Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Intervalo de año de publicación
1.
J Steroid Biochem Mol Biol ; 202: 105725, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32652201

RESUMEN

The family of ATP-gated purinergic P2X receptors comprises seven bunits (P2X1-7) that are unevenly distributed in the central and peripheral nervous systems as well as other organs. Endogenous modulators of P2X receptors are phospholipids, steroids and neurosteroids. Here, we analyzed whether bile acids, which are natural products derived from cholesterol, affect P2X receptor activity. We examined the effects of primary and secondary bile acids and newly synthesized derivatives of lithocholic acid on agonist-induced responses in HEK293T cells expressing rat P2X2, P2X4 and P2X7 receptors. Electrophysiology revealed that low micromolar concentrations of lithocholic acid and its structural analog 4-dafachronic acid strongly inhibit ATP-stimulated P2X2 but potentiate P2X4 responses, whereas primary bile acids and other secondary bile acids exhibit no or reduced effects only at higher concentrations. Agonist-stimulated P2X7 responses are significantly potentiated by lithocholic acid at moderate concentrations. Structural modifications of lithocholic acid at positions C-3, C-5 or C-17 abolish both inhibitory and potentiation effects to varying degrees, and the 3α-hydroxy group contributes to the ability of the molecule to switch between potentiation and inhibition. Lithocholic acid allosterically modulates P2X2 and P2X4 receptor sensitivity to ATP, reduces the rate of P2X4 receptor desensitization and antagonizes the effect of ivermectin on P2X4 receptor deactivation. Alanine-scanning mutagenesis of the upper halve of P2X4 transmembrane domain-1 revealed that residues Phe48, Val43 and Tyr42 are important for potentiating effect of lithocholic acid, indicating that modulatory sites for lithocholic acid and ivermectin partly overlap. Lithocholic acid also inhibits ATP-evoked currents in pituitary gonadotrophs expressing native P2X2, and potentiates ATP currents in nonidentified pituitary cells expressing P2X4 receptors. These results indicate that lithocholic acid is a bioactive steroid that may help to further unveil the importance of the P2X2, and P2X4 receptors in many physiological processes.


Asunto(s)
Activación del Canal Iónico/efectos de los fármacos , Ácido Litocólico/farmacología , Agonistas del Receptor Purinérgico P2X/farmacología , Antagonistas del Receptor Purinérgico P2X/farmacología , Receptores Purinérgicos P2X2/fisiología , Receptores Purinérgicos P2X4/fisiología , Animales , Femenino , Células HEK293 , Humanos , Hipotálamo/citología , Hipotálamo/efectos de los fármacos , Hipotálamo/fisiología , Ácido Litocólico/análogos & derivados , Masculino , Neuronas/efectos de los fármacos , Neuronas/fisiología , Adenohipófisis/citología , Adenohipófisis/efectos de los fármacos , Adenohipófisis/fisiología , Ratas Wistar , Receptores Purinérgicos P2X7/fisiología
2.
Compr Physiol ; 5(1): 217-53, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25589270

RESUMEN

The endocrine hypothalamus constitutes those cells which project to the median eminence and secrete neurohormones into the hypophysial portal blood to act on cells of the anterior pituitary gland. The entire endocrine system is controlled by these peptides. In turn, the hypothalamic neuroendocrine cells are regulated by feedback signals from the endocrine glands and other circulating factors. The neuroendocrine cells are found in specific regions of the hypothalamus and are regulated by afferents from higher brain centers. Integrated function is clearly complex and the networks between and amongst the neuroendocrine cells allows fine control to achieve homeostasis. The entry of hormones and other factors into the brain, either via the cerebrospinal fluid or through fenestrated capillaries (in the basal hypothalamus) is important because it influences the extent to which feedback regulation may be imposed. Recent evidence of the passage of factors from the pars tuberalis and the median eminence casts a new layer in our understanding of neuroendocrine regulation. The function of neuroendocrine cells and the means by which pulsatile secretion is achieved is best understood for the close relationship between gonadotropin releasing hormone and luteinizing hormone, which is reviewed in detail. The secretion of other neurohormones is less rigid, so the relationship between hypothalamic secretion and the relevant pituitary hormones is more complex.


Asunto(s)
Hipotálamo/fisiología , Animales , Retroalimentación Fisiológica/fisiología , Humanos , Hormonas Hipotalámicas/metabolismo , Hormonas Hipotalámicas/fisiología , Hipotálamo/citología , Eminencia Media/fisiología , Células Neuroendocrinas/fisiología , Sistemas Neurosecretores/fisiología , Neurotransmisores/metabolismo , Adenohipófisis/fisiología
3.
J Endocrinol ; 222(2): R39-59, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24891434

RESUMEN

Adaptation to the environment is essential for survival, in all wild animal species seasonal variation in temperature and food availability needs to be anticipated. This has led to the evolution of deep-rooted physiological cycles, driven by internal clocks, which can track seasonal time with remarkable precision. Evidence has now accumulated that a seasonal change in thyroid hormone (TH) availability within the brain is a crucial element. This is mediated by local control of TH-metabolising enzymes within specialised ependymal cells lining the third ventricle of the hypothalamus. Within these cells, deiodinase type 2 enzyme is activated in response to summer day lengths, converting metabolically inactive thyroxine (T4) to tri-iodothyronine (T3). The availability of TH in the hypothalamus appears to be an important factor in driving the physiological changes that occur with season. Remarkably, in both birds and mammals, the pars tuberalis (PT) of the pituitary gland plays an essential role. A specialised endocrine thyrotroph cell (TSH-expressing) is regulated by the changing day-length signal, leading to activation of TSH by long days. This acts on adjacent TSH-receptors expressed in the hypothalamic ependymal cells, causing local regulation of deiodinase enzymes and conversion of TH to the metabolically active T3. In mammals, the PT is regulated by the nocturnal melatonin signal. Summer-like melatonin signals activate a PT-expressed clock-regulated transcription regulator (EYA3), which in turn drives the expression of the TSHß sub-unit, leading to a sustained increase in TSH expression. In this manner, a local pituitary timer, driven by melatonin, initiates a cascade of molecular events, led by EYA3, which translates to seasonal changes of neuroendocrine activity in the hypothalamus. There are remarkable parallels between this PT circuit and the photoperiodic timing system used in plants, and while plants use different molecular signals (constans vs EYA3) it appears that widely divergent organisms probably obey a common set of design principles.


Asunto(s)
Ritmo Circadiano/fisiología , Hipotálamo/fisiología , Fotoperiodo , Adenohipófisis/fisiología , Reproducción/fisiología , Adenilil Ciclasas/metabolismo , Animales , Proteínas de Unión al ADN/fisiología , Yoduro Peroxidasa/metabolismo , Melatonina/fisiología , Proteínas Tirosina Fosfatasas/metabolismo , Receptores de Melatonina/fisiología , Estaciones del Año , Tirotropina/metabolismo , Tirotropina/fisiología
4.
J Biol Rhythms ; 26(6): 486-96, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22215607

RESUMEN

To adapt to seasonal variations in the environment, most mammalian species exhibit seasonal cycles in their physiology and behavior. Seasonal plasticity in the structure and function of the central nervous system contributes to the adaptation of this physiology in seasonal mammals. As part of these plasticity mechanisms, seasonal variations in proliferation rate and neuron production have been extensively studied in songbirds. In this report, we investigated whether this type of brain plasticity also occurs in sheep, a seasonal species, by assessing variations in cell proliferation in the sheep diencephalon. We administered the cell birth marker 5'-bromodeoxyuridine (BrdU) to adult female sheep in July and December, during long and short photoperiod, respectively. The BrdU incorporation was analyzed and quantified in the hypothalamus, a key center for neuroendocrine regulations, as well as in other structures involved in relaying neuroendocrine and sensory information, including the median eminence, the pars tuberalis of the pituitary gland, and the thalamus. In December, 2-fold and 6-fold increases in the number of BrdU+ nuclei were observed in the hypothalamus and thalamus, respectively, when compared with July. This variation is independent of the influence of peripheral gonadal estradiol variations. An inverse seasonal regulation of cell proliferation was observed in the pars tuberalis. In contrast, no seasonal variation in cell proliferation was seen in the subventricular zone of the lateral ventricle. Many of the newborn cells in the adult ovine hypothalamus and thalamus differentiate into neurons and glial cells, as assessed by the expression of neuronal (DCX, NeuN) and glial (GFAP, S100B) fate markers. In summary, we show that the estimated cell proliferation rates in the sheep hypothalamus, thalamus, and pars tuberalis are different between seasons. These variations are independent of the seasonal fluctuations of peripheral estradiol levels, unlike the results described in the brain nuclei involved in song control of avian species.


Asunto(s)
Ciclos de Actividad/fisiología , Encéfalo/anatomía & histología , Encéfalo/fisiología , Proliferación Celular , Adenohipófisis/anatomía & histología , Adenohipófisis/fisiología , Estaciones del Año , Animales , Biomarcadores/metabolismo , Bromodesoxiuridina/metabolismo , Femenino , Hipotálamo/citología , Hipotálamo/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/citología , Neuronas/fisiología , Fotoperiodo , Ovinos
6.
Reprod Biol ; 10(2): 85-124, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20668503

RESUMEN

This review is focused on the relationship between neuroendocrine regulation of GnRH/LH secretion and the expression of GnRH and GnRH receptor (GnRHR) genes in the hypothalamic-pituitary unit during different physiological states of animals and under stress. Moreover, the involvement of hypothalamic GABA-ergic, Beta-endorphinergic, CRH-ergic, noradrenergic, dopaminergic and GnRH-ergic systems in the regulation of expression of the GnRH and GnRHR genes as well as secretion of GnRH/LH is analyzed. It appears that the neural mechanisms controlling GnRH gene expression in different physiological states may be distinct from those regulating GnRH/LH release. The hypothalamic GnRHR gene is probably located in different neural systems and may act in a specific way on GnRH gene expression and GnRH release.


Asunto(s)
Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , Sistema Hipotálamo-Hipofisario/fisiología , Receptores LHRH/genética , Vías Aferentes/fisiología , Anestro , Animales , Encéfalo/fisiología , Clonación Molecular , Endorfinas/fisiología , Estro , Femenino , Regulación de la Expresión Génica , Humanos , Hipotálamo/fisiología , Neuronas , Adenohipófisis/fisiología
7.
Endocrinology ; 151(2): 766-73, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20008041

RESUMEN

Mutant mouse lines have been used to study the development of specific neuronal populations and brain structures as well as behaviors. In this report, single- and double-mutant mice were used to examine the lineage of GnRH-1 cells. GnRH is essential for vertebrate reproduction, with either GnRH-1 or GnRH-3 controlling release of gonadotropins from the anterior pituitary, depending on the species. It is clear that the neuroendocrine GnRH cells migrate from extracentral nervous system locations into the forebrain. However, the embryonic origin of GnRH-1 and GnRH-3 cells is controversial and has been suggested to be nasal placode, adenohypophyseal (anterior pituitary) placode, or neural crest, again dependent on the species examined. We found that mutant mice with either missing or disrupted anterior pituitaries (Gli2(-/-), Gli1(-/-)Gli2(-/-), and Lhx3(-/-)) exhibit a normal GnRH-1 neuronal population and that these cells are still found associated with the developing vomeronasal organ. These results indicate that in mice, GnRH-1 cells develop independent of the adenohypophyseal placode and are associated early with the formation of the nasal placode.


Asunto(s)
Hormona Liberadora de Gonadotropina/fisiología , Neuronas/fisiología , Adenohipófisis/fisiología , Precursores de Proteínas/fisiología , Animales , Recuento de Células , Cartilla de ADN , Genotipo , Hormona Liberadora de Gonadotropina/deficiencia , Hormona Liberadora de Gonadotropina/genética , Proteínas de Homeodominio/genética , Hipotálamo/fisiología , Inmunohistoquímica , Factores de Transcripción de Tipo Kruppel/deficiencia , Factores de Transcripción de Tipo Kruppel/genética , Proteínas con Homeodominio LIM , Ratones , Ratones Noqueados , Ratones Mutantes , Neuronas/citología , Adenohipófisis/citología , Prosencéfalo/fisiología , Precursores de Proteínas/deficiencia , Precursores de Proteínas/genética , Factores de Transcripción , Proteína con Dedos de Zinc GLI1 , Proteína Gli2 con Dedos de Zinc
8.
Acta Physiol (Oxf) ; 198(3): 355-60, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19796256

RESUMEN

Appropriate nutritional and vigilance states are needed for reproduction. In previous works, we described the influence of the hormonal milieu of proestrus on the orexinergic system and we found that orexin receptor 1 expression in the hypothalamus, but not other neural areas, and the adenohypophysis was under the influence of oestradiol and the time of the day. Information from the sexual hormonal milieu of proestrous afternoon impacts on various components of the orexinergic system and alertness on this particular night of proestrus would be of importance for successful reproduction. In this review, we summarize the available experimental data supporting the participation of orexins in the hypothalamic-pituitary-ovarian relationships. All together, these results suggest a role of the orexinergic system as an integrative link among vital functions such as reproduction, food intake, alertness and the inner biological clock.


Asunto(s)
Sistema Hipotálamo-Hipofisario/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neuropéptidos/metabolismo , Neurotransmisores/metabolismo , Ovario/fisiología , Animales , Nivel de Alerta/fisiología , Relojes Biológicos/fisiología , Ingestión de Alimentos/fisiología , Metabolismo Energético/fisiología , Estradiol/metabolismo , Estro/metabolismo , Femenino , Humanos , Hipotálamo/fisiología , Receptores de Orexina , Orexinas , Adenohipófisis/fisiología , Proestro/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropéptido/metabolismo , Reproducción/fisiología
11.
Anim Reprod Sci ; 111(2-4): 235-48, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18434046

RESUMEN

The effect of prolonged, intermittent infusion of GABA(A) receptor agonist (muscimol) or GABA(A) receptor antagonist (bicuculline) into the third cerebral ventricle on the expression of GnRH gene and GnRH-R gene in the hypothalamus and GnRH-R gene in the anterior pituitary gland was examined in follicular-phase ewes by real-time PCR. The activation or inhibition of GABA(A) receptors in the hypothalamus decreased or increased the expression of GnRH and GnRH-R genes and LH secretion, respectively. The present results indicate that the GABAergic system in the hypothalamus of follicular-phase ewes may suppress, via hypothalamic GABA(A) receptors, the expression of GnRH and GnRH-R genes in this structure. The decrease or increase of GnRH-R mRNA in the anterior pituitary gland and LH secretion in the muscimol- or bicuculline-treated ewes, respectively, is probably a consequence of parallel changes in the release of GnRH from the hypothalamus activating GnRH-R gene expression. It is suggested that GABA acting through the GABA(A) receptor mechanism on the expression of GnRH gene and GnRH-R gene in the hypothalamus may be involved in two processes: the biosynthesis of GnRH and the release of this neurohormone in the hypothalamus.


Asunto(s)
Fase Folicular/genética , Hormona Liberadora de Gonadotropina/biosíntesis , Hipotálamo/fisiología , Adenohipófisis/fisiología , Receptores de GABA-A/metabolismo , Receptores LHRH/biosíntesis , Ovinos/genética , Animales , Bicuculina/farmacología , Femenino , Fase Folicular/efectos de los fármacos , Agonistas del GABA/farmacología , Antagonistas del GABA/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Hormona Liberadora de Gonadotropina/genética , Hipotálamo/efectos de los fármacos , Hormona Luteinizante/sangre , Hormona Luteinizante/fisiología , Muscimol/farmacología , Adenohipófisis/efectos de los fármacos , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Distribución Aleatoria , Receptores de GABA-A/genética , Receptores LHRH/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria , Ovinos/metabolismo , Estadísticas no Paramétricas
12.
J Neuroendocrinol ; 20(6): 641-6, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18601683

RESUMEN

The concept of neurohumoral control of anterior pituitary function championed by Geoffrey Harris was based upon clinical and biological observation backed by rigorous experimental testing. The areas of the brain involved in the control of gonadotrophic hormone synthesis and release were identified by electrical stimulation, lesioning and fibre tract cutting. The medial preoptic area (MPOA) proved to be a major integrating centre, with axon terminals from this region terminating at the median eminence releasing factors into the portal vessels to give a direct route from brain to pituitary. It took over a decade before the gonadotrophic hormone-releasing hormone (GnRH) was isolated, sequenced and synthesised. With antibodies raised against this peptide, the MPOA was identified as a site rich in GnRH neurones and the hormone was detected at high levels in portal blood extracts. A natural knockout of the GnRH gene was discovered in a hypogonadal (hpg) mouse. Hormone injections, gene replacement methods and neural grafting in these mutants all confirmed the central role of GnRH in reproduction. The modern techniques of molecular biology have allowed us to extend our knowledge base. In the last few years the role of kisspeptin and its receptor (GPR54) in the control of the GnRH neurone has added a further level of hypothalamic involvement in the modulation of reproduction.


Asunto(s)
Hipotálamo/fisiología , Adenohipófisis/fisiología , Animales , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/irrigación sanguínea , Hipotálamo/citología , Kisspeptinas , Neuronas/citología , Neuronas/metabolismo , Ovulación/fisiología , Adenohipófisis/citología , Hormonas Adenohipofisarias/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Kisspeptina-1 , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
13.
Endocrinology ; 149(1): 32-9, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17901234

RESUMEN

At temperate latitudes, increases in day length in the spring promote the summer phenotype. In mammals, this long-day response is mediated by decreasing nightly duration of melatonin secretion by the pineal gland. This affects adenylate cyclase signal transduction and clock gene expression in melatonin-responsive cells in the pars tuberalis of the pituitary, which control seasonal prolactin secretion. To define the photoperiodic limits of the mammalian long day response, we transferred short day (8 h light per 24 h) acclimated Soay sheep to various longer photoperiods, simulating those occurring from spring to summer in their northerly habitat (57 degrees N). Locomotor activity and plasma melatonin rhythms remained synchronized to the light-dark cycle in all photoperiods. Surprisingly, transfer to 16-h light/day had a greater effect on prolactin secretion and oestrus activity than shorter (12 h) or longer (20 and 22 h) photoperiods. The 16-h photoperiod also had the largest effect on expression of circadian (per1) and neuroendocrine output (betaTSH) genes in the pars tuberalis and on kisspeptin gene expression in the arcuate nucleus of the hypothalamus, which modulates reproductive activity. This critical photoperiodic window of responsiveness to long days in mammals is predicted by a model wherein adenylate cyclase sensitization and clock gene phasing effects of melatonin combine to control neuroendocrine output. This adaptive mechanism may be related to the latitude of origin and the timing of the seasonal transitions.


Asunto(s)
Aclimatación/genética , Aclimatación/fisiología , Melatonina/sangre , Fotoperiodo , Estaciones del Año , Adenilil Ciclasas/metabolismo , Animales , Proteínas CLOCK , Ciclo Estral/fisiología , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Femenino , Regulación de la Expresión Génica , Geografía , Hipotálamo/metabolismo , Hipotálamo/fisiología , Melatonina/metabolismo , Modelos Biológicos , Actividad Motora/fisiología , Proteínas Circadianas Period , Glándula Pineal/metabolismo , Glándula Pineal/fisiología , Adenohipófisis/metabolismo , Adenohipófisis/fisiología , Ovinos , Tirotropina de Subunidad beta/genética , Tirotropina de Subunidad beta/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
14.
Anim Reprod Sci ; 108(3-4): 345-55, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17945441

RESUMEN

Data exists showing that seasonal changes in the innervations of GnRH cells in the hypothalamus and functions of some neural systems affecting GnRH neurons are associated with GnRH release in ewes. Consequently, we put the question as to how the expression of GnRH gene and GnRH-R gene in the hypothalamus and GnRH-R gene in the anterior pituitary gland is reflected with LH secretion in anestrous and luteal phase ewes. Analysis of GnRH gene expression by RT-PCR in anestrous ewes indicated comparable levels of GnRH mRNA in the preoptic area, anterior and ventromedial hypothalamus. GnRH-R mRNA at different concentrations was found throughout the preoptic area, anterior and ventromedial hypothalamus, stalk/median eminence and in the anterior pituitary gland. The highest GnRH-R mRNA levels were detected in the stalk/median eminence and in the anterior pituitary gland. During the luteal phase of the estrous cycle in ewes, the levels of GnRH mRNA and GnRH-R mRNA in all structures were significantly higher than in anestrous ewes. Also LH concentrations in blood plasma of luteal phase ewes were significantly higher than those of anestrous ewes. In conclusion, results from this study suggest that low expression of the GnRH and GnRH-R genes in the hypothalamus and of the GnRH-R gene in the anterior pituitary gland, amongst others, may be responsible for a decrease in LH secretion and the anovulatory state in ewes during the long photoperiod.


Asunto(s)
Ciclo Estral/fisiología , Hormona Liberadora de Gonadotropina/biosíntesis , Hipotálamo/fisiología , Adenohipófisis/fisiología , Receptores LHRH/biosíntesis , Ovinos/fisiología , Animales , Femenino , Expresión Génica , Hormona Liberadora de Gonadotropina/genética , Hipotálamo/metabolismo , Hormona Luteinizante/sangre , Hormona Luteinizante/fisiología , Adenohipófisis/metabolismo , ARN/química , ARN/genética , Receptores LHRH/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria , Estaciones del Año , Ovinos/metabolismo
15.
J Physiol ; 586(4): 1185-94, 2008 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-18096603

RESUMEN

To evaluate the hypothalamic contribution to the development of anterior pituitary (AP) cells we surgically disconnected the hypothalamus from the pituitary (hypothalamo-pituitary disconnection, HPD) in fetal sheep and collected pituitaries 31 days later. Pituitaries (n = 6 per group) were obtained from fetal sheep (term = 147 +/- 3 days) at 110 days (unoperated group) of gestation and at 141 days from animals that had undergone HPD or sham surgery at 110 days. Cells were identified by labelling pituitary sections with antisera against the six AP hormones. Additionally, we investigated the colocalization of glycoprotein hormones. The proportions of somatotrophs and corticotrophs were unchanged by age or HPD. Lactotrophs increased 80% over time, but the proportion was unaffected by HPD. Thyrotrophs, which were unaffected by age, increased 70% following HPD. Gonadotrophs increased with gestational age (LH+ cells 55%; FSH+ cells 19-fold), but this was severely attenuated by HPD. We investigated the possible existence of a reciprocal effect of HPD on multipotential glycoprotein-expressing cells. Co-expression of LH and TSH was extremely rare (< 1%) and unchanged over the last month of gestation or HPD. The increase of gonadotrophs expressing FSH only or LH and FSH was attenuated by HPD. Therefore, the proportions of somatotrophs, lactotrophs and corticotrophs are regulated independently of hypothalamic input in the late gestation fetal pituitary. In marked contrast, the determination of the thyrotroph and gonadotroph lineages over the same time period is subject to complex mechanisms involving hypothalamic factors, which inhibit differentiation and/or proliferation of thyrotrophs, but stimulate gonadotrophs down the FSH lineage. Development of a distinct population of gonadotrophs, expressing only LH, appears to be subject to alternative mechanisms.


Asunto(s)
Desarrollo Fetal/fisiología , Gonadotrofos/citología , Hipotálamo/fisiología , Adenohipófisis/citología , Adenohipófisis/embriología , Ovinos/embriología , Tirotrofos/citología , Animales , Recuento de Células , Femenino , Feto/citología , Feto/embriología , Feto/fisiología , Hormona Folículo Estimulante/metabolismo , Gonadotrofos/metabolismo , Sistema Hipotálamo-Hipofisario/embriología , Sistema Hipotálamo-Hipofisario/fisiología , Hipotálamo/embriología , Hormona Luteinizante/metabolismo , Adenohipófisis/fisiología , Embarazo , Ovinos/fisiología , Tirotrofos/metabolismo , Tirotropina/metabolismo
16.
Anat Rec (Hoboken) ; 290(11): 1388-98, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17929273

RESUMEN

Although numerous investigators in 1970s to 1980s have reported the distribution of LH-RH nerve fibers in the median eminence, a few LH-RH fibers have been shown to be present in the pars tuberalis. The significance of the finding remains to be elucidated, and there are few studies on the distribution of LH-RH neurons in the pars tuberalis, especially in the dorsal pars tuberalis (DPT). Adult male Wistar-Imamichi rats were separated into two groups: one for electron microscopy and the other for immunohistochemistry to observe LH-RH and neurofilaments. Pituitary glands attached to the brain were fixed by perfusion, and the sections were prepared parallel to the sagittal plane. The typical glandular structure of the pars tuberalis was evident beneath the bottom floor of the third ventricle, and the thick glandular structure was present in the foremost region. Closer to the anterior lobe, the glandular structure changed to be a thin layer, and it was again observed at the posterior portion. Then the pituitary stalk was surrounded with the dorsal, lateral, and ventral pars tuberalis. LH-RH and neurofilaments fibers were noted in the bottom floor, and some of them vertically descended to the gland. Adjacent to the glandular folliculostellate cells in the pars tuberalis, Herring bodies with numerous dense granules invading into the gland were present between the pituitary stalk and DPT. It was postulated that the "message" carried by LH-RH might have been transmitted to the cells in the DPT to aid in the modulation of LH release.


Asunto(s)
Comunicación Celular/fisiología , Hormona Liberadora de Gonadotropina/metabolismo , Neuronas/metabolismo , Adenohipófisis/citología , Adenohipófisis/fisiología , Animales , Hipotálamo/citología , Hipotálamo/metabolismo , Hipotálamo/ultraestructura , Masculino , Proteínas de Neurofilamentos/metabolismo , Neuronas/citología , Neuronas/ultraestructura , Adenohipófisis/ultraestructura , Ratas , Ratas Wistar
17.
Acta Biomed ; 78 Suppl 1: 84-98, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17465327

RESUMEN

Tanycytes comprise a heterogeneous population of specialized cells of glial origin that line the floor and ventrolateral walls of the third ventricle between the rostral and caudal limits of the hypothalamic median eminence. While morphologic and ultrastructural features suggest a role as barrier cells, creating separate compartments between the cerebrospinal fluid, median eminence and hypothalamus, tanycytes likely have multiple other important functions that have yet to be fully elucidated. Possibilities to consider are a role in neuroendocrine regulation including modulation of the hypothalamic-pituitary-thyroid axis during fasting and infection, regulation of reproductive function, particularly in seasonal breeders, and in feeding.


Asunto(s)
Epéndimo/citología , Gónadas/fisiología , Hipotálamo/fisiología , Neuroglía/fisiología , Adenohipófisis/fisiología , Tercer Ventrículo/citología , Glándula Tiroides/fisiología , Animales , Axones/ultraestructura , Transporte Biológico/fisiología , Barrera Hematoencefálica , Citocinesis , Ayuno/fisiología , Humanos , Infecciones/fisiopatología , Yoduro Peroxidasa/fisiología , Lipopolisacáridos/farmacología , Regeneración Nerviosa/fisiología , Neuroglía/clasificación , Neuroglía/efectos de los fármacos , Neuroglía/enzimología , Periodicidad , Reproducción/fisiología , Yodotironina Deyodinasa Tipo II
18.
Mol Endocrinol ; 21(5): 1192-204, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17312275

RESUMEN

Mammalian endothelin (ET) receptors, termed ET(A)R and ET(B)R, are derived from two intron-containing genes and the functional splice variants of ET(B)R but not ET(A)R have been identified. Here, we report about the isolation of cDNAs of ET(A)R transcripts from rat anterior pituitary, which are generated by alternative RNA splicing. Deletion of exon 2 and insertion of fragments from intron 1 and 2 accounted for formation of three misplaced proteins, whereas the insertion of a fragment from intron 6 resulted in generation of a functional plasma membrane receptor, termed ET(A)R-C13. In this splice variant, the C-terminal 382S-426N sequence of ET(A)R was substituted with a shorter 382A-399L sequence, resulting in alteration of the putative domains responsible for coupling to G(q/11) and G(s) proteins and the endocytotic recycling, as well as in deletion of the predicted protein kinase C/casein kinase 2 phosphorylation sites. The mRNA transcripts for ET(A)R-C13 were identified in normal and immortalized pituitary cells and several other tissues. The pharmacological profiles of recombinant ET(A)R and ET(A)R-C13 were highly comparable, but the coupling of ET(A)R-C13 to the calcium-mobilizing signaling pathway was attenuated, causing a rightward shift in the potency for agonist. Furthermore, the efficacy of ET(A)R-C13 to stimulate adenylyl cyclase signaling pathway and to internalize was significantly reduced. These results indicate for the first time the presence of a novel ET(A) splice receptor, which could contribute to the functional heterogeneity among secretory pituitary cell types.


Asunto(s)
Adenohipófisis/fisiología , Receptor de Endotelina A/genética , Receptor de Endotelina B/genética , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Células CHO , Células Cultivadas , Clonación Molecular , Cricetinae , Cricetulus , Cartilla de ADN , ADN Complementario/genética , Femenino , Variación Genética , Humanos , Datos de Secuencia Molecular , Isoformas de Proteínas/genética , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción Genética
19.
Gen Comp Endocrinol ; 150(2): 319-25, 2007 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-17045993

RESUMEN

Changes in levels of PRLR mRNA in the pituitary gland and hypothalamus of chickens and turkeys from embryonic day (ED) 15 and ED21 to 1 day post-hatch, respectively, were measured by real-time PCR. In both species, PRLR mRNA increased from low levels during the last week of ED to reach maxima at the peri-hatch period. Similarly, circulating levels of PRL also increased during this interval and were highly correlated with levels of the PRLR mRNA in both the pituitary gland and hypothalamus. This suggests that PRL was up-regulating its receptor. In support of this, stimulation of the turkey pituitary gland with VIP on ED24 resulted in a 4- and 3-fold increase in PRL and PRLR, respectively. Since VIP had no direct effect on the levels of PRLR transcript in the hypothalamus, it is likely that VIP is acting indirectly through increased PRL to up-regulate the number of receptors.


Asunto(s)
Pollos/metabolismo , Hipotálamo/metabolismo , Adenohipófisis/metabolismo , ARN Mensajero/biosíntesis , Receptores de Prolactina/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Pavos/metabolismo , Animales , Western Blotting/veterinaria , Embrión de Pollo , Pollos/genética , Desarrollo Embrionario/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica , Hipotálamo/fisiología , Adenohipófisis/fisiología , Prolactina/sangre , ARN Mensajero/genética , Receptores de Prolactina/biosíntesis , Pavos/embriología , Pavos/genética , Péptido Intestinal Vasoactivo/farmacología
20.
J Neuroendocrinol ; 18(6): 426-33, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16684132

RESUMEN

Cocaine- and amphetamine-regulated transcript (CART) mRNA and peptides are abundant in the adenohypophysis, but their role in pituitary function has not yet been elucidated. CART peptides were recently shown to colocalise with luteinising hormone (LH) or prolactin in rat anterior pituitary, and contradictory results concerning the peptide effects on pituitary hormonal secretions were obtained in vitro from pituitary cell cultures. Thus, we reinvestigated the expression of CART mRNA within the pituitary. Immunohistochemistry for pituitary hormones was performed on sections from adult male Wistar rats followed by in situ hybridisation using CART mRNA antisense 35S-labelled probes. The most represented CART-expressing cells were lactotrophs (42 +/- 1% of CART cells) and gonadotrophs (32 +/- 3%), followed by thyrotrophs (10 +/- 2%), corticotrophs (7 +/- 2%) and somatotrophs (6 +/- 1%). In the pars tuberalis, CART mRNA was easily detectable in gonadotrophs and lactotrophs and, to a lesser extent, in corticotrophs and thyrotrophs. CART peptide was quickly and potently released from perifused pituitary by depolarisation (K+ 30 mM for 15 min; 465 +/- 37% over basal release, n = 5). Gonadotrophin-releasing hormone and thyrotrophin-releasing hormone (0.1 microM) were also active to a lesser extent (138 +/- 11% and 71 +/- 17, n = 7, respectively). CART (0.1 microM) did not modify basal LH or prolactin release but selectively inhibited K+-induced LH release without affecting K+-induced prolactin secretion. Pituitary CART mRNA and content were sex dependent and varied during the oestrous cycle, being lower in dioestrous 2. Pituitary CART content also varied widely amongst rat strains being five to six-fold higher in Wistar and Fischer rats compared to Brown Norway and Lou C rats. Ageing differentially affected pituitary CART mRNA and content, resulting in a marked decrease in Lou C and an increase in Wistar and Sprague-Dawley rats. Taken together, these results suggest that pituitary CART expression is dependent of the sex steroid environment and may be physiologically involved in LH secretion.


Asunto(s)
Ciclo Estral/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Adenohipófisis/fisiología , Envejecimiento/fisiología , Animales , Ingestión de Alimentos/fisiología , Retroalimentación Fisiológica/fisiología , Femenino , Regulación de la Expresión Génica/fisiología , Hipotálamo/fisiología , Hormona Luteinizante/metabolismo , Masculino , Obesidad/genética , Obesidad/fisiopatología , Fenotipo , ARN Mensajero/análisis , Ratas , Ratas Endogámicas BN , Ratas Endogámicas F344 , Ratas Wistar , Factores Sexuales , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA