Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Intervalo de año de publicación
1.
Crit Rev Immunol ; 44(5): 27-40, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38618726

RESUMEN

Zilongjin (ZLJ) is a common traditional Chinese medicine for lung adenocarcinoma (LUAD) treatment. However, its mechanisms of action remain to be elucidated. Network pharmacology was used to explore the underlying mechanisms of ZLJ on LUAD treatment. The disease-related targets were determined from the Gene-Cards and DisGeNET databases. Active compounds and targets of ZLJ were obtained from the HIT, TCMSP, and TCMID databases. Then the protein-protein interaction (PPI) network was built by the STRING database to identify core-hub targets of ZLJ in LUAD. Next, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were employed to analyze the enriched regulatory pathways of targets. Molecular docking analysis was used to evaluate interactions between potential targets and active compounds. Finally, qRT-PCR was used to further verify the results of network pharmacology. A total of 124 LUAD-related targets of ZLJ and 5 active compounds of ZLJ from the relevant databases were screened out. Among these target proteins, JUN, CDH1, PPARG, and FOS were core hub-genes in the PPI network. GO and KEGG pathway enrichment analysis indicated that these targets might regulate the PPAR signaling pathway in LUAD. JUN, PPARG, and FOS levels were upregulated, while CDH1 level was downregulated in LUAD cells. This study discerned that ZLJ may target genes such as JUN, FOS, PPARG, and CDH1 via the PPAR signaling pathway in LUAD, offering foundational insights for further exploration of ZLJ in clinical applications.


Asunto(s)
Adenocarcinoma del Pulmón , Medicamentos Herbarios Chinos , Neoplasias Pulmonares , Humanos , Farmacología en Red , Simulación del Acoplamiento Molecular , PPAR gamma , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética
2.
BMC Pulm Med ; 24(1): 121, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448889

RESUMEN

BACKGROUND: Erlotinib is a first-generation, tyrosine kinase inhibitor of the epidermal growth factor receptor (EGFR-TKI) used for the treatment patients with NSCLC. Erlotinib is considered as a safe and effective treatment option, with generally good tolerance. Diarrhea and rash are the most common side effects, and more rare side effects appear in long-term real-world applications. Severe erlotinib related megaloblastic anemia is rare and remains unreported. This is the first case report of severe megaloblastic anemia in a patient with advanced lung adenocarcinoma with an EGFR L858R mutation treated with erlotinib. In this report, the clinical manifestations, diagnosis and treatment of erlotinib related severe megaloblastic anemia are described, and the possible pathogenesis and related treatment options are discussed. CASE DESCRIPTION: Herein, we present a 57- year-old non-smoking female diagnosed with metastatic lung adenocarcinoma harboring an EGFR L858R mutation, who had received erlotinib as the first-line therapy. After 44 weeks of treatment, the patient developed severe anemia. Anemia was manifested as megaloblastic anemia with elevated mean corpuscular volume and mean corpuscular hemoglobin. The total vitamin B12 level was below the detection limit of 50.00 pg /mL. Bone marrow smear suggested megaloblastic anemia. Her hematologic parameters were markedly recovered following the withdrawal of erlotinib and vitamin B12 supplement. As a result, the patient was diagnosed with erlotinib-associated megaloblastic anemia. CONCLUSIONS: This is the first case of severe megaloblastic anemia reported with erlotinib. Few of these hematologic adverse effects have been observed in studies on erlotinib, this case report highlights this possibility for long-term erlotinib administration. Close clinical and blood monitoring is recommended for patients receiving long-term TKI therapy.


Asunto(s)
Adenocarcinoma del Pulmón , Anemia Megaloblástica , Anemia , Neoplasias Pulmonares , Humanos , Femenino , Persona de Mediana Edad , Clorhidrato de Erlotinib/efectos adversos , Anemia Megaloblástica/inducido químicamente , Adenocarcinoma del Pulmón/tratamiento farmacológico , Receptores ErbB/genética , Neoplasias Pulmonares/tratamiento farmacológico , Vitamina B 12
3.
Artif Cells Nanomed Biotechnol ; 52(1): 186-200, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38465883

RESUMEN

Green-mediated synthesis of nanoparticles has earned a promising role in the area of nanotechnology due to their biomedical applications. This study describes the synthesis of silver nanoparticles (AgNPs) using Mikania micrantha leaf extract and its functional activities against cancer. The synthesis of AgNPs was confirmed using Ultraviolet-Visible (UV-Vis) spectrum that exhibited an absorption band at 459 nm. The bioactive compounds of M. micrantha leaf extract that functioned as reducing and capping agents were confirmed by a shift in the absorption bands in Fourier Transform Infra-red Spectroscopy (FT-IR). Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) studies validated the spherical shape and size of AgNPs, respectively. Energy Dispersive Spectroscopy (EDS) analysis revealed the presence of elemental silver. The crystalline nature of AgNPs was confirmed by the X-ray Diffraction Analysis (XRD). AgNPs effectively induced cytotoxicity and prevented A549 cell colony formation in a dose-dependent manner. Treatment of A549 cells with AgNPs also increased DNA damage, which was coupled with elevated lipid peroxidation and decreased antioxidant enzymes such as glutathione (GSH), glutathione-s-transferase (GST), and superoxide dismutase (SOD). Following AgNPs treatment, the mRNA expression levels of the pro-apoptotic genes as well as the activities of caspases were significantly elevated in A549 cells while the expression levels of anti-apoptotic genes were downregulated. Our study demonstrates the potential of the synthesised AgNPs for cancer therapy possibly targeting the apoptotic pathway.


Asunto(s)
Adenocarcinoma del Pulmón , Nanopartículas del Metal , Mikania , Humanos , Plata/farmacología , Plata/química , Caspasas , Nanopartículas del Metal/química , Espectroscopía Infrarroja por Transformada de Fourier , Apoptosis , Glutatión , Adenocarcinoma del Pulmón/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antibacterianos/farmacología
4.
Phytomedicine ; 128: 155538, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38552432

RESUMEN

OBJECTIVE: The effect of solamargine on lung adenocarcinoma and its effect on STAT1 signaling pathway mediated immune escape were studied through network pharmacology and in vitro and in vivo experiments. METHODS: The solamargine targets were screened using the TCMSP and the LUAD targets were screened using the GeneCard, OMIM, PharmGkb, TTD and DrugBank databases. PPI network analysis and target prediction were performed using GO and KEGG. Colony formation assay, EDU staining, wound healing, transwell assay, Hoechst and flow cytometry were used to detect the effects of solamargine on the proliferation, migration and apoptosis of LUAD. Western blotting (WB) and quantitative reverse transcription polymerase chain reaction (RT-qPCR) were used to detect P-STAT1 and PD-L1 expression. And immunofluorescence was used to detect P-STAT1 expression. In vivo experiments, C57BL/6 mice were divided into control group, low concentration group, high concentration group, positive control group and combination group. Every other day, following seven consecutive doses, the size of the tumor was assessed. Finally, the expressions of P-STAT1, STAT1, PD-L1 and apoptosis index proteins were detected by WB. RESULTS: The anti-LUAD effect of solamargine was found by wound healing, colony formation assay, transwell assay, hoechst and EdU staining. The results of network pharmacological analysis showed that solamargine could suppress STAT1 expression level. Further enrichment assay of STAT1 showed that STAT1 was associated with immune-related pathways. In addition, molecular signal analysis by WB and RT-qPCR indicated that solamargine could reduce the expression levels of P-STAT1 and PD-L1 in a concentration-dependent manner. According to the results of in vivo assays, combination of solamargine and immune checkpoint inhibitors (ICIs) durvalumab could significantly inhibit the growth of Lewis transplanted tumors in C57BL/6 mice, and no toxic side effect was recoded. CONCLUSION: These results indicated that solamargine could inhibit the proliferation and promote the apoptosis of LUAD. It also could reduce the expression level of P-STAT1 protein and inhibit the expression level of PD-L1. At the same time, the combination with the ICIs can better block the expression of PD-L1 in cells, thereby inhibiting the immune escape pathway of tumor cells and achieving anti-tumor effects. This study proposed a novel combined therapeutic approach, involving the inhibition of STAT1 by solamargine in conjunction with ICIs.


Asunto(s)
Adenocarcinoma del Pulmón , Apoptosis , Antígeno B7-H1 , Neoplasias Pulmonares , Ratones Endogámicos C57BL , Factor de Transcripción STAT1 , Factor de Transcripción STAT1/metabolismo , Animales , Neoplasias Pulmonares/tratamiento farmacológico , Antígeno B7-H1/metabolismo , Humanos , Apoptosis/efectos de los fármacos , Adenocarcinoma del Pulmón/tratamiento farmacológico , Ratones , Proliferación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Células A549 , Inhibidores de Puntos de Control Inmunológico/farmacología
5.
BMC Complement Med Ther ; 23(1): 422, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37990309

RESUMEN

OBJECTIVE: This study aimed to explore the efficacy and safety of combining epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) with ZiLongJin Tablet (ZLJT) in delaying acquired resistance in advanced EGFR-mutant lung adenocarcinoma (LUAD) patients. Furthermore, we employed network pharmacology and molecular docking techniques to investigate the underlying mechanisms. METHODS: A retrospective comparative study was conducted on stage IIIc/IV LUAD patients treated with EGFR-TKIs alone or in combination with ZLJT at the Second Affiliated Hospital of the Air Force Medical University between January 1, 2017, and May 1, 2023. The study evaluated the onset of TKI resistance, adverse reaction rates, safety indicators (such as aspartate aminotransferase, alanine aminotransferase, and creatinine), and inflammatory markers (neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio) to investigate the impact of EGFR-TKI combined with ZLJT on acquired resistance and prognostic indicators. Additionally, we utilized the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, the Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine, PubChem, UniProt, and Swiss Target Prediction databases to identify the active ingredients and targets of ZLJT. We obtained differentially expressed genes related to EGFR-TKI sensitivity and resistance from the Gene Expression Omnibus database using the GSE34228 dataset, which included sensitive (n = 26) and resistant (n = 26) PC9 cell lines. The "limma" package in R software was employed to detect DEGs. Based on this, we constructed a protein‒protein interaction network, performed gene ontology and KEGG enrichment analyses, and conducted pathway network analysis to elucidate the correlation between the active ingredients in ZLJT and signaling pathways. Finally, molecular docking was performed using AutoDockVina, PYMOL 2.2.0, and Discovery Studio Client v19.1.0 software to simulate spatial and energy matching during the recognition process between predicted targets and their corresponding compounds. RESULTS: (1) A total of 89 patients were included, with 40 patients in the EGFR-TKI combined with ZLJT group (combination group) and 49 patients in the EGFR-TKI alone group (monotherapy group). The baseline characteristics of the two groups were comparable. There was a significant difference in the onset of resistance between the combination group and the monotherapy group (P < 0.01). Compared to the monotherapy group, the combination group showed a prolongation of 3.27 months in delayed acquired resistance. There was also a statistically significant difference in the onset of resistance to first-generation TKIs between the two groups (P < 0.05). (2) In terms of safety analysis, the incidence of adverse reactions related to EGFR-TKIs was 12.5% in the combination group and 14.3% in the monotherapy group, but this difference was not statistically significant (P > 0.05). There were no statistically significant differences in serum AST, ALT, CREA, TBIL, ALB and BUN levels between the two groups after medication (P > 0.05). (3) Regarding inflammatory markers, there were no statistically significant differences in the changes in neutrophil-to-lymphocyte Ratio(NLR) and Platelet-to-lymphocyte Ratio(PLR) values before and after treatment between the two groups (P > 0.05). (4) Network pharmacology analysis identified 112 active ingredients and 290 target genes for ZLJT. From the GEO database, 2035 differentially expressed genes related to resistant LUAD were selected, and 39 target genes were obtained by taking the intersection. A "ZLJT-compound-target-disease" network was successfully constructed using Cytoscape 3.7.0. GO enrichment analysis revealed that ZLJT mainly affected biological processes such as adenylate cyclase-modulating G protein-coupled receptor. In terms of cellular components, ZLJT was associated with the cell projection membrane. The molecular function primarily focused on protein heterodimerization activity. KEGG enrichment analysis indicated that ZLJT exerted its antitumor and anti-drug resistance effects through pathways such as the PI3K-Akt pathway. Molecular docking showed that luteolin had good binding activity with FOS (-9.8 kJ/mol), as did tanshinone IIA with FOS (-9.8 kJ/mol) and quercetin with FOS (-8.7 kJ/mol). CONCLUSION: ZLJT has potential antitumor progression effects. For patients with EGFR gene-mutated non-small cell LUAD, combining ZLJT with EGFR-TKI treatment can delay the occurrence of acquired resistance. The underlying mechanisms may involve altering signal transduction pathways, blocking the tumor cell cycle, inhibiting tumor activity, enhancing cellular vitality, and improving the bioavailability of combination therapy. The combination of EGFR-TKI and ZLJT represents an effective approach for the treatment of tumors using both Chinese and Western medicine.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Farmacología en Red , Simulación del Acoplamiento Molecular , Estudios Retrospectivos , Fosfatidilinositol 3-Quinasas , Receptores ErbB/genética , Receptores ErbB/metabolismo , Inhibidores de Proteínas Quinasas/efectos adversos , Adenocarcinoma del Pulmón/tratamiento farmacológico , Resistencia a Antineoplásicos
6.
Phytomedicine ; 121: 155087, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37832267

RESUMEN

BACKGROUND: About 30% of pulmonary stage IV adenocarcinomas die within 3 months of diagnosis. Western medical treatments with Platinum-Based Chemotherapy=PBC and tyrosine-kinase inhibitors Targeted Therapy=TT can improve prognosis. In China, Traditional Chinese Medicine herbal treatments (TCM) are often used in addition to PBC and TT. A considerable number of patients refuse Western medical treatments and use TCM alone. However, the survival impact of the latter is unknown. HYPOTHESES TESTED: Treatment with TCM alone is prognostically superior to PBC alone. Addition of PBC or TT or both TT to TCM improves survival. METHODS: In this prospective observational, non-interventional study of 1017 consecutive first-onset stage IV NSCLC patients with up to 10 years follow-up, 261 who Died of Disease (DOD) within 3 months were omitted, as they never got the optimal Western medical therapies. All 218 non-adenocarcinomas were also omitted, leaving 538 stage IV adenocarcinomas treated by TCM alone (n = 29), PBC alone (N = 19) and TCM and other Western medical combinations (299 TCM and PBC, 50 TCM and TT, 141 TCM and PBC and TT) with 3 - 120 months follow-up. Survivals were compared using Alive with Disease (AWD) and DOD as endpoints. RESULTS: The patients treated only with TCM had 7 months better median survival than those that received PBC alone (17 and 10 months). The patients that received TCM and PBC had a better median survival (24 months) than TCM alone and much better than PBC alone. None of the patients that received TCM alone survived > 54 months, whereas 18% of TCM and PBC patients survived much longer. Over the observation period of 3 - 120 months, survivals of TCM and TT, TCM and PBC and TT, and TCM and PBC were not different and therefore grouped as TCM and Western medicines. Median survival times of PBC alone and TCM alone were lower than that of TCM and Western medical treatments (p < 0.0001, 10, 17 and 27 months). CONCLUSIONS: Pulmonary stage IV adenocarcinoma patients with at least 3 months survival, treated with TCM alone have a significantly better survival than those treated with PBC alone. Adding Western PBC, TT or both to TCM further improves prognosis.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Medicamentos Herbarios Chinos , Neoplasias Pulmonares , Humanos , Medicina Tradicional China/métodos , Medicamentos Herbarios Chinos/uso terapéutico , Platino (Metal)/uso terapéutico , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología
7.
Phytomedicine ; 119: 154981, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37531902

RESUMEN

PURPOSE: The declined oxygen tension in the cancer cell leads to the hypoxic adaptive response and favors establishment of tumor micro environment [TEM]. The complex TME consists of interwoven hypoxic HIF-1α and DNA damage repair ATM signaling. The ATM/HIF-1α phosphorylation switch on angiogenesis and abort apoptosis. Targeting this signaling nexus would be a novel therapeutic strategy for the treatment of cancer. BACKGROUND: Steroidal alkaloid solanidine is known for varied pharmacological role but with less molecular evidences. Our earlier findings on solanidine proven its anti-neoplastic activity by inducing apoptosis in lung cancer. In continued research, efforts have been made to establish the underlying molecular signaling in induction of DNA damage in prevailing hypoxic TME. METHODS: The solanidine induced DNA damage was assessed trough alkali COMET assay; signaling nexus and gene expression profile analysis through IB, qRT-PCR, Gelatin Zymography, IHC, IF and ELISA. Pathophysiological modulations assessed through tube formation, migration, invasion assays. Anti-angiogenic studies through CAM, rat aorta, matrigel assays and corneal neovascularization assay. Anti-tumor activity through in-vivo DLA ascites tumor model and LLC model. RESULTS: The results postulates, inhibition of hypoxia driven DDR proteins pATMser1981/pHIF-1αser696 by solanidine induces anti-angiogenesis. Systematic study of both non-tumorigenic and tumorigenic models in-vitro as well as in-vivo experimental system revealed the angio-regression mediated anticancer effect in lung cancer. These effects are due to the impeded expression of angiogenic mediators such as VEGF, MMP2&9 and inflammatory cytokines IL6 and TNFα to induce pathophysiological changes CONCLUSION: The study establishes new role of solanidine by targeting ATM/HIF-1α signaling to induce anti-angiogenesis for the first time. The study highlights the potentiality of plant based phytomedicine solanidine which can targets the multiple hallmarks of cancer by targeting interwoven signaling crosstalk. Such an approach through solanidine necessary to counteract heterogeneous complexity of cancer which could be nearly translated into drug.


Asunto(s)
Adenocarcinoma del Pulmón , Alcaloides , Antineoplásicos , Neoplasias Pulmonares , Ratas , Animales , Fosforilación , Antineoplásicos/uso terapéutico , Hipoxia/tratamiento farmacológico , Alcaloides/farmacología , Adenocarcinoma del Pulmón/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Subunidad alfa del Factor 1 Inducible por Hipoxia , Neovascularización Patológica/tratamiento farmacológico , Línea Celular Tumoral , Microambiente Tumoral
8.
Sci Rep ; 13(1): 12069, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37495623

RESUMEN

Metastasis is a leading cause of mortality in patients with lung adenocarcinoma. Histone deacetylases have emerged as promising targets for anti-tumor drugs, with histone deacetylase inhibitors (HDACi) being an active area of research. However, the precise mechanisms by which HDACi inhibits lung cancer metastasis remain incompletely understood. In this study, we employed a range of techniques, including qPCR, immunoblotting, co-immunoprecipitation, chromatin-immunoprecipitation, and cell migration assays, in conjunction with online database analysis, to investigate the role of HDACi and HDAC2/YY1 in the process of lung adenocarcinoma migration. The present study has demonstrated that both trichostatin A (TSA) and sodium butyrate (NaBu) significantly inhibit the invasion and migration of lung cancer cells via Histone deacetylase 2 (HDAC2). Overexpression of HDAC2 promotes lung cancer cell migration, whereas shHDAC2 effectively inhibits it. Further investigation revealed that HDAC2 interacts with YY1 and deacetylates Lysine 27 and Lysine9 of Histone 3, thereby inhibiting Cdh1 transcriptional activity and promoting cell migration. These findings have shed light on a novel functional mechanism of HDAC2/YY1 in lung adenocarcinoma cell migration.


Asunto(s)
Adenocarcinoma del Pulmón , Antígenos CD , Cadherinas , Histona Desacetilasa 2 , Inhibidores de Histona Desacetilasas , Metástasis de la Neoplasia , Factor de Transcripción YY1 , Humanos , Animales , Ratones , Femenino , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/enzimología , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Movimiento Celular/efectos de los fármacos , Ácido Butírico/farmacología , Ácido Butírico/uso terapéutico , Factor de Crecimiento Transformador beta/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Histona Desacetilasa 2/antagonistas & inhibidores , Histona Desacetilasa 2/metabolismo , Factor de Transcripción YY1/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Antígenos CD/metabolismo , Unión Proteica , Transcripción Genética , Regulación Neoplásica de la Expresión Génica , Metástasis de la Neoplasia/tratamiento farmacológico , Metástasis de la Neoplasia/patología , Metástasis de la Neoplasia/prevención & control
9.
J Ethnopharmacol ; 317: 116739, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37315647

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Lung adenocarcinoma (LUAD) is one of the main types of lung cancer. Ophiocordyceps sinensis has many potentially useful pharmacologic features, such as lung protection, and both anti-inflammatory and antioxidant activities. AIM OF THE STUDY: This study was conducted to investigate-using bioinformatics and in vivo experimental validation-the possible role of O. sinensis against LUAD. MATERIALS AND METHODS: We obtained important targets of O. sinensis for the treatment of LUAD using network pharmacology techniques and deep mining of the TCGA database, and validated them by molecular docking techniques and in vivo experiments. RESULTS: Through bioinformatics analysis and research, we screened BRCA1 and CCNE1 as important biomarkers for LUAD and as core targets of O. sinensis against LUAD. The non-small cell lung cancer signaling pathway, PI3K-Akt signaling pathway, and HIF-1 signaling pathway are potentially important pathways of O. sinensis against LUAD. The molecular docking results showed good binding between the active components in O. sinensis and the two core targets, and the in vivo experimental validation results indicated that O. sinensis had good inhibitory effects in the Lewis lung cancer (LLC) model. CONCLUSIONS: BRCA1 and CCNE1 are crucial biomarkers for LUAD and are important targets for O. sinensis to exert anti-LUAD effects.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Cordyceps , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Biología Computacional
10.
Anticancer Res ; 43(7): 2933-2939, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37351982

RESUMEN

BACKGROUND/AIM: Lung cancer is the leading cause of mortality due to cancer death. Treatment of lung adenocarcinoma (LUAD) is still challenging. Cranberries contain many rich bioactive components that may help fight cancer. The action of cranberry against some cancer types has been reported, however, its role in lung cancer has only been investigated in large-cell lung cancer. In this study, we expanded current research on the role of cranberry in LUAD. MATERIALS AND METHODS: A549 LUAD cancer cells were treated with commercial cranberry extract (CE). Proliferation of A549 cells was measured with a clonogenic survival assay and quick proliferation assay. Caspase-3 activity was used to evaluate apoptosis of A549 cells. Reverse transcriptase-polymerase chain reaction was conducted to investigate the possible molecular mechanisms involved in the action of CE. RESULTS: Treatment of LUAD with CE reduced the percentage of A549 colonies. This was consistent with the decrease in the optic density of cancer cells after treatment with CE. Caspase-3 activity increased after treatment with CE. The anti-proliferative effect of CE on A549 cells correlated with reduced expression of pro-proliferation molecules cyclin E, cyclin-dependent kinase 2 (CDK2) and CDK4. The pro-apoptotic effect of CE on A549 cells correlated with the reduced expression of the anti-apoptotic molecule caspase 8 and FADD-like apoptosis regulator (FLIP). CONCLUSION: CE had an inhibitory effect on the growth of LUAD cells by modulation of both pro-proliferative and anti-apoptotic molecules. Our research hopes to guide future treatment options for LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Extractos Vegetales , Vaccinium macrocarpon , Vaccinium macrocarpon/química , Frutas/química , Extractos Vegetales/farmacología , Adenocarcinoma del Pulmón/tratamiento farmacológico , Células A549 , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Caspasa 3/metabolismo , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo , Apoptosis
11.
J Ethnopharmacol ; 311: 116409, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37003401

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The rhizome of Curcuma wenyujin Y.H. Chen & C. Ling, also known as Wen-E-Zhu, has been used for cancer treatment since ancient times, with roots dating back to the Song Dynasty. Elemene (EE), a sesquiterpene extract with potent anticancer properties, is extracted from Wen-E-Zhu, with ß-elemene (BE) being its main active compound, along with trace amounts of ß-caryophyllene (BC), γ-elemene and δ-elemene isomers. EE has demonstrated broad-spectrum anti-cancer effects and is commonly used in clinical treatments for various types of malignant cancers, including lung cancer. Studies have shown that EE can arrest the cell cycle, inhibit cancer cell proliferation, and induce apoptosis and autophagy. However, the exact mechanism of its anti-lung cancer activity remains unclear and requires further research and investigation. AIM OF THE STUDY: In this study, the possible mechanism of EE and its main active components, BE and BC, against lung adenocarcinoma was investigated by using A549 and PC9 cell lines. MATERIALS AND METHODS: The subcutaneous tumor model of nude mice was constructed to evaluate the efficacy of EE in vivo, then the in vitro half-inhibitory concentration (IC50) of EE and its main active components, BE and BC, on A549 and PC9 cells at different concentrations were determined by CCK-8. Flow cytometry was used to detect the apoptosis and cycle of A549 and PC9 cells treated with different concentrations of BE and BC for 24 h. Non-targeted metabolomics analysis was performed on A549 cells to explore potential target pathways, which were subsequently verified through kit detection and western blot analysis. RESULTS: Injection of EE in A549 tumor-bearing mice effectively suppressed cancer growth in vivo. The IC50 of EE and its main active components, BE and BC, was around 60 µg/mL. Flow cytometry analysis showed that BE and BC blocked the G2/M and S phases of lung adenocarcinoma cells and induced apoptosis, leading to a significant reduction in mitochondrial membrane potential (MMP). Results from non-targeted metabolomics analysis indicated that the glutathione metabolism pathway in A549 cells was altered after treatment with the active components. Kit detection revealed a decrease in glutathione (GSH) levels and an increase in the levels of oxidized glutathione (GSSG) and reactive oxygen (ROS). Supplementation of GSH reduced the inhibitory activity of the active components on lung cancer and also decreased the ROS content of cells. Analysis of glutathione synthesis-related proteins showed a decrease in the expression of glutaminase, cystine/glutamate reverse transporter (SLC7A11), and glutathione synthase (GS), while the expression of glutamate cysteine ligase modified subunit (GCLM) was increased. In the apoptosis-related pathway, Bax protein and cleaved caspase-9/caspase-9 ratio were up-regulated and Bcl-2 protein was down-regulated. CONCLUSIONS: EE, BE, and BC showed significant inhibitory effects on the growth of lung adenocarcinoma cells, and the mechanism of action was linked to the glutathione system. By down-regulating the expression of proteins related to GSH synthesis, EE and its main active components BE and BC disrupted the cellular redox system and thereby promoted cell apoptosis.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Sesquiterpenos , Animales , Ratones , Caspasa 9/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratones Desnudos , Adenocarcinoma del Pulmón/tratamiento farmacológico , Neoplasias Pulmonares/patología , Sesquiterpenos/farmacología , Sesquiterpenos/uso terapéutico , Apoptosis , Glutatión/metabolismo , Proliferación Celular , Línea Celular Tumoral
12.
Naunyn Schmiedebergs Arch Pharmacol ; 396(10): 2417-2426, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37014402

RESUMEN

Lung cancer is still the most common cancer in the world, especially lung adenocarcinoma (LUAD). Despite years of effort, including the application of immunotherapy and targeted therapy, the survival rate of LUAD has not improved significantly. Exploring effective targets and combination drugs is crucial for the treatment of LUAD. We characterized differentially expressed genes between LUAD and normal lung tissue based on The Cancer Genome Atlas (TCGA) database and identified polo-like kinase 1 (PLK1) as the hub gene. Through an analysis using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), we obtained a combination of Chinese medicine with PLK1 inhibitor, whose biological function we confirmed by western blot and TdT-UTP nick-end labelling (TUNEL) assays. After combined analysis of protein expression with clinical characteristics, GNPNAT1, CCT6A, SMOX, UCK2, PLK1, HMMR and ANLN expression were significantly correlated with age, sex and stage. Among them, the survival rate was lower in patients with high PLK1 expression than in those with low PLK1 expression, making PLK1 a promising therapeutic target for LUAD. Stage and PLK1 expression could be used as independent prognostic factors for LUAD. By TCMSP analysis, tectoridin had the strongest correlation with PLK1. Tectoridin synergized with PLK1 inhibitor to suppress autophagy and ferroptosis but promoted caspase-3-mediated apoptosis in A549 cells. Our findings highlight a potential drug target and the combination therapy strategy of PLK1 inhibitor and tectoridin for LUAD patients.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Apoptosis , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Pronóstico , Chaperonina con TCP-1 , Glucosamina 6-Fosfato N-Acetiltransferasa , Quinasa Tipo Polo 1
13.
J Integr Med ; 21(3): 268-276, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37069006

RESUMEN

OBJECTIVE: Although there have been improvements in targeted therapy and immunotherapy, the majority of lung adenocarcinoma (LUAD) patients still lack effective therapies. Consequently, it is urgent to screen for new diagnosis biomarkers and pharmacological targets. Junctional adhesion molecule-like protein (JAML) was considered to be an oncogenic protein and may be a novel therapeutic target in LUAD. Kaempferol is a natural flavonoid that exhibits antitumor activities in LUAD. However, the effect of kaempferol on JAML is still unknown. METHODS: Small interfering RNA was used to knockdown JAML expression. The cell viability was determined using the cell counting kit-8 assay. The proliferation of LUAD cells was evaluated using the 5-ethynyl-2'-deoxyuridine incorporation assay. The migration and invasion of LUAD cells were evaluated by transwell assays. Molecular mechanisms were explored by Western blotting. RESULTS: JAML knockdown suppressed proliferation, migration and invasion of LUAD cells, and JAML deficiency restrained epithelial-mesenchymal transition (EMT) via inactivating the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway. Using a PI3K activator (740Y-P), rescue experiments showed that phenotypes to JAML knockdown in LUAD cells were dependent on the PI3K/AKT/mTOR pathway. Kaempferol also inhibited proliferation, migration and invasion of A549 and H1299 cells and partially suppressed EMT through the PI3K/AKT/mTOR pathway. Knockdown of JAML ameliorated the inhibitory effect of kaempferol on LUAD cells. Kaempferol exerted anticancer effects by targeting JAML. CONCLUSION: JAML is a novel target for kaempferol against LUAD cells. Please cite this article as: Wu Q, Wang YB, Che XW, Wang H, Wang W. Junctional adhesion molecule-like protein as a novel target for kaempferol to ameliorate lung adenocarcinoma. J Integr Med. 2023; 21(3): 268-276.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Moléculas de Adhesión de Unión/genética , Moléculas de Adhesión de Unión/metabolismo , Quempferoles/farmacología , Línea Celular Tumoral , Movimiento Celular/genética , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proliferación Celular , Regulación Neoplásica de la Expresión Génica
14.
Naunyn Schmiedebergs Arch Pharmacol ; 396(9): 2039-2055, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36914901

RESUMEN

Analysis of the commonness of several prescriptions of traditional Chinese medicine (TCM) in the treatment of lung adenocarcinoma (LUAD) based on bioinformatics. Searched the TCM prescriptions for the treatment of LUAD in the literature published in the database, searched ingredients in the TCM through TCMSP and Swiss target prediction databases (OB ≥ 30%, DL > 0.18, Caco-2 > 0), and predicted the potential targets. GEO database retrieved LUAD gene chip data and screened (P < 0.05, | log2 (fold change) |> 1). The biological function, hub gene selection and survival period, immune infiltration, methylation, copy number variations (CNVs), and single-nucleotide variants (SNV) of hub genes were analyzed by DAVID, STRING, Kaplan-Meier plotter database, Cytoscape software, GSCALite database, and TIMER2.0. In this study, 5 TCM prescriptions were analyzed, and a total of 173 ingredients were obtained through database search, including 35 coincidence ingredients, a total of 603 potential targets, 621 LUAD-related genes, 16 up-regulated genes, and 31 down-regulated genes. A total of 61 terms of biological process (BP), 14 terms of cellular component (CC), and 14 terms of molecular function (MF) were obtained. Twenty core genes were obtained, including 15 genes with different survival periods, which were closely related to immune cells (B cell, CD8 + T cell, CD4 + T cell, macrophage, neutrophil, and dendritic cells). The low expression of ADRB2 and MAOA and the high expression of AUARK, CDK1, KIF11, MIF, TOP2A, and TTK were associated with the survival rate of LUAD patients (P < 0.05). Baicalein, Arachidonate, Hederagenin, and hub genes may become potential drugs and potential targets for LUAD treatment. Evaluated the efficacy of TCM in the treatment of LUAD from macro to micro, mined the hub genes, and predicted the mechanism of action, so as to lay the foundation for the development of new drugs of TCM, prescription optimization, or disease control.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Células CACO-2 , Variaciones en el Número de Copia de ADN , Medicina Tradicional China , Biología Computacional , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética
15.
Medicine (Baltimore) ; 102(13): e33384, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37000102

RESUMEN

BACKGROUND: Lung adenocarcinoma (LUAD) is the main pathological type of lung cancer. Qishan formula (QSF) is reportedly efficacious against LUAD. However, its mechanisms of action currently remain elusive. Therefore, network pharmacology, molecular docking techniques and proteomics were used to verify the potential pharmacological effects of QSF in the treatment of LUAD. METHODS: The active ingredients and potential targets of QSF were obtained from the TCMSP, chemical source network and construct a drug-component-target networks using Cytoscape v3.7.2. Data for disease targets were obtained from 5 databases: TCGA, OMIM, DrugBank, DisGeNET, and GeneCards. Drug disease cross targets were used to construct protein-protein interaction networks for selecting the core targets using the STRING database and enrichment pathway networks using the DAVID database. Finally, TMT quantitative proteomics was used to identify the possible core targets and action pathways. Molecular docking to verify the affinity between components and targets. RESULTS: Network pharmacology identified core components of QSF against LUAD included baicalein, methylophiopogonone B, quercetin, kaempferol, isorhamnetin, and luteolin, which can act on 10 key targets (SRC, TP53, PIK3R1, MAPK3, STAT3, MAKP1, HSP90AA1, PIK3CA, HRAS, and AKT1). QSF might play a therapeutic role in LUAD by regulating biological processes such as signal transduction, protein phosphorylation, cell proliferation, and apoptosis, as well as the PI3K/AKT, MAPK, FoxO, and other signaling pathways. Proteomics identified 207 differentially expressed proteins, and by integrating with network pharmacology and molecular docking results we found that 6 core components of QSF may target TP53 against LUAD through the PI3K/AKT signaling pathway. CONCLUSION: QSF is a multitarget recipe potentially exerting pleiotropic effects in LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Medicamentos Herbarios Chinos , Neoplasias Pulmonares , Humanos , Simulación del Acoplamiento Molecular , Farmacología en Red , Fosfatidilinositol 3-Quinasas , Proteómica , Proteínas Proto-Oncogénicas c-akt , Adenocarcinoma del Pulmón/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
16.
Comput Biol Med ; 157: 106777, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36924737

RESUMEN

BACKGROUND: This study aims to evaluate the efficacy and therapeutic mechanism of bufalin on lung adenocarcinoma (LUAD) through a comprehensive strategy integrating network pharmacology, metabolomics and molecular biology verification. METHODS: The putative targets of bufalin were discerned from PharmMapper and Swiss Target Prediction database. LUAD-related targets were obtained by target filtering of GeneCard database and data mining of GEO database. PPI network was constructed to screen the core targets, and their clinical significance was assessed through several public databases. GO and KEGG pathway analyses were performed to identify possible enrichment of genes with specific biological themes. Molecular docking and molecular dynamics (MD) simulation were employed to determine the correlation and binding pattern between bufalin and core targets. The potential mechanisms of bufalin acting on LUAD, as predicted by network pharmacology analyses, were experimentally validated using in-vitro and in-vivo models. Finally, the effects of bufalin intervention on metabolite profile and metabolic pathway in LUAD nude mice were investigated by non-targeted metabolomics. RESULTS: 209 bufalin targets and 1082 LUAD-associated targets were harvested, of which 51 intersection targets were identified. 10 core targets including Akt1, STAT3, EGFR, CASP3 and SRC were picked out through network topology analysis, and they had a potent binding activity with bufalin as indicated by molecular docking and MD simulation. Hub module of PPI network was closely related to cell proliferation and apoptosis. GO and KEGG enrichment analyses suggested that bufalin exerted therapeutic effects on LUAD possibly by inhibiting proliferation and promoting apoptosis via PI3K/Akt, FoxO1 and MAPK/ERK pathways, which were confirmed by a series of in-vitro studies as well as HE, TUNEL and Ki-67 staining of tumor tissues. Further metabolomics analysis revealed that bufalin mainly regulated ABC transporter and remodeled AA metabolism, thereby contributing to the treatment of LUAD. CONCLUSION: From molecular and metabolic perspective, the present study not only provided a unique insight into the possible mechanisms of bufalin against LUAD after successfully filtering out associated key target genes, differential endogenous metabolites, and signaling pathways, but also proposed a novel promising therapeutic strategy for LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Medicamentos Herbarios Chinos , Neoplasias Pulmonares , Animales , Ratones , Ratones Desnudos , Simulación del Acoplamiento Molecular , Farmacología en Red , Fosfatidilinositol 3-Quinasas , Biología Molecular , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética
17.
Phytomedicine ; 113: 154732, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36933457

RESUMEN

BACKGROUND: New therapeutic approaches are required to improve the outcomes of lung cancer (LC), a leading cause of cancer-related deaths worldwide. Chinese herbal medicine formulae widely used in China provide a unique opportunity for improving LC treatment, and the Shuang-Huang-Sheng-Bai (SHSB) formula is a typical example. However, the underlying mechanisms of action remains unclear. PURPOSE: This study aimed to confirm the efficacy of SHSB against lung adenocarcinoma (LUAD), which is a major histological type of LC, unveil the downstream targets of this formula, and assess the clinical relevance and biological roles of the newly identified target. METHODS: An experimental metastasis mouse model and a subcutaneous xenograft mouse model were used to evaluate the anti-cancer activity of SHSB. Multi-omics profiling of subcutaneous tumors and metabolomic profiling of sera were performed to identify downstream targets, especially the metabolic targets of SHSB. A clinical trial was conducted to verify the newly identified metabolic targets in patients. Next, the metabolites and enzymes engaged in the metabolic pathway targeted by SHSB were measured in clinical samples. Finally, routine molecular experiments were performed to decipher the biological functions of the metabolic pathways targeted by SHSB. RESULTS: Oral SHSB administration showed overt anti-LUAD efficacy as revealed by the extended overall survival of the metastasis model and impaired growth of implanted tumors in the subcutaneous xenograft model. Mechanistically, SHSB administration altered protein expression in the post-transcriptional layer and modified the metabolome of LUAD xenografts. Integrative analysis demonstrated that SHSB markedly inhibited acetyl-CoA synthesis in tumors by post-transcriptionally downregulating ATP-citrate lyase (ACLY). Consistently, our clinical trial showed that oral SHSB administration declined serum acetyl-CoA levels of patients with LC. Moreover, acetyl-CoA synthesis and ACLY expression were both augmented in clinical LUAD tissues of patients, and high intratumoral ACLY expression predicted a detrimental prognosis. Finally, we showed that ACLY-mediated acetyl-CoA synthesis is essential for LUAD cell growth by promoting G1/S transition and DNA replication. CONCLUSION: Limited downstream targets of SHSB for LC treatment have been reported in previous hypothesis-driven studies. In this study, we conducted a comprehensive multi-omics investigation and demonstrated that SHSB exerted its anti-LUAD efficacy by actively and post-transcriptionally modulating protein expression and particularly restraining ACLY-mediated acetyl-CoA synthesis.


Asunto(s)
Adenocarcinoma del Pulmón , Medicamentos Herbarios Chinos , Neoplasias Pulmonares , Humanos , Ratones , Animales , ATP Citrato (pro-S)-Liasa/genética , ATP Citrato (pro-S)-Liasa/metabolismo , Acetilcoenzima A/metabolismo , Medicamentos Herbarios Chinos/farmacología , Adenocarcinoma del Pulmón/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico
18.
J Vis Exp ; (193)2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36939253

RESUMEN

We aimed to study the mechanism of Trichosanthes-Fritillaria thunbergii in treating lung adenocarcinoma (LUAD) based on network pharmacology and experimental verification. The effective components and potential targets of Trichosanthis and Fritillaria thunbergii were collected by high-throughput experiment and reference-guided (HERB) database of traditional Chinese medicine and a similarity ensemble approach (SEA) database, and the LUAD-related targets were queried by the GeneCards and Online Mendelian Inheritance in Man (OMIM) databases. A drug-component-disease-target network was constructed by Cytoscape software. Protein-protein interaction (PPI) network, gene ontology (GO) function, and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses were conducted to obtain core targets and key pathways. An aqueous extract of Trichosanthes-Fritillaria thunbergii and A549 cells were used for the subsequent experimental validation. Through the HERB database and literature search, 31 effective compounds and 157 potential target genes of Trichosanthes-Fritillaria thunbergii were screened, of which 144 were regulatory targets of Trichosanthes-Fritillaria thunbergii in the treatment of lung adenocarcinoma. The GO functional enrichment analysis showed that the mechanism of action of Trichosanthes-Fritillaria thunbergii against lung adenocarcinoma is mainly protein phosphorylation. The KEGG pathway enrichment analysis suggested that the treatment of lung adenocarcinoma by Trichosanthes-Fritillaria thunbergii mainly involves the PI3K/AKT signaling pathway. The experimental validation showed that an aqueous extract of Trichosanthes-Fritillaria thunbergii could inhibit the proliferation of A549 cells and the phosphorylation of AKT. Through network pharmacology and experimental validation, it was verified that the PI3K/AKT signaling pathway plays a vital role in the action of Trichosanthes-Fritillaria thunbergii in treating lung adenocarcinoma.


Asunto(s)
Adenocarcinoma del Pulmón , Fritillaria , Neoplasias Pulmonares , Trichosanthes , Humanos , Farmacología en Red , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Adenocarcinoma del Pulmón/tratamiento farmacológico , Bases de Datos Genéticas , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Simulación del Acoplamiento Molecular
19.
Medicine (Baltimore) ; 102(7): e32999, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36800601

RESUMEN

To use bioinformatics and network analysis to reveal the mechanism of "Rhizoma Pinelliae-Rhizoma Coptidis" herb pair in the treatment of lung adenocarcinoma. The target and pathway of "Rhizoma Pinelliae-Rhizoma Coptidis" herb pair in the treatment of lung adenocarcinoma were explored by online databases and network analysis tools, and the potential biomarkers of "Rhizoma Pinelliae-Rhizoma Coptidis" herb pair in the treatment of lung adenocarcinoma were predicted in reverse. A total of 59 traditional Chinese medicine compounds and 510 drug targets were screened in this study. A total of 25 micro-RNAs and 15,323 disease targets were obtained through GEO2R software analysis. In the end, 294 therapeutic targets and 47 core targets were obtained. A total of 186 gene ontology enrichment assays were obtained, and core therapeutic targets play multiple roles in biological processes, molecular functions, and cellular composition. Kyoto encyclopedia of genes and genomes pathway enrichment analysis showed that the core targets were mainly enriched in cancer-related pathways, immune-related pathways, endocrine-related pathways, etc, among which the non-small cell lung cancer pathway was the most significant core pathway. Molecular docking shows that the compound and the target have good binding ability. "Rhizoma Pinelliae-Rhizoma Coptidis" herb pair plays a mechanism of action in the treatment of lung adenocarcinoma through multiple targets and pathways. miR-5703, miR-3125, miR-652-5P, and miR-513c-5p may be new biomarkers for the treatment of lung adenocarcinoma.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Medicamentos Herbarios Chinos , Neoplasias Pulmonares , MicroARNs , Pinellia , Humanos , Medicamentos Herbarios Chinos/farmacología , Pinellia/química , Simulación del Acoplamiento Molecular , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética
20.
Integr Cancer Ther ; 22: 15347354221144310, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36624619

RESUMEN

Holothurian glycosaminoglycan (hGAG) is extracted from the body wall of the sea cucumber, and previous studies have shown many unique bioactivities of hGAG, including antitumor, anti-angiogenesis, anti coagulation, anti thrombosis, anti-inflammation, antidiabetic effect, antivirus, and immune regulation. The effects of 3W and 5W molecular weights hGAG with hematoporphyrin derivative-photodynamic therapy (HPD-PDT) on lung cancer were investigated. Human lung adenocarcinoma A549 cells were divided into 6 groups: control group, 3W molecular weight hGAG group, 5W molecular weight hGAG group, HPD-PDT group, 3W molecular weight hGAG + HPD-PDT group, and 5W molecular weight hGAG + HPD-PDT group. Cell morphology was observed under inverted phase contrast microscope. Cell proliferative activity was detected by CCK8 and cell apoptosis was assayed by Hoechst33258 staining and flow cytometry. The results showed that two different molecular weights hGAG could inhibit proliferation, promote apoptosis rates of A549 cells, and enhance the sensitivity of A549 cells to HPD-PDT. The combined use of hGAG and HPD-PDT has synergistic inhibitory effects on A549 cells, and the effects of 3W molecular weight hGAG are better than that of 5W molecular weight hGAG.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Fotoquimioterapia , Humanos , Peso Molecular , Adenocarcinoma del Pulmón/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Apoptosis , Glicosaminoglicanos , Derivado de la Hematoporfirina , Proliferación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA