Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Plant Cell Rep ; 43(4): 96, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480545

RESUMEN

KEY MESSAGE: Barley AGO4 proteins complement expressional changes of epigenetically regulated genes in Arabidopsis ago4-3 mutant and show a distinct affinity for the 5' terminal nucleotide of small RNAs, demonstrating functional conservation and divergence. The function of Argonaute 4 (AGO4) in Arabidopsis thaliana has been extensively characterized; however, its role in monocots, which have large genomes abundantly supplemented with transposable elements (TEs), remains elusive. The study of barley AGO4 proteins can provide insights into the conserved aspects of RNA-directed DNA methylation (RdDM) and could also have further applications in the field of epigenetics or crop improvement. Bioinformatic analysis of RNA sequencing data identified two active AGO4 genes in barley, HvAGO4a and HvAGO4b. These genes function similar to AtAGO4 in an Arabidopsis heterologous complementation system, primarily binding to 24-nucleotide long small RNAs (sRNAs) and triggering methylation at specific target loci. Like AtAGO4, HvAGO4B exhibits a preference for binding sRNAs with 5' adenine residue, while also accepting 5' guanine, uracil, and cytosine residues. In contrast, HvAGO4A selectively binds only sRNAs with a 5' adenine residue. The diverse binding capacity of barley AGO4 proteins is reflected in TE-derived sRNAs and in their varying abundance. Both barley AGO4 proteins effectively restore the levels of extrachromosomal DNA and transcript abundancy of the heat-activated ONSEN retrotransposon to those observed in wild-type Arabidopsis plants. Our study provides insight into the distinct binding specificities and involvement in TE regulation of barley AGO4 proteins in Arabidopsis by heterologous complementation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Hordeum , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hordeum/genética , Hordeum/metabolismo , ARN Interferente Pequeño/genética , Nucleótidos/metabolismo , Adenina/metabolismo , Metilación de ADN/genética , ARN de Planta/genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-38359644

RESUMEN

Adenine phosphoribosyltransferase (APRT) deficiency is a rare , hereditary disorder characterized by renal excretion of 2,8-dihydroxyadenine (DHA), leading to kidney stone formation and chronic kidney disease (CKD). Treatment with a xanthine oxidoreductase inhibitor, allopurinol or febuxostat, reduces urinary DHA excretion and slows the progression of CKD. The method currently used for therapeutic monitoring of APRT deficiency lacks specificity and thus, a more reliable measurement technique is needed. In this study, an ultra-performance liquid chromatography-tandem mass spectrometry method for simultaneous quantification of DHA, adenine, allopurinol, oxypurinol and febuxostat in human plasma was optimized and validated. Plasma samples were prepared with protein precipitation using acetonitrile followed by evaporation. The chemometric approach design of experiments was implemented to optimize gradient steepness, amount of organic solvent, flow rate, column temperature, cone voltage, desolvation temperature and desolvation flow rate. Experimental screening was conducted using fractional factorial design with addition of complementary experiments at the axial points for optimization of peak area, peak resolution and peak width. The assay was validated according to the US Food and Drug Administration guidelines for bioanalytical method validation over the concentration range of 50 to 5000 ng/mL for DHA, allopurinol and febuxostat, 100 to 5000 ng/mL for adenine and 50 to 12,000 ng/mL for oxypurinol, with r2 ≥ 0.99. The analytical assay achieved acceptable performance of accuracy (-10.8 to 8.3 %) and precision (CV < 15 %). DHA, adenine, allopurinol, oxypurinol and febuxostat were stable in plasma samples after five freeze-thaw cycles at -80 °C and after storage at -80 °C for 12 months. The assay was evaluated for quantification of the five analytes in clinical plasma samples from six APRT deficiency patients and proved to be both efficient and accurate. The proposed assay will be valuable for guiding pharmacotherapy and thereby contribute to improved and more personalized care for patients with APRT deficiency.


Asunto(s)
Adenina Fosforribosiltransferasa/deficiencia , Adenina/análogos & derivados , Alopurinol , Errores Innatos del Metabolismo , Insuficiencia Renal Crónica , Urolitiasis , Humanos , Alopurinol/uso terapéutico , Oxipurinol , Febuxostat , Cromatografía Liquida , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida con Espectrometría de Masas , Adenina/metabolismo , Adenina Fosforribosiltransferasa/metabolismo , Insuficiencia Renal Crónica/tratamiento farmacológico
3.
Biomed Pharmacother ; 164: 114989, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37315436

RESUMEN

Huangqi-Danshen decoction (HDD), a Chinese herbal preparation, is effective in clinical treatment of chronic kidney disease (CKD). However, the underlying mechanism remains to be clarified. In this study, we aimed to investigate the role of HDD in the regulation of renal glucose metabolism in a CKD mouse model. The 0.2% adenine-induced CKD mouse model was administered HDD extract at a dose of 6.8 g/kg/day for 4 weeks. Detection of renal glucose metabolites was performed by ultra-performance liquid chromatography-tandem mass spectrometry. The expression of renal fibrosis and glucose metabolism-related proteins was tested by Western blotting, immunohistochemistry, and immunofluorescence. The results showed that HDD treatment could significantly reduce serum creatinine (0.36 ± 0.10 mg/dL vs. 0.51 ± 0.07 mg/dL, P < 0.05) and blood urea nitrogen (40.02 ± 3.73 mg/dL vs. 62.91 ± 10 mg/dL, P < 0.001) levels, and improve renal pathological injury and fibrosis. Aberrant glucose metabolism was found in the kidneys of CKD mice, manifested by enhanced glycolysis and pentose phosphate pathway, and tricarboxylic acid cycle inhibition, which could be partially restored by HDD treatment. Furthermore, HDD regulated the expression of hexokinase 2, phosphofructokinase, pyruvate kinase M2, pyruvate dehydrogenase E1, oxoglutarate dehydrogenase, and glucose-6-phosphate dehydrogenase in CKD mice. In conclusion, HDD protected against adenine-induced CKD, reshaped glucose metabolism profiles, and restored the expression of key enzymes of glucose metabolism in the kidneys of CKD mice. This study sheds light on targeting glucose metabolism for the treatment of CKD and screening small molecule compounds from herbal medicine to slow CKD progression.


Asunto(s)
Insuficiencia Renal Crónica , Salvia miltiorrhiza , Ratones , Animales , Salvia miltiorrhiza/metabolismo , Insuficiencia Renal Crónica/inducido químicamente , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/metabolismo , Riñón/patología , Modelos Animales de Enfermedad , Fibrosis , Vía de Pentosa Fosfato , Glucosa/metabolismo , Adenina/metabolismo
4.
Mol Nutr Food Res ; 66(22): e2101105, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36059191

RESUMEN

SCOPE: Intestinal dysbiosis has been reported to play an important role in the pathogenesis of various diseases, including chronic kidney disease (CKD). Here, to evaluate whether probiotic supplements can have protective effects against kidney injury in an animal model of CKD is aimed. METHODS AND RESULTS: An animal model of CKD is established by feeding C57BL/6 mice a diet containing 0.2% adenine. These model mice are administered Lactobacillus acidophilus KBL409 daily for 4 weeks. Features of adenine-induce CKD (Ade-CKD) mice, such as prominent kidney fibrosis and higher levels of serum creatinine and albuminuria are improved by administration of KBL409. Ade-CKD mice also exhibit a disrupted intestinal barrier and elevate levels of TNF-α, IL-6, and 8-hydroxy-2'-deoxyguanosine. These changes are attenuated by KBL409. Administration of KBL409 significantly reduces macrophage infiltration and promotes a switch to the M2 macrophage phenotype and increasing regulatory T cells. Notably, the NLRP3 inflammasome pathway is activated in the kidneys of Ade-CKD and decreases by KBL409. In primary kidney tubular epithelial cells treated with p-cresyl sulfate, short-chain fatty acids significantly increase M2 macrophage polarization factors and decrease profibrotic markers. CONCLUSIONS: These results demonstrate that supplementation with the probiotic KBL409 has beneficial immunomodulating effects and protects against kidney injury.


Asunto(s)
Probióticos , Insuficiencia Renal Crónica , Ratones , Animales , Lactobacillus acidophilus , Ratones Endogámicos C57BL , Fibrosis , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología , Probióticos/farmacología , Riñón/metabolismo , Modelos Animales de Enfermedad , Adenina/farmacología , Adenina/metabolismo
5.
Kidney360 ; 3(5): 843-858, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-36128477

RESUMEN

Background: Patients with chronic kidney disease (CKD) frequently have compromised physical performance, which increases their mortality; however, their skeletal muscle dysfunction has not been characterized at the single-fiber and molecular levels. Notably, interventions to mitigate CKD myopathy are scarce. Methods: The effect of CKD in the absence and presence of iron supplementation on the contractile function of individual skeletal muscle fibers from the soleus and extensor digitorum longus muscles was evaluated in 16-week-old mice. CKD was induced by the adenine diet, and iron supplementation was by weekly iron dextran injections. Results: Maximally activated and fatigued fiber force production was decreased 24%-52% in untreated CKD, independent of size, by reducing strongly bound myosin/actin cross-bridges and/or decreasing myofilament stiffness in myosin heavy chain (MHC) I, IIA, and IIB fibers. Additionally, myosin/actin interactions in untreated CKD were slower for MHC I and IIA fibers and unchanged or faster in MHC IIB fibers. Iron supplementation improved anemia and did not change overall muscle mass in CKD mice. Iron supplementation ameliorated CKD-induced myopathy by increasing strongly bound cross-bridges, leading to improved specific tension, and/or returning the rate of myosin/actin interactions toward or equivalent to control values in MHC IIA and IIB fibers. Conclusions: Skeletal muscle force production was significantly reduced in untreated CKD, independent of fiber size, indicating that compromised physical function in patients is not solely due to muscle mass loss. Iron supplementation improved multiple aspects of CKD-induced myopathy, suggesting that timely correction of iron imbalance may aid in ameliorating contractile deficits in CKD patients.


Asunto(s)
Cadenas Pesadas de Miosina , Insuficiencia Renal Crónica , Actinas/metabolismo , Adenina/metabolismo , Animales , Dextranos/metabolismo , Suplementos Dietéticos , Hierro/metabolismo , Ratones , Músculo Esquelético/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Miosinas/metabolismo , Insuficiencia Renal Crónica/tratamiento farmacológico
6.
Food Funct ; 13(19): 10110-10120, 2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36102920

RESUMEN

Gelidium amansii (GA) is a kind of red alga homologous to medicine and food and is distributed all over the world. Studies on GA are mainly focused on its polysaccharides, with little research on the ethanol extract. The ethanol extract of Gelidium amansii (GAE) was subjected to a reverse-phase column to obtain 7 components. Among them, 100% methanol solution (GAM), enriched with phytene-1,2-diol, exhibited the strongest DPPH free radical scavenging activity (IC50 = 0.17 mg mL-1). Subsequently, high-fat male flies (HMFs) were used as a model to explore the antioxidant and anti-aging effects of GAM in vivo. Studies showed that GAM can effectively prolong the lifespan of HMFs. When GAM concentrations were 0.2 and 1.0 mg mL-1, the average lifespan of HMFs was increased by 28.7 and 40.7%, respectively, while the longest lifespan of HMFs was increased by 20.55% and 32.88%, respectively. Further research revealed that GAM can significantly downregulate the levels of malondialdehyde (MDA) and protein carbonyl (PCO), and can significantly upregulate the levels of catalase (CAT) and total superoxide dismutase (T-SOD). In addition, by analyzing differential metabolites, we found that GAM relieves aging caused by oxidative stress by regulating amino acid, lipid, sugar, and energy metabolism. The GAM group significantly regulated the levels of adenine, cholic acid, glutamate, L-proline, niacin, and stachyose which tend to recover to the levels of the normal diet male fly (NMF) group. In general, our research provides ideas for the high-value utilization of GA and provides a lead compound for the research and development of anti-aging food or medicine.


Asunto(s)
Niacina , Rhodophyta , Adenina/metabolismo , Envejecimiento , Aminoácidos/metabolismo , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Catalasa/metabolismo , Ácido Cólico , Drosophila , Etanol/farmacología , Radicales Libres/metabolismo , Glutamatos/metabolismo , Lípidos/farmacología , Masculino , Malondialdehído/metabolismo , Metanol , Niacina/metabolismo , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Prolina/farmacología , Rhodophyta/química , Azúcares , Superóxido Dismutasa/metabolismo
7.
Elife ; 112022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35900202

RESUMEN

Interpreting the function and metabolism of enzymatic DNA modifications requires both position-specific and global quantities. Sequencing-based techniques that deliver the former have become broadly accessible, but analytical methods for the global quantification of DNA modifications have thus far been applied mostly to individual problems. We established a mass spectrometric method for the sensitive and accurate quantification of multiple enzymatic DNA modifications. Then, we isolated DNA from 124 archean, bacterial, fungal, plant, and mammalian species, and several tissues and created a resource of global DNA modification quantities. Our dataset provides insights into the general nature of enzymatic DNA modifications, reveals unique biological cases, and provides complementary quantitative information to normalize and assess the accuracy of sequencing-based detection of DNA modifications. We report that only three of the studied DNA modifications, methylcytosine (5mdC), methyladenine (N6mdA) and hydroxymethylcytosine (5hmdC), were detected above a picomolar detection limit across species, and dominated in higher eukaryotes (5mdC), in bacteria (N6mdA), or the vertebrate central nervous systems (5hmdC). All three modifications were detected simultaneously in only one of the tested species, Raphanus sativus. In contrast, these modifications were either absent or detected only at trace quantities, across all yeasts and insect genomes studied. Further, we reveal interesting biological cases. For instance, in Allium cepa, Helianthus annuus, or Andropogon gerardi, more than 35% of cytosines were methylated. Additionally, next to the mammlian CNS, 5hmdC was also detected in plants like Lepidium sativum and was found on 8% of cytosines in the Garra barreimiae brain samples. Thus, identifying unexpected levels of DNA modifications in several wild species, our resource underscores the need to address biological diversity for studying DNA modifications.


Asunto(s)
Adenina , Citosina , 5-Metilcitosina/metabolismo , Adenina/metabolismo , Animales , Citosina/química , ADN/metabolismo , Metilación de ADN , Eucariontes/genética , Mamíferos/genética
8.
Acta Cir Bras ; 37(3): e370304, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35674582

RESUMEN

PURPOSE: To investigate the protective effects of Shenkang injection (SKI) on adenine-induced chronic renal failure (CRF) in rat. METHODS: Sprague Dawley rats were randomly divided into five groups: control, model, and SKI groups (5, 10, 20 mL/kg). Rats in model and SKI groups were treated with adenine i.g. at a dose of 150 mg/kg every day for 12 weeks to induce CRF. Twelve weeks later, SKI was administered to the rat i.p. for four weeks. The effects of SKI on kidney injury and fibrosis were detected. RESULTS: SKI inhibited the elevation of the urine level of N-acetyl-b-D-glucosaminidase, kidney injury molecule-1, beta-2-microglobulin, urea protein in CRF rats. The serum levels of uric acid and serum creatinine increased and albumin decreased in the model group, which was prevented by SKI. SKI inhibited the release of inflammatory cytokines and increasing the activities of antioxidant enzymes in serum. SKI inhibited the expression of transforming growth factor-ß1, vascular cell adhesion molecule 1, intercellular adhesion molecule 1, collagen I, collagen III, endothelin-1, laminin in kidney of CRF rats. CONCLUSIONS: SKI protected against adenine-induced kidney injury and fibrosis and exerted anti-inflammatory, and antioxidant effects in CRF rats.


Asunto(s)
Fallo Renal Crónico , Insuficiencia Renal Crónica , Adenina/metabolismo , Adenina/farmacología , Adenina/uso terapéutico , Animales , Medicamentos Herbarios Chinos , Fibrosis , Riñón , Fallo Renal Crónico/inducido químicamente , Fallo Renal Crónico/tratamiento farmacológico , Fallo Renal Crónico/prevención & control , Ratas , Ratas Sprague-Dawley , Insuficiencia Renal Crónica/tratamiento farmacológico
9.
Nucleic Acids Res ; 50(7): 4161-4170, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35349689

RESUMEN

CRISPR base editing techniques tend to edit multiple bases in the targeted region, which is a limitation for precisely reverting disease-associated single-nucleotide polymorphisms (SNPs). We designed an imperfect gRNA (igRNA) editing methodology, which utilized a gRNA with one or more bases that were not complementary to the target locus to direct base editing toward the generation of a single-base edited product. Base editing experiments illustrated that igRNA editing with CBEs greatly increased the single-base editing fraction relative to normal gRNA editing with increased editing efficiencies. Similar results were obtained with an adenine base editor (ABE). At loci such as DNMT3B, NSD1, PSMB2, VIATA hs267 and ANO5, near-perfect single-base editing was achieved. Normally an igRNA with good single-base editing efficiency could be selected from a set of a few igRNAs, with a simple protocol. As a proof-of-concept, igRNAs were used in the research to construct cell lines of disease-associated SNP causing primary hyperoxaluria construction research. This work provides a simple strategy to achieve single-base base editing with both ABEs and CBEs and overcomes a key obstacle that limits the use of base editors in treating SNP-associated diseases or creating disease-associated SNP-harboring cell lines and animal models.


Asunto(s)
Edición Génica , ARN Guía de Kinetoplastida , Adenina/metabolismo , Animales , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica/métodos , ARN Guía de Kinetoplastida/genética
10.
Ren Fail ; 44(1): 1873-1885, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36632744

RESUMEN

BACKGROUND: Osteopenia, sarcopenia, and vascular calcification (VC) are prevalent in patients with chronic kidney disease and often coexist. In the absence of proven therapies, it is necessary to develop therapeutic or preventive nutrients supplementation for osteopenia, sarcopenia, and VC. The present study investigated the effect of omega-3 fatty acid (FA) and menaquinone-7 (MK-7) on osteopenia, sarcopenia, and VC in adenine and low-protein diet-induced uremic rats. METHODS: Thirty-two male Sprague-Dawley rats were fed diets containing 0.75% adenine and 2.5% protein for three weeks. Rats were randomly divided into four groups that were fed diets containing 2.5% protein for four weeks: adenine control (0.9% saline), omega-3 FA (300 mg/kg/day), MK-7 (50 µg/kg/day), and omega-3 FA/MK-7. Von Kossa staining for aortic calcification assessment was performed. Osteoclast surface/bone surface ratio (OcS/BS) of bone and muscle fiber were analyzed using hematoxylin and eosin staining. Osteoprotegerin (OPG) immunohistochemical staining was done in the aorta and bone. Molecules related with sarcopenia were analyzed using western blotting. RESULTS: Compared to the normal control, OcS/BS and aortic calcification, and OPG staining in the aorta and bone were significantly increased in the adenine controls. OPG staining and aortic calcification progressed the least in the group supplemented with both omega-3 FA/MK-7. In the adenine controls, the regular arrangement of muscle fiber was severely disrupted, and inflammatory cell infiltration was more prominent. These findings were reduced after combined supplementation with omega-3 FA/MK-7. Furthermore, decreased mammalian target of rapamycin and increased Forkhead box protein 1 expression was significantly restored by combined supplementation. CONCLUSIONS: Combined nutrients supplementation with omega-3 FA and MK-7 may be helpful for aortic VC prevention, reducing osteoclast activation and improving sarcopenia-related molecules in adenine and low-protein diet induced uremic rats.


Asunto(s)
Enfermedades de la Aorta , Enfermedades Óseas Metabólicas , Ácidos Grasos Omega-3 , Osteoclastos , Sarcopenia , Uremia , Calcificación Vascular , Vitamina K 2 , Animales , Masculino , Ratas , Adenina/metabolismo , Enfermedades Óseas Metabólicas/etnología , Enfermedades Óseas Metabólicas/prevención & control , Osteoclastos/efectos de los fármacos , Ratas Sprague-Dawley , Sarcopenia/etiología , Sarcopenia/prevención & control , Uremia/complicaciones , Calcificación Vascular/etiología , Calcificación Vascular/prevención & control , Ácidos Grasos Omega-3/uso terapéutico , Vitamina K 2/uso terapéutico , Enfermedades de la Aorta/etiología , Enfermedades de la Aorta/prevención & control , Quimioterapia Combinada
11.
Nat Metab ; 3(5): 651-664, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33972798

RESUMEN

Metabolism negotiates cell-endogenous requirements of energy, nutrients and building blocks with the immediate environment to enable various processes, including growth and differentiation. While there is an increasing number of examples of crosstalk between metabolism and chromatin, few involve uptake of exogenous metabolites. Solute carriers (SLCs) represent the largest group of transporters in the human genome and are responsible for the transport of a wide variety of substrates, including nutrients and metabolites. We aimed to investigate the possible involvement of SLC-mediated solutes uptake and cellular metabolism in regulating cellular epigenetic states. Here, we perform a CRISPR-Cas9 transporter-focused genetic screen and a metabolic compound library screen for the regulation of BRD4-dependent chromatin states in human myeloid leukaemia cells. Intersection of the two orthogonal approaches reveal that loss of transporters involved with purine transport or inhibition of de novo purine synthesis lead to dysfunction of BRD4-dependent transcriptional regulation. Through mechanistic characterization of the metabolic circuitry, we elucidate the convergence of SLC-mediated purine uptake and de novo purine synthesis on BRD4-chromatin occupancy. Moreover, adenine-related metabolite supplementation effectively restores BRD4 functionality on purine impairment. Our study highlights the specific role of purine/adenine metabolism in modulating BRD4-dependent epigenetic states.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas de Transporte de Nucleósidos/metabolismo , Purinas/metabolismo , Proteínas Transportadoras de Solutos/metabolismo , Factores de Transcripción/metabolismo , Adenina/metabolismo , Vías Biosintéticas , Proteínas de Ciclo Celular/antagonistas & inhibidores , Línea Celular , Cromatina/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Proteínas de Transporte de Membrana , Modelos Biológicos , Proteínas Transportadoras de Solutos/genética , Factores de Transcripción/antagonistas & inhibidores , Transcripción Genética
12.
Nat Biotechnol ; 39(1): 35-40, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32690970

RESUMEN

Current base editors (BEs) catalyze only base transitions (C to T and A to G) and cannot produce base transversions. Here we present BEs that cause C-to-A transversions in Escherichia coli and C-to-G transversions in mammalian cells. These glycosylase base editors (GBEs) consist of a Cas9 nickase, a cytidine deaminase and a uracil-DNA glycosylase (Ung). Ung excises the U base created by the deaminase, forming an apurinic/apyrimidinic (AP) site that initiates the DNA repair process. In E. coli, we used activation-induced cytidine deaminase (AID) to construct AID-nCas9-Ung and found that it converts C to A with an average editing specificity of 93.8% ± 4.8% and editing efficiency of 87.2% ± 6.9%. For use in mammalian cells, we replaced AID with rat APOBEC1 (APOBEC-nCas9-Ung). We tested APOBEC-nCas9-Ung at 30 endogenous sites, and we observed C-to-G conversions with a high editing specificity at the sixth position of the protospacer between 29.7% and 92.2% and an editing efficiency between 5.3% and 53.0%. APOBEC-nCas9-Ung supplements the current adenine and cytidine BEs (ABE and CBE, respectively) and could be used to target G/C disease-causing mutations.


Asunto(s)
Sistemas CRISPR-Cas/genética , Citosina/metabolismo , ADN Glicosilasas , Edición Génica/métodos , Desaminasas APOBEC-1/genética , Desaminasas APOBEC-1/metabolismo , Adenina/metabolismo , Animales , Emparejamiento Base/genética , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Citidina Desaminasa , Reparación del ADN/genética , Desoxirribonucleasa I/genética , Desoxirribonucleasa I/metabolismo , Escherichia coli/genética , Guanina/metabolismo , Ratas , Uracil-ADN Glicosidasa
13.
Biomed Pharmacother ; 134: 111098, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33341058

RESUMEN

INTRODUCTION: Lindera aggregata is a main Chinese herb of ancient prescriptions Suoquan pill applied for treating the chronic kidney disease (CKD). A large number of application histories of Lindera aggregata in the treatment of CKD have been recorded in Chinese traditional medical literature. The previous reports revealed that Lindera aggregata can treat CKD. METHODS: Rats were randomly divided into control, model, Huangkui,Lindera aggregata ethanol extract (LEE) and Lindera aggregata water extract (LWE) groups. hematoxylin-eosin (HE) staining was used to detect the pathology of kidney. The levels of serum creatinine (Scr), serum Neutrophil gelatinase-associated lipocalin (NGAL), blood urea nitrogen (BUN), urine protein (UP), kidney index(KI) were evaluated. The UPLC - QTOF/MS were applied to probe the metabolic profile. Furthermore, Indoxyl sulfate-induced human renal tubular epithelial (HK-2) cell model was built to determine the expression levels of pathogenesis-related proteins. RESULTS: The results demonstrated that LEE and LWE significantly inhibited the rebound in Scr, BUN, NGAL, UP and KI in models, except for the effect of LWE at low dose (LWE-L) and LEE at low dose (LEE-L) on KI and the effect of LWE-H at high dose (LWE-H) and LEE-L on BUN and NGAL. Moreover,Lindera aggregata extracts alleviated renal tubular dilatation, interstitial fibrosis and interstitial inflammation. By analysis, twenty-eight metabolites were related to CKD. After intervention of Lindera aggregata extracts, some metabolites approach to a normal-like level, such as Indoxyl sulfate. These metabolites are mainly involved in tryptophan, fatty acid, glycerophospholipid, tyrosine and arachidonic acid metabolic pathways. Furthermore, Lindera aggregata extracts mediate the expression of smad2, smad3, smad7 and TGF-ß in Indoxyl sulfate-induced HK-2 cell. CONCLUSIONS: Lindera aggregata extracts can mitigate adenine-induced CKD by modulating the metabolic profile and TGF-ß/Smad signaling pathway, providing important supports for developing protective agent of Lindera aggregata for CKD.


Asunto(s)
Adenina/metabolismo , Medicamentos Herbarios Chinos/farmacología , Lindera/química , Insuficiencia Renal Crónica/tratamiento farmacológico , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Cromatografía Líquida de Alta Presión/métodos , Fibrosis/patología , Humanos , Riñón/efectos de los fármacos , Pruebas de Función Renal , Masculino , Espectrometría de Masas/métodos , Metabolómica , Fitoterapia/métodos , Ratas , Insuficiencia Renal Crónica/patología , Transducción de Señal/efectos de los fármacos
14.
Nucleic Acids Res ; 48(21): 11982-11993, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33152081

RESUMEN

A set of modified 2'-deoxyribonucleoside triphosphates (dNTPs) bearing a linear or branched alkane, indole or phenyl group linked through ethynyl or alkyl spacer were synthesized and used as substrates for polymerase synthesis of hypermodified DNA by primer extension (PEX). Using the alkyl-linked dNTPs, the polymerase synthesized up to 22-mer fully modified oligonucleotide (ON), whereas using the ethynyl-linked dNTPs, the enzyme was able to synthesize even long sequences of >100 modified nucleotides in a row. In PCR, the combinations of all four modified dNTPs showed only linear amplification. Asymmetric PCR or PEX with separation or digestion of the template strand can be used for synthesis of hypermodified single-stranded ONs, which are monodispersed polymers displaying four different substituents on DNA backbone in sequence-specific manner. The fully modified ONs hybridized with complementary strands and modified DNA duplexes were found to exist in B-type conformation (B- or C-DNA) according to CD spectral analysis. The modified DNA can be replicated with high fidelity to natural DNA through PCR and sequenced. Therefore, this approach has a promising potential in generation and selection of hypermodified aptamers and other functional polymers.


Asunto(s)
Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , ADN/genética , Desoxirribonucleósidos/química , Fosfatos de Dinucleósidos/química , Polímeros/síntesis química , Adenina/química , Adenina/metabolismo , Aptámeros de Nucleótidos/síntesis química , Aptámeros de Nucleótidos/genética , Emparejamiento Base , Secuencia de Bases , Citosina/química , Citosina/metabolismo , ADN/química , ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Desoxirribonucleósidos/genética , Desoxirribonucleósidos/metabolismo , Fosfatos de Dinucleósidos/genética , Fosfatos de Dinucleósidos/metabolismo , Guanina/química , Guanina/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Reacción en Cadena de la Polimerasa , Polímeros/metabolismo , Uracilo/química , Uracilo/metabolismo
15.
Int J Mol Sci ; 21(19)2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-33008046

RESUMEN

Maternal chronic kidney disease (CKD) during pregnancy causes adverse fetal programming. Nitric oxide (NO) deficiency, gut microbiota dysbiosis, and dysregulated renin-angiotensin system (RAS) during pregnancy are linked to the development of hypertension in adult offspring. We examined whether maternal adenine-induced CKD can program hypertension and kidney disease in adult male offspring. We also aimed to identify potential mechanisms, including alterations of gut microbiota composition, increased trimethylamine-N-oxide (TMAO), reduced NO bioavailability, and dysregulation of the RAS. To construct a maternal CKD model, female Sprague-Dawley rats received regular chow (control group) or chow supplemented with 0.5% adenine (CKD group) for 3 weeks before pregnancy. Mother rats were sacrificed on gestational day 21 to analyze placentas and fetuses. Male offspring (n = 8/group) were sacrificed at 12 weeks of age. Adenine-fed rats developed renal dysfunction, glomerular and tubulointerstitial damage, hypertension, placental abnormalities, and reduced fetal weights. Additionally, maternal adenine-induced CKD caused hypertension and renal hypertrophy in adult male offspring. These adverse pregnancy and offspring outcomes are associated with alterations of gut microbiota composition, increased uremic toxin asymmetric and symmetric dimethylarginine (ADMA and SDMA), increased microbiota-derived uremic toxin TMAO, reduced microbiota-derived metabolite acetate and butyrate levels, and dysregulation of the intrarenal RAS. Our results indicated that adenine-induced maternal CKD could be an appropriate model for studying uremia-related adverse pregnancy and offspring outcomes. Targeting NO pathway, microbiota metabolite TMAO, and the RAS might be potential therapeutic strategies to improve maternal CKD-induced adverse pregnancy and offspring outcomes.


Asunto(s)
Hipertensión/metabolismo , Óxido Nítrico/genética , Efectos Tardíos de la Exposición Prenatal/metabolismo , Insuficiencia Renal Crónica/metabolismo , Adenina/efectos adversos , Adenina/metabolismo , Animales , Modelos Animales de Enfermedad , Disbiosis/genética , Disbiosis/microbiología , Femenino , Desarrollo Fetal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Hipertensión/etiología , Hipertensión/microbiología , Hipertensión/patología , Herencia Materna/genética , Óxido Nítrico/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/etiología , Efectos Tardíos de la Exposición Prenatal/microbiología , Efectos Tardíos de la Exposición Prenatal/patología , Ratas , Insuficiencia Renal Crónica/etiología , Insuficiencia Renal Crónica/microbiología , Insuficiencia Renal Crónica/patología , Sistema Renina-Angiotensina/genética
16.
Cell Syst ; 11(4): 354-366.e9, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33099405

RESUMEN

DNA adenine methyltransferase identification (DamID) measures a protein's DNA-binding history by methylating adenine bases near each protein-DNA interaction site and then selectively amplifying and sequencing these methylated regions. Additionally, these interactions can be visualized using m6A-Tracer, a fluorescent protein that binds to methyladenines. Here, we combine these imaging and sequencing technologies in an integrated microfluidic platform (µDamID) that enables single-cell isolation, imaging, and sorting, followed by DamID. We use µDamID and an improved m6A-Tracer protein to generate paired imaging and sequencing data from individual human cells. We validate interactions between Lamin-B1 protein and lamina-associated domains (LADs), observe variable 3D chromatin organization and broad gene regulation patterns, and jointly measure single-cell heterogeneity in Dam expression and background methylation. µDamID provides the unique ability to compare paired imaging and sequencing data for each cell and between cells, enabling the joint analysis of the nuclear localization, sequence identity, and variability of protein-DNA interactions. A record of this paper's transparent peer review process is included in the Supplemental Information.


Asunto(s)
Microfluídica/métodos , Análisis de Secuencia de ADN/métodos , Análisis de la Célula Individual/métodos , Adenina/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , ADN/metabolismo , Metilación de ADN/genética , Proteínas de Unión al ADN/genética , Genómica/métodos , Células HEK293 , Humanos , Lamina Tipo B/metabolismo , Receptores Purinérgicos/metabolismo
17.
BMC Nephrol ; 20(1): 428, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31752739

RESUMEN

BACKGROUND: Adenine phosphoribosyl transferase (APRT) deficiency is a rare genetic form of kidney stones and/or kidney failure characterized by intratubular precipitation of 2,8 dihydroxyadenine crystals. Early diagnosis and prompt management can completely reverse the kidney injury. CASE PRESENTATION: 44 year old Indian male, renal transplant recipient got admitted with acute graft dysfunction. Graft biopsy showed light brown refractile intratubular crystals with surrounding giant cell reaction, consistent with APRT deficiency. Patient improved after receiving allopurinol and hydration. CONCLUSION: APRT forms a reversible cause of crystalline nephropathy. High index of suspicion is required for the correct diagnosis as timely diagnosis has therapeutic implications.


Asunto(s)
Adenina Fosforribosiltransferasa/deficiencia , Adenina/análogos & derivados , Trasplante de Riñón , Errores Innatos del Metabolismo/complicaciones , Disfunción Primaria del Injerto/etiología , Urolitiasis/complicaciones , Adenina/metabolismo , Adulto , Alopurinol/uso terapéutico , Antimetabolitos/uso terapéutico , Biopsia , Cristalización , Humanos , Hidroterapia , Masculino , Errores Innatos del Metabolismo/patología , Errores Innatos del Metabolismo/terapia , Disfunción Primaria del Injerto/patología , Disfunción Primaria del Injerto/terapia , Urolitiasis/patología , Urolitiasis/terapia
18.
Anal Chem ; 91(18): 11840-11847, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31414596

RESUMEN

N6-methyladenine (m6A), one of the most common chemical modifications of eukaryotic RNA, participates in many important biological processes. An effective strategy for the quantitative determination of m6A is of great significance. Herein, we used methylated microRNA-21 (miRNA21) as the model target to propose a simple and sensitive electrogenerated chemiluminescence (ECL) biosensing platform to detect a specific m6A RNA sequence. This strategy is based on the fact that the anti-m6A-antibody can specifically recognize and bind to the m6A site in the RNA sequence, resulting in a quenching effect between Ru(bpy)32+-functionalized metal-organic frameworks and ferrocene. Luminescent metal-organic frameworks (Ru@MOFs) not only act as ECL indicators but also serve as nanoreactors for the relative ECL reactions owing to their porous or multichannel structure, which overcomes the fact that Ru(bpy)32+ is easily released when used for aqueous-phase detection, thus enhancing the ECL efficiency. Moreover, the ECL method has fewer modification steps and uses only one antibody to recognize the target RNA sequence, which simplifies the operation process and reduces the detection time, presenting a wide linear range (0.001-10 nM) for m6A RNA determination with a low detection limit (0.0003 nM). Additionally, this developed strategy was validated for m6A RNA detection in human serum. Thus, the ECL biosensing method provides a new method for m6A RNA determination that is simple, highly specific, and sensitive.


Asunto(s)
Técnicas Biosensibles/métodos , Compuestos Ferrosos/química , Estructuras Metalorgánicas/química , Metalocenos/química , ARN/metabolismo , Rutenio/química , Adenina/metabolismo , Técnicas Biosensibles/instrumentación , ADN Complementario , Técnicas Electroquímicas/métodos , Límite de Detección , Mediciones Luminiscentes/instrumentación , Mediciones Luminiscentes/métodos , Metilación , MicroARNs/metabolismo , Microscopía Electrónica de Rastreo , Nanotubos de Carbono/química , Espectroscopía de Fotoelectrones , ARN/análisis , Reproducibilidad de los Resultados , Difracción de Rayos X
19.
Cell ; 177(6): 1649-1661.e9, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31080069

RESUMEN

Current machine learning techniques enable robust association of biological signals with measured phenotypes, but these approaches are incapable of identifying causal relationships. Here, we develop an integrated "white-box" biochemical screening, network modeling, and machine learning approach for revealing causal mechanisms and apply this approach to understanding antibiotic efficacy. We counter-screen diverse metabolites against bactericidal antibiotics in Escherichia coli and simulate their corresponding metabolic states using a genome-scale metabolic network model. Regression of the measured screening data on model simulations reveals that purine biosynthesis participates in antibiotic lethality, which we validate experimentally. We show that antibiotic-induced adenine limitation increases ATP demand, which elevates central carbon metabolism activity and oxygen consumption, enhancing the killing effects of antibiotics. This work demonstrates how prospective network modeling can couple with machine learning to identify complex causal mechanisms underlying drug efficacy.


Asunto(s)
Antibacterianos/metabolismo , Antibacterianos/farmacología , Redes y Vías Metabólicas/efectos de los fármacos , Adenina/metabolismo , Biología Computacional/métodos , Evaluación Preclínica de Medicamentos/métodos , Escherichia coli/metabolismo , Aprendizaje Automático , Redes y Vías Metabólicas/inmunología , Modelos Teóricos , Purinas/metabolismo
20.
Food Funct ; 9(12): 6360-6368, 2018 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-30456394

RESUMEN

Eritadenine is a hypocholesterolemic compound that is found in several mushroom species such as Lentinula edodes, Marasmius oreades, and Amanita caesarea (1.4, 0.7 and 0.6 mg per g dry weight, respectively). It was synthesized during all developmental stages, being present in higher concentrations in the skin of shiitake fruiting bodies. When subjected to traditional cooking, grilling followed by frying were more adequate methodologies than boiling or microwaving to maintain its levels. Modern culinary processes such as texturization (with agar-agar) and spherification (with alginate) also interfered with its release. Grilling and gelling using gelatin enhanced eritadenine's bioaccessibility in an in vitro digestion model. An animal model (where male and female rats were administered 21 and 10 mg per kg animal per day of eritadenine) indicated that intake of the compound was safe under these concentrations; it reached the liver and reduced the atherogenic index (TC/HDL) in rat sera. Thus, it might be used to design a functional food.


Asunto(s)
Adenina/análogos & derivados , Agaricales/química , Anticolesterolemiantes/metabolismo , Hipercolesterolemia/dietoterapia , Extractos Vegetales/metabolismo , Adenina/química , Adenina/metabolismo , Agaricales/metabolismo , Animales , Anticolesterolemiantes/química , Disponibilidad Biológica , Contención de Riesgos Biológicos , Culinaria , Femenino , Humanos , Hipercolesterolemia/metabolismo , Masculino , Extractos Vegetales/química , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA