolismo , Activación Metabólica/efectos de los fármacos , Animales , Bilis/metabolismo , Glutatión/metabolismo , Compuestos Heterocíclicos de 4 o más Anillos/orina , Humanos , Cetoconazol/farmacología , Lisina/metabolismo , Masculino , Microsomas Hepáticos/metabolismo , Ratas , Orina
10.
Drug Metab Dispos ; 42(6): 1044-54, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24696463

RESUMEN

Evodiamine and rutaecarpine are the main active indoloquinazoline alkaloids of the herbal medicine Evodia rutaecarpa, which is widely used for the treatment of hypertension, abdominal pain, angina pectoris, gastrointestinal disorder, and headache. Immunosuppressive effects and acute toxicity were reported in mice treated with evodiamine and rutaecarpine. Although the mechanism remains unknown, it is proposed that metabolic activation of the indoloquinazoline alkaloids and subsequent covalent binding of reactive metabolites to cellular proteins play a causative role. Liquid chromatography-tandem mass spectrometry analysis of incubations containing evodiamine and NADPH-supplemented microsomes in the presence of glutathione (GSH) revealed formation of a major GSH conjugate which was subsequently indentified as a benzylic thioether adduct on the C-8 position of evodiamine by NMR analysis. Several other GSH conjugates were also detected, including conjugates of oxidized and demethylated metabolites of evodiamine. Similar GSH conjugates were formed in incubations with rutaecarpine. These findings are consistent with a bioactivation sequence involving initial cytochrome P450-catalyzed dehydrogenation of the 3-alkylindole moiety in evodiamine and rutaecarpine to an electrophile 3-methyleneindolenine. Formation of the evodiamine and rutaecarpine GSH conjugates was primarily catalyzed by heterologously expressed recombinant CYP3A4 and, to a lesser extent, CYP1A2 and CYP2D6, respectively. It was found that the 3-methyleneindolenine or another reactive intermediate was a mechanism-based inactivator of CYP3A4, with inactivation parameters KI = 29 µM and kinact = 0.029 minute(-1), respectively. In summary, these findings are of significance in understanding the bioactivation mechanisms of indoloquinazoline alkaloids, and dehydrogenation of evodiamine and rutaecarpine may cause toxicities through formation of electrophilic intermediates and lead to drug-drug interactions mainly via CYP3A4 inactivation.


Asunto(s)
Citocromo P-450 CYP3A/metabolismo , Alcaloides Indólicos/metabolismo , Microsomas Hepáticos/enzimología , Extractos Vegetales/metabolismo , Quinazolinas/metabolismo , Activación Metabólica/efectos de los fármacos , Activación Metabólica/fisiología , Humanos , Hidrogenación , Alcaloides Indólicos/química , Alcaloides Indólicos/farmacología , Microsomas Hepáticos/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Quinazolinas/química , Quinazolinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA