Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Curr Opin Urol ; 30(5): 689-695, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32701724

RESUMEN

PURPOSE OF REVIEW: To acquaint urologists with aristolochic acid nephropathy, an iatrogenic disease that poses a distinct threat to global public health. In China alone, 100 million people may currently be at risk. We illustrate the power of molecular epidemiology in establishing the cause of this disease. RECENT FINDINGS: Molecular epidemiologic approaches and novel mechanistic information established a causative linkage between exposure to aristolochic acid and urothelial carcinomas of the bladder and upper urinary tract. Noninvasive tests are available that detect urothelial cancers through the genetic analysis of urinary DNA. Combined with cytology, some of these tests can detect 95% of patients at risk of developing bladder and/or upper urothelial tract cancer. Robust biomarkers, including DNA-adduct and mutational signature analysis, unequivocally identify aristolochic acid-induced tumours. The high mutational load associated with aristolochic acid-induced tumours renders them candidates for immune-checkpoint therapy. SUMMARY: Guided by recent developments that facilitate early detection of urothelial cancers, the morbidity and mortality associated with aristolochic acid-induced bladder and upper tract urothelial carcinomas may be substantially reduced. The molecular epidemiology tools that define aristolochic acid-induced tumours may be applicable to other studies assessing potential environmental carcinogens.


Asunto(s)
Ácidos Aristolóquicos/toxicidad , Nefropatía de los Balcanes/inducido químicamente , Aductos de ADN/metabolismo , Medicamentos Herbarios Chinos/efectos adversos , Neoplasias de la Vejiga Urinaria/inducido químicamente , Neoplasias Urológicas/inducido químicamente , Carcinógenos , Aductos de ADN/genética , Humanos
2.
Proc Natl Acad Sci U S A ; 117(1): 573-583, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31852820

RESUMEN

Fuchs endothelial corneal dystrophy (FECD) is a leading cause of corneal endothelial (CE) degeneration resulting in impaired visual acuity. It is a genetically complex and age-related disorder, with higher incidence in females. In this study, we established a nongenetic FECD animal model based on the physiologic outcome of CE susceptibility to oxidative stress by demonstrating that corneal exposure to ultraviolet A (UVA) recapitulates the morphological and molecular changes of FECD. Targeted irradiation of mouse corneas with UVA induced reactive oxygen species (ROS) production in the aqueous humor, and caused greater CE cell loss, including loss of ZO-1 junctional contacts and corneal edema, in female than male mice, characteristic of late-onset FECD. UVA irradiation caused greater mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) damage in female mice, indicative of the sex-driven differential response of the CE to UVA, thus accounting for more severe phenotype in females. The sex-dependent effect of UVA was driven by the activation of estrogen-metabolizing enzyme CYP1B1 and formation of reactive estrogen metabolites and estrogen-DNA adducts in female but not male mice. Supplementation of N-acetylcysteine (NAC), a scavenger of reactive oxygen species (ROS), diminished the morphological and molecular changes induced by UVA in vivo. This study investigates the molecular mechanisms of environmental factors in FECD pathogenesis and demonstrates a strong link between UVA-induced estrogen metabolism and increased susceptibility of females for FECD development.


Asunto(s)
Citocromo P-450 CYP1B1/metabolismo , Aductos de ADN/efectos de la radiación , Daño del ADN/efectos de la radiación , Estrógenos/metabolismo , Distrofia Endotelial de Fuchs/etiología , Rayos Ultravioleta/efectos adversos , Acetilcisteína/administración & dosificación , Animales , Humor Acuoso/efectos de los fármacos , Humor Acuoso/metabolismo , Humor Acuoso/efectos de la radiación , Aductos de ADN/metabolismo , Daño del ADN/efectos de los fármacos , ADN Mitocondrial/metabolismo , ADN Mitocondrial/efectos de la radiación , Modelos Animales de Enfermedad , Endotelio Corneal/efectos de los fármacos , Endotelio Corneal/patología , Endotelio Corneal/efectos de la radiación , Femenino , Depuradores de Radicales Libres/administración & dosificación , Distrofia Endotelial de Fuchs/diagnóstico , Distrofia Endotelial de Fuchs/tratamiento farmacológico , Distrofia Endotelial de Fuchs/patología , Humanos , Masculino , Ratones , Estrés Oxidativo/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo , Índice de Severidad de la Enfermedad
3.
J Biol Chem ; 294(32): 11960-11968, 2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31217280

RESUMEN

Cisplatin is the most commonly used chemotherapeutic drug for managing solid tumors. However, toxicity and the innate or acquired resistance of cancer cells to the drug limit its usefulness. Cisplatin kills cells by forming cisplatin-DNA adducts, most commonly the Pt-d(GpG) diadduct. We recently showed that, in mice, repair of this adduct 2 h following injection is controlled by two circadian programs. 1) The circadian clock controls transcription of 2000 genes in liver and, via transcription-directed repair, controls repair of the transcribed strand (TS) of these genes in a rhythmic fashion unique to each gene's phase of transcription. 2) The excision repair activity itself is controlled by the circadian clock with a single phase at which the repair of the nontranscribed strand (NTS) and the rest of the genome takes place. Here, we followed the repair kinetic for long periods genome-wide both globally and at single nucleotide resolution by the Excision Repair-sequencing (XR-seq) method to better understand cisplatin DNA damage and repair. We find that transcription-driven repair is nearly complete after 2 days, whereas weeks are required for repair of the NTS and the rest of the genome. TS repair oscillates in rhythmically expressed genes up to 2 days post injection, and in all expressed genes, we see a trend in TS repair with time from the 5' to 3' end. These findings help to understand the circadian- and transcription-dependent and -independent control of repair in response to cisplatin, and should aid in designing cisplatin chemotherapy regimens with improved therapeutic indexes.


Asunto(s)
Relojes Circadianos/fisiología , Cisplatino/metabolismo , Aductos de ADN/metabolismo , Reparación del ADN , Hígado/metabolismo , Animales , Cisplatino/análisis , Cisplatino/farmacología , Aductos de ADN/análisis , Daño del ADN/efectos de los fármacos , Femenino , Cinética , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia de ADN/métodos , Factores de Tiempo
4.
Toxicology ; 420: 29-38, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30940547

RESUMEN

Aristolochic acid (AA) dependent human nephropathy results either from environmental exposure to Aristolochiaceae plant subspecies or their use in traditional phytotherapy. The toxic components are structurally related nitrophenanthrene carboxylic acids, i.e. Aristolochic acid I (AAI) and II (AAII). AAI is considered to be the major cause of Aristolochic acid nephropathy, characterized by severe renal fibrosis and upper urothelial cancer. Following enzymatic activation in kidney and/or liver, AAI metabolites react with genomic DNA to form persistent DNA adducts with purines. To determine whether AAI can be activated in human renal cells to form DNA adducts, we exposed telomerase immortalized renal proximal tubular epithelial cells (RPTEC/TERT1), the human embryonic kidney (HEK293) cell line, as well as primary human kidney cells (pHKC) to AAI in vitro. We modified an isotope dilution ultra-performance liquid chromatography/tandem mass spectrometry (ID-UPLC-MS/MS) based method for the quantification of dA-AAI adducts in genomic DNA. In addition, time dependent accumulation of adducts in renal cortex and bladder tissue from AAI/II treated Eker rats were used to validate the detection method. AAI-induced toxicity in human renal cells was determined by dA-AAI adduct quantification, the impact on cell viability, and NQO1 expression and activity. Our findings demonstrated adduct formation in all cell lines, although only pHKC and RPTEC/TERT1 expressed NQO1. The highest adduct formation was detected in pHKC despite low NQO1 expression, while we observed much lower adduct levels in NQO1-negative HEK293 cells. Adduct formation and decreased cell viability correlated only weakly. Therefore, our data suggested that i.) enzymes other than NQO1 could be at least equally important for AA bioactivation in human renal proximal tubule cells, and ii.) the suggested correlation between adduct levels and viability appears to be questionable.


Asunto(s)
Ácidos Aristolóquicos/toxicidad , Aductos de ADN/metabolismo , Enfermedades Renales/inducido químicamente , Riñón/efectos de los fármacos , Activación Metabólica , Anciano , Animales , Supervivencia Celular/efectos de los fármacos , Femenino , Células HEK293 , Humanos , Riñón/metabolismo , Riñón/patología , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Masculino , Mutación , NAD(P)H Deshidrogenasa (Quinona)/genética , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Cultivo Primario de Células , Ratas Transgénicas , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética
5.
Chem Res Toxicol ; 32(1): 38-48, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30520628

RESUMEN

Diosbulbin B (DBB) and 8-epidiosbulbin E acetate (EEA), belonging to furan-containing diterpenoid lactones, are the primary components of Dioscorea bulbifera L. (DB), a traditional Chinese medicine herb. Our earlier studies indicated that consumption of DBB or EEA induced acute hepatotoxicities. Both DBB and EEA were bioactivated by P450 3A4 to generate the corresponding cis-enedial reactive metabolites which are associated with the hepatotoxicities. It has been proposed that the electrophilic intermediates attack cellular nucleophiles such as protein or DNA, thought to be a mechanism of triggering toxicities. The purposes of our present study were to define the interaction of the electrophilic reactive metabolites originating from DBB and EEA with 2'-deoxyguanosine (dGuo), 2'-deoxycytidine (dCyd), and 2'-deoxyadenosine (dAdo) and to characterize DNA adducts arising from the reactive metabolites of DBB and EEA. The reactive metabolites of DBB and EEA were found to covalently bind to the exocyclic and endocyclic nitrogens of dCyd, dGuo, and dAdo to generate oxadiazabicyclo[3.3.0]octaimine adducts. The reactive metabolites of DBB and EEA also attacked dGuo, dAdo, and dCyd of calf thymus DNA. The DNA adducts possibly contribute to the toxicologies of DBB and EEA.


Asunto(s)
Aductos de ADN/metabolismo , ADN/metabolismo , Diterpenos/metabolismo , Medicamentos Herbarios Chinos/metabolismo , Compuestos Heterocíclicos de 4 o más Anillos/metabolismo , Activación Metabólica , Animales , Bovinos , ADN/síntesis química , ADN/química , Aductos de ADN/síntesis química , Aductos de ADN/química , Dioscorea/química , Diterpenos/síntesis química , Diterpenos/química , Medicamentos Herbarios Chinos/síntesis química , Medicamentos Herbarios Chinos/química , Compuestos Heterocíclicos de 4 o más Anillos/síntesis química , Compuestos Heterocíclicos de 4 o más Anillos/química , Medicina Tradicional China , Conformación Molecular
6.
J Agric Food Chem ; 66(50): 13260-13267, 2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-30449111

RESUMEN

Egg yolk immunoglobulins (IgY), as nutraceutical supplement for therapeutic or prophylactic intervention, have been extensively studied. The effects of IgY on small molecular toxin-induced toxicity in animals are unclear. In the present study, the protection of highly purified and specific anti-AFB1 IgY against AFB1-induced genotoxicity and oxidative damage on the rat liver model were investigated. Our results revealed that AFB1 induced significant oxidative damage markers, as well as AFB1-induced protein expression in antioxidant, pro- and antiapoptosis processes in rat liver. These effects could be significantly inhibited by cogavage with anti-AFB1 IgY in a dose-dependent manner. However, anti-AFB1 IgY did not significantly induce hepatic CAT and SOD1. To explore mechanisms, metabolite experiments were established to evaluate the influence of anti-AFB1 IgY on the absorption of AFB1 in rats. Middle and high doses of anti-AFB1 IgY reduced hepatic AFB1-DNA adducts by 43.3% and 52.9%, AFB1- N7-guanine urinary adducts by 19.6% and 34.4%, and AFB1-albumin adducts by 10.5% and 21.1%, respectively. The feces of high dose anti-AFB1 IgY cogavaged rats contained approximately 2-fold higher AFB1 equivalents at 3-6 h after ingestion than AFB1 group feces, indicating IgY inhibited AFB1 uptake. These results had provided insight that anti-AFB1 IgY could prevent animal organs from damage caused by AFB1 and will be beneficial for the application of detoxification antibody as a supplement in food.


Asunto(s)
Aflatoxina B1/toxicidad , Daño del ADN/efectos de los fármacos , Yema de Huevo/química , Inmunoglobulinas/administración & dosificación , Hepatopatías/genética , Animales , Cloranfenicol O-Acetiltransferasa/genética , Cloranfenicol O-Acetiltransferasa/metabolismo , Aductos de ADN/genética , Aductos de ADN/metabolismo , Suplementos Dietéticos/análisis , Femenino , Humanos , Hígado/efectos de los fármacos , Hígado/enzimología , Hígado/metabolismo , Hepatopatías/tratamiento farmacológico , Hepatopatías/etiología , Hepatopatías/metabolismo , Oxidación-Reducción , Ratas , Ratas Sprague-Dawley , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
7.
J Med Food ; 21(2): 199-202, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29451459

RESUMEN

We previously showed rats fed with apiaceous vegetables, but not with their putative chemopreventive phytochemicals, reduced colonic DNA adducts formed by 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a dietary procarcinogen. We report here the effects of feeding apiaceous and cruciferous vegetables versus their purified predominant phytochemicals, either alone or combined, on prostate and pancreatic PhIP-DNA adduct formation. In experiment I, male Wistar rats received three supplemented diets: CRU (cruciferous vegetables), API (apiaceous vegetables), and CRU+API (both types of vegetables). In experiment II, rats received three diets supplemented with phytochemicals matched to their levels in the vegetables from experiment I: P + I (phenethyl isothiocyanate and indole-3-carbinol), FC (furanocoumarins; 5-methoxypsoralen, 8-methoxypsoralen, and isopimpinellin), and COMBO (P + I and FC combined). After 6 days of feeding, PhIP was injected (10 mg/kg body weight) and animals were killed on day 7. PhIP-DNA adducts were analyzed by LC-MS/MS. In prostate, PhIP-DNA adducts were reduced by API (33%, P < .05), P + I (45%, P < .001), and COMBO (30%, P < .01). There were no effects observed in pancreas. Our results suggest that fresh vegetables and purified phytochemicals lower PhIP-DNA adducts and may influence cancer risk.


Asunto(s)
Apiaceae/química , Brassicaceae/química , Carcinógenos/metabolismo , Páncreas/metabolismo , Próstata/metabolismo , Verduras/metabolismo , Animales , Apiaceae/metabolismo , Brassicaceae/metabolismo , Carcinógenos/análisis , Aductos de ADN/análisis , Aductos de ADN/genética , Aductos de ADN/metabolismo , Imidazoles/análisis , Imidazoles/metabolismo , Masculino , Páncreas/química , Próstata/química , Ratas , Ratas Wistar , Verduras/química
8.
Int J Mol Sci ; 19(1)2018 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-29301278

RESUMEN

Ovarian cancer has the highest fatality rate among the gynecologic cancers. The side effects, high relapse rate, and drug resistance lead to low long-term survival rate (less than 40%) of patients with advanced ovarian cancer. Theaflavin-3,3'-digallate (TF3), a black tea polyphenol, showed less cytotoxicity to normal ovarian cells than ovarian cancer cells. We aimed to investigate whether TF3 could potentiate the inhibitory effect of cisplatin against human ovarian cancer cell lines. In the present study, combined treatment with TF3 and cisplatin showed a synergistic cytotoxicity against A2780/CP70 and OVCAR3 cells. Treatment with TF3 could increase the intracellular accumulation of platinum (Pt) and DNA-Pt adducts and enhanced DNA damage induced by cisplatin in both cells. Treatment with TF3 decreased the glutathione (GSH) levels and upregulated the protein levels of the copper transporter 1 (CTR1) in both cells, which led to the enhanced sensitivity of both ovarian cancer cells to cisplatin. The results imply that TF3 might be used as an adjuvant to potentiate the inhibitory effect of cisplatin against advanced ovarian cancer.


Asunto(s)
Biflavonoides/farmacología , Catequina/análogos & derivados , Proteínas de Transporte de Catión/metabolismo , Cisplatino/farmacología , Glutatión/metabolismo , Neoplasias Ováricas/metabolismo , Catequina/farmacología , Línea Celular Tumoral , Transportador de Cobre 1 , Aductos de ADN/metabolismo , Daño del ADN , Sinergismo Farmacológico , Femenino , Humanos , Neoplasias Ováricas/patología , Regulación hacia Arriba/efectos de los fármacos
9.
Cancer Prev Res (Phila) ; 11(3): 157-164, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29158340

RESUMEN

We previously showed that metabolic activation of the environmental and tobacco smoke constituent dibenzo[a,l]pyrene (DB[a,l]P) to its active fjord region diol epoxide (DB[a,l]PDE) is required to induce DNA damage, mutagenesis, and squamous cell carcinoma (SCC) in the mouse oral cavity. In contrast to procarcinogens, which were employed previously to induce SCC, DB[a,l]PDE does not require metabolic activation to exert its biological effects, and thus, this study was initiated to examine, for the first time, whether black raspberry powder (BRB) inhibits postmetabolic processes, such as DNA damage, mutagenesis, and tumorigenesis. Prior to long-term chemoprevention studies, we initially examined the effect of BRB (5% added to AIN-93M diet) on DNA damage in B6C3F1 mice using LC/MS-MS and on mutagenesis in the lacI gene in the mouse oral cavity. We showed that BRB inhibited DB[a,l]PDE-induced DNA damage (P < 0.05) and mutagenesis (P = 0.053) in the oral cavity. Tumor incidence in the oral cavity (oral mucosa and tongue) of mice fed diet containing 5% BRB was significantly (P < 0.05) reduced from 93% to 66%. Specifically, the incidence of benign tumor was significantly (P < 0.001) reduced from 90% to 31% (62% to 28% in the oral cavity and 28% to 2% in the tongue), a nonsignificant reduction of malignant tumors from 52% to 45%. Our preclinical findings demonstrate for the first time that the chemopreventive efficacy of BRB can be extended to direct-acting carcinogens that do not require phase I enzymes and is not just limited to procarcinogens. Cancer Prev Res; 11(3); 157-64. ©2017 AACR.


Asunto(s)
Carcinogénesis/efectos de los fármacos , Aductos de ADN/efectos de los fármacos , Boca/efectos de los fármacos , Mutagénesis/efectos de los fármacos , Extractos Vegetales/farmacología , Rubus/química , Animales , Benzopirenos , Carcinogénesis/inducido químicamente , Carcinogénesis/patología , Aductos de ADN/metabolismo , Daño del ADN/efectos de los fármacos , Compuestos Epoxi , Femenino , Ratones , Ratones Endogámicos C57BL , Boca/metabolismo , Boca/patología , Mucosa Bucal/efectos de los fármacos , Mucosa Bucal/metabolismo , Mucosa Bucal/patología , Neoplasias de la Boca/inducido químicamente , Neoplasias de la Boca/genética , Neoplasias de la Boca/prevención & control , Fitoterapia
10.
J Agric Food Chem ; 65(50): 10925-10932, 2017 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-29231728

RESUMEN

Benzo[a]pyrene (B[a]P), a type of polycyclic aromatic hydrocarbon, is present in the atmosphere surrounding our environment. Although B[a]P is a procarcinogen, enzymatically metabolized benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) could intercalate into DNA to form bulky BPDE-DNA adducts as an ultimate carcinogenic product in human keratinocytes. The aim of this study was to evaluate the protective effect of mulberry extract, purified from the fruit of Morus Alba L., on B[a]P-induced cytotoxicity in human keratinocytes and its mechanisms of action. In this study, we confirmed that B[a]P induced nuclear translocation and the activation of aryl hydrocarbon receptor (AhR) were decreased by pretreatment of mulberry extract. Mulberry extract could decrease DNA damage through the suppression of B[a]P derived DNA adduct formation and restoration of cell cycle retardation at S phase in a dose-dependent manner. Additionally, cyanidin-3-glucoside (C3G), a major active compound of mulberry extract, showed biological activities to protect the cells from B[a]P exposure, similar to the effectivity of the mulberry extract. These results indicated that the inhibitory effect of C3G against B[a]P inducing skin cancer is attributable to repress the AhR signaling pathway.


Asunto(s)
Benzo(a)pireno/toxicidad , Morus/química , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Receptores de Hidrocarburo de Aril/metabolismo , Transducción de Señal/efectos de los fármacos , Piel/efectos de los fármacos , Antocianinas/farmacología , Aductos de ADN/genética , Aductos de ADN/metabolismo , Daño del ADN/efectos de los fármacos , Femenino , Glucósidos/farmacología , Humanos , Técnicas In Vitro , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Persona de Mediana Edad , Receptores de Hidrocarburo de Aril/antagonistas & inhibidores , Receptores de Hidrocarburo de Aril/genética , Piel/citología , Piel/metabolismo
11.
Chem Biol Interact ; 278: 74-83, 2017 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-28916335

RESUMEN

Mitochondrial oxidative stress plays a major role in the pathogenesis of myocardial apoptosis in metabolic syndrome (MS) patients. In this study, we investigated the effect of troxerutin (TX), an antioxidant on mitochondrial oxidative stress and apoptotic markers in heart of mice fed fat and fructose-rich diet. Adult male Mus musculus mice were fed either control diet or high fat, high fructose diet (HFFD) for 60 days to induce MS. Mice from each dietary group were divided into two on the 16th day and were either treated or untreated with TX (150 mg/kg bw, p.o) for the next 45 days. At the end of the study, mitochondrial reactive oxygen species (ROS) generation, oxidative stress markers, levels of intracellular calcium, cardiolipin content, cytochrome c release and apoptotic markers were examined in the myocardium. HFFD-feeding resulted in diminution of antioxidants and increased ROS production, lipid peroxidation and oxidatively modified adducts of 8-OHG, 4-HNE and 3-NT. Further increase in Ca2+ levels, low levels of calcium transporters and decrease in cardiolipin content were noted. Changes in the mitochondrial structure were observed by electron microscopy. Furthermore, cytochrome c release, increase in proapoptotic proteins (APAF-1, BAX, caspases-9 and-3) and decrease in antiapoptotic protein (BCL-2) in HFFD-fed mice suggest myocardial apoptosis. These changes were significantly restored by TX supplementation. TX administration effectively attenuated cardiac apoptosis and exerted a protective role by increasing antioxidant potential and by improving mitochondrial function. Thus, TX could be a promising therapeutic candidate for treating cardiac disease in MS patients.


Asunto(s)
Apoptosis/efectos de los fármacos , Dieta Alta en Grasa , Hidroxietilrutósido/análogos & derivados , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Animales , Antioxidantes/metabolismo , Calcio/metabolismo , Cardiolipinas/metabolismo , Caspasa 3/genética , Caspasa 3/metabolismo , Caspasa 9/genética , Caspasa 9/metabolismo , Citocromos c/metabolismo , Aductos de ADN/metabolismo , Fructosa/toxicidad , Corazón/efectos de los fármacos , Hidroxietilrutósido/farmacología , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Miocardio/metabolismo , Miocardio/patología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
12.
Int J Cancer ; 141(6): 1078-1090, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28388839

RESUMEN

Endogenous estrogens become carcinogens when dangerous metabolites, the catechol estrogen quinones, are formed. In particular, the catechol estrogen-3,4-quinones can react with DNA to produce an excess of specific depurinating estrogen-DNA adducts. Loss of these adducts leaves apurinic sites in the DNA, generating subsequent cancer-initiating mutations. Unbalanced estrogen metabolism yields excessive catechol estrogen-3,4-quinones, increasing formation of depurinating estrogen-DNA adducts and the risk of initiating cancer. Evidence for this mechanism of cancer initiation comes from various types of studies. High levels of depurinating estrogen-DNA adducts have been observed in women with breast, ovarian or thyroid cancer, as well as in men with prostate cancer or non-Hodgkin lymphoma. Observation of high levels of depurinating estrogen-DNA adducts in high risk women before the presence of breast cancer indicates that adduct formation is a critical factor in breast cancer initiation. Formation of analogous depurinating dopamine-DNA adducts is hypothesized to initiate Parkinson's disease by affecting dopaminergic neurons. Two dietary supplements, N-acetylcysteine and resveratrol complement each other in reducing formation of catechol estrogen-3,4-quinones and inhibiting formation of estrogen-DNA adducts in cultured human and mouse breast epithelial cells. They also inhibit malignant transformation of these cells. In addition, formation of adducts was reduced in women who followed a Healthy Breast Protocol that includes N-acetylcysteine and resveratrol. When initiation of cancer is blocked, promotion, progression and development of the disease cannot occur. These results suggest that reducing formation of depurinating estrogen-DNA adducts can reduce the risk of developing a variety of types of human cancer.


Asunto(s)
Aductos de ADN/metabolismo , Estrógenos/metabolismo , Neoplasias/etiología , Neoplasias/prevención & control , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/prevención & control , Animales , Dopamina/metabolismo , Humanos , Neoplasias/metabolismo , Enfermedad de Parkinson/metabolismo , Purinas/metabolismo
13.
Chin J Nat Med ; 15(1): 15-40, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28259249

RESUMEN

Wogonin is a plant flavonoid compound extracted from Scutellaria baicalensis (Huang-Qin or Chinese skullcap) and has been studied thoroughly by many researchers till date for its anti-viral, anti-oxidant, anti-cancerous and neuro-protective properties. Numerous experiments conducted in vitro and in vivo have demonstrated wogonin's excellent tumor inhibitory properties. The anti-cancer mechanism of wogonin has been ascribed to modulation of various cell signaling pathways, including serine-threonine kinase Akt (also known as protein kinase B) and AMP-activated protein kinase (AMPK) pathways, p53-dependent/independent apoptosis, and inhibition of telomerase activity. Furthermore, wogonin also decreases DNA adduct formation with a carcinogenic compound 2-Aminofluorene and inhibits growth of drug resistant malignant cells and their migration and metastasis, without any side effects. Recently, newly synthesized wogonin derivatives have been developed with impressive anti-tumor activity. This review is the succinct appraisal of the pertinent articles on the mechanisms of anti-tumor properties of wogonin. We also summarize the potential of wogonin and its derivatives used alone or as an adjunct therapy for cancer treatment. Furthermore, pharmacokinetics and side effects of wogonin and its analogues have also been discussed.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Medicamentos Herbarios Chinos/farmacología , Flavanonas/farmacología , Neoplasias/metabolismo , Fitoterapia , Scutellaria baicalensis/química , Animales , Antineoplásicos Fitogénicos/uso terapéutico , Aductos de ADN/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Medicamentos Herbarios Chinos/uso terapéutico , Flavanonas/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos
14.
Carcinogenesis ; 35(10): 2365-72, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25053626

RESUMEN

We have previously shown that kava and its flavokavain-free Fraction B completely blocked 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis in A/J mice with a preferential reduction in NNK-induced O (6)-methylguanine (O (6)-mG). In this study, we first identified natural (+)-dihydromethysticin (DHM) as a lead compound through evaluating the in vivo efficacy of five major compounds in Fraction B on reducing O (6)-mG in lung tissues. (+)-DHM demonstrated outstanding chemopreventive activity against NNK-induced lung tumorigenesis in A/J mice with 97% reduction of adenoma multiplicity at a dose of 0.05mg/g of diet (50 ppm). Synthetic (±)-DHM was equally effective as the natural (+)-DHM in these bioassays while a structurally similar analog, (+)-dihydrokavain (DHK), was completely inactive, revealing a sharp in vivo structure-activity relationship. Analyses of an expanded panel of NNK-induced DNA adducts revealed that DHM reduced a subset of DNA adducts in lung tissues derived from 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL, the active metabolite of NNK). Preliminary 17-week safety studies of DHM in A/J mice at a dose of 0.5mg/g of diet (at least 10× its minimum effective dose) revealed no adverse effects, suggesting that DHM is likely free of kava's hepatotoxic risk. These results demonstrate the outstanding efficacy and promising safety margin of DHM in preventing NNK-induced lung tumorigenesis in A/J mice, with a unique mechanism of action and high target specificity.


Asunto(s)
Daño del ADN/efectos de los fármacos , Kava/química , Neoplasias Pulmonares/prevención & control , Nitrosaminas/toxicidad , Pironas/química , Pironas/farmacología , Animales , Carcinógenos/toxicidad , Aductos de ADN/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Guanina/análogos & derivados , Guanina/farmacocinética , Hígado/efectos de los fármacos , Neoplasias Pulmonares/inducido químicamente , Ratones , Ratones Endogámicos , Relación Estructura-Actividad , Nicotiana/química
15.
Carcinogenesis ; 35(9): 2055-61, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24776219

RESUMEN

DNA adducts are a measure of internal exposure to genotoxicants. However, the measurement of DNA adducts in molecular epidemiology studies often is precluded by the lack of fresh tissue. In contrast, formalin-fixed paraffin-embedded (FFPE) tissues frequently are accessible, although technical challenges remain in retrieval of high quality DNA suitable for biomonitoring of adducts. Aristolochic acids (AA) are human carcinogens found in Aristolochia plants, some of which have been used in the preparation of traditional Chinese herbal medicines. We previously established a method to measure DNA adducts of AA in FFPE tissue. In this study, we examine additional features of formalin fixation that could impact the quantity and quality of DNA and report on the recovery of AA-DNA adducts in mice exposed to AA. The yield of DNA isolated from tissues fixed with formalin decreased over 1 week; however, the levels of AA-DNA adducts were similar to those in fresh frozen tissue. Moreover, DNA from FFPE tissue served as a template for PCR amplification, yielding sequence data of comparable quality to DNA obtained from fresh frozen tissue. The estimates of AA-DNA adducts measured in freshly frozen tissue and matching FFPE tissue blocks of human kidney stored for 9 years showed good concordance. Thus, DNA isolated from FFPE tissues may be used to biomonitor DNA adducts and to amplify genes used for mutational analysis, providing clues regarding the origin of human cancers for which an environmental cause is suspected.


Asunto(s)
Ácidos Aristolóquicos/metabolismo , Carcinógenos/metabolismo , Aductos de ADN/genética , Animales , Aductos de ADN/aislamiento & purificación , Aductos de ADN/metabolismo , Análisis Mutacional de ADN/normas , Fijadores/química , Formaldehído/química , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Adhesión en Parafina , Estándares de Referencia , Espectrometría de Masa por Ionización de Electrospray/normas , Fijación del Tejido
16.
PLoS One ; 9(3): e90908, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24651647

RESUMEN

Dietary supplementation with natural chemoprotective agents is receiving considerable attention because of health benefits and lack of toxicity. In recent in vivo and in vitro experimental studies, diets rich in n-3 polyunsaturated fatty acids have been shown to provide significant anti-tumor action. In this investigation, the effects of control fatty acids (oleic acid (OA), linoleic acid (LA)) and n-3 PUFA, e.g., docosahexaenoic acid (DHA) on the uptake and metabolism of the carcinogenic polycyclic aromatic hydrocarbon, benzo[a]pyrene (BaP) was investigated in A549 cells, a human adenocarcinoma alveolar basal epithelial cell line. A549 cells activate BaP through the cytochrome P450 enzyme system to form reactive metabolites, a few of which covalently bind to DNA and proteins. Therefore, multiphoton microscopy spectral analysis combined with linear unmixing was used to identify the parent compound and BaP metabolites formed in cells, in the presence and absence of fatty acids. The relative abundance of select metabolites was associated with altered P450 activity as determined using ethoxyresorufin-O-deethylase activity in cells cultured in the presence of BSA-conjugated fatty acids. In addition, the parent compound within cellular membranes increases significantly in the presence of each of the fatty acids, with the greatest accumulation observed following DHA treatment. DHA treated cells exhibit significantly lower pyrene-like metabolites indicative of lower adducts including DNA adducts compared to control BSA, OA or LA treated cells. Further, DHA reduced the abundance of the proximate carcinogen BaP 7,8-dihydrodiol and the 3-hydroxybenzo[a]pyrene metabolites compared to other treatments. The significant changes in BaP metabolites in DHA treated cells may be mediated by the effects on the physicochemical properties of the membrane known to affect enzyme activity related to phase I and phase II metabolism. In summary, DHA is a highly bioactive chemo-protective agent capable of modulating BaP-induced DNA adducts.


Asunto(s)
Adenocarcinoma/metabolismo , Benzo(a)pireno/metabolismo , Ácidos Grasos/farmacología , Neoplasias Pulmonares/metabolismo , Adenocarcinoma del Pulmón , Animales , Butionina Sulfoximina/farmacología , Bovinos , Línea Celular Tumoral , Citocromo P-450 CYP1A1/metabolismo , Aductos de ADN/metabolismo , Ácidos Docosahexaenoicos/farmacología , Glutatión/metabolismo , Humanos , Fotones , Albúmina Sérica Bovina/metabolismo
17.
Asian Pac J Cancer Prev ; 15(2): 749-55, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24568490

RESUMEN

BACKGROUND: Purple rice has become a natural product of interest which is widely used for health promotion. This study investigated the preventive effect of purple rice extract (PRE) mixed diet on DMH initiation of colon carcinogenesis. MATERIALS AND METHODS: Rats were fed with PRE mixed diet one week before injection of DMH (40 mg/kg of body weight once a week for 2 weeks). They were killed 12 hrs after a second DMH injection to measure the level of O6-methylguanine and xenobiotic metabolizing enzyme activities. RESULTS: In rats that received PRE, guanine methylation was reduced in the colonic mucosa, but not in the liver, whereas PRE did not affect xenobiotic conjugation, with reference to glutathione-S-transferase or UDP-glucuronyl transferase. After 5 weeks, rats that received PRE with DMH injection had fewer ACF in the colon than those treated with DMH alone. Interestingly, a PRE mixed diet inhibited the activity of bacterial ß-glucuronidase in rat feces, a critical enzyme for free methylazoxymethanol (MAM) release in the rat colon. These results indicated that purple rice extract inhibited ß-glucuronidase activity in the colonic lumen, causing a reduction of MAM-induced colonic mucosa DNA methylation, leaded to decelerated formation of aberrant crypt foci in the rat colon. CONCLUSIONS: The supplemented purple rice extract might thus prevent colon carcinogenesis by the alteration of the colonic environment, and thus could be further developed for neutraceutical products for colon cancer prevention.


Asunto(s)
1,2-Dimetilhidrazina/toxicidad , Focos de Criptas Aberrantes/prevención & control , Colon/efectos de los fármacos , Suplementos Dietéticos , Glucuronidasa/antagonistas & inhibidores , Oryza/química , Extractos Vegetales/farmacología , Focos de Criptas Aberrantes/inducido químicamente , Focos de Criptas Aberrantes/metabolismo , Animales , Carcinógenos/toxicidad , Colon/metabolismo , Aductos de ADN/efectos de los fármacos , Aductos de ADN/metabolismo , Escherichia coli/enzimología , Glucuronidasa/metabolismo , Guanina/análogos & derivados , Guanina/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Masculino , Oryza/metabolismo , Ratas , Ratas Wistar
18.
Mol Aspects Med ; 36: 1-55, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23994691

RESUMEN

Elucidation of estrogen carcinogenesis required a few fundamental discoveries made by studying the mechanism of carcinogenesis of polycyclic aromatic hydrocarbons (PAH). The two major mechanisms of metabolic activation of PAH involve formation of radical cations and diol epoxides as ultimate carcinogenic metabolites. These intermediates react with DNA to yield two types of adducts: stable adducts that remain in DNA unless removed by repair and depurinating adducts that are lost from DNA by cleavage of the glycosyl bond between the purine base and deoxyribose. The potent carcinogenic PAH benzo[a]pyrene, dibenzo[a,l]pyrene, 7,12-dimethylbenz[a]anthracene and 3-methylcholanthrene predominantly form depurinating DNA adducts, leaving apurinic sites in the DNA that generate cancer-initiating mutations. This was discovered by correlation between the depurinating adducts formed in mouse skin by treatment with benzo[a]pyrene, dibenzo[a,l]pyrene or 7,12-dimethylbenz[a]anthracene and the site of mutations in the Harvey-ras oncogene in mouse skin papillomas initiated by one of these PAH. By applying some of these fundamental discoveries in PAH studies to estrogen carcinogenesis, the natural estrogens estrone (E1) and estradiol (E2) were found to be mutagenic and carcinogenic through formation of the depurinating estrogen-DNA adducts 4-OHE1(E2)-1-N3Ade and 4-OHE1(E2)-1-N7Gua. These adducts are generated by reaction of catechol estrogen quinones with DNA, analogously to the DNA adducts obtained from the catechol quinones of benzene, naphthalene, and the synthetic estrogens diethylstilbestrol and hexestrol. This is a weak mechanism of cancer initiation. Normally, estrogen metabolism is balanced and few estrogen-DNA adducts are formed. When estrogen metabolism becomes unbalanced, more catechol estrogen quinones are generated, resulting in higher levels of estrogen-DNA adducts, which can be used as biomarkers of unbalanced estrogen metabolism and, thus, cancer risk. The ratio of estrogen-DNA adducts to estrogen metabolites and conjugates has repeatedly been found to be significantly higher in women at high risk for breast cancer, compared to women at normal risk. These results indicate that formation of estrogen-DNA adducts is a critical factor in the etiology of breast cancer. Significantly higher adduct ratios have been observed in women with breast, thyroid or ovarian cancer. In the women with ovarian cancer, single nucleotide polymorphisms in the genes for two enzymes involved in estrogen metabolism indicate risk for ovarian cancer. When polymorphisms produce high activity cytochrome P450 1B1, an activating enzyme, and low activity catechol-O-methyltransferase, a protective enzyme, in the same woman, she is almost six times more likely to have ovarian cancer. These results indicate that formation of estrogen-DNA adducts is a critical factor in the etiology of ovarian cancer. Significantly higher ratios of estrogen-DNA adducts to estrogen metabolites and conjugates have also been observed in men with prostate cancer or non-Hodgkin lymphoma, compared to healthy men without cancer. These results also support a critical role of estrogen-DNA adducts in the initiation of cancer. Starting from the perspective that unbalanced estrogen metabolism can lead to increased formation of catechol estrogen quinones, their reaction with DNA to form adducts, and generation of cancer-initiating mutations, inhibition of estrogen-DNA adduct formation would be an effective approach to preventing a variety of human cancers. The dietary supplements resveratrol and N-acetylcysteine can act as preventing cancer agents by keeping estrogen metabolism balanced. These two compounds can reduce the formation of catechol estrogen quinones and/or their reaction with DNA. Therefore, resveratrol and N-acetylcysteine provide a widely applicable, inexpensive approach to preventing many of the prevalent types of human cancer.


Asunto(s)
Carcinógenos/toxicidad , Sistema Enzimático del Citocromo P-450/metabolismo , Aductos de ADN/toxicidad , Estradiol/metabolismo , Estrógenos de Catecol/metabolismo , Estrona/metabolismo , Mutágenos/toxicidad , Neoplasias/inducido químicamente , Animales , Biomarcadores de Tumor/metabolismo , Carcinógenos/metabolismo , Aductos de ADN/metabolismo , Femenino , Humanos , Masculino , Mutágenos/metabolismo , Hidrocarburos Policíclicos Aromáticos/toxicidad
19.
Food Chem Toxicol ; 62: 32-40, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23959103

RESUMEN

Basil-containing plant food supplements (PFS) can contain estragole which can be metabolised into a genotoxic and carcinogenic 1'-sulfoxymetabolite. This study describes the inhibition of sulfotransferase (SULT)-mediated bioactivation of estragole by compounds present in basil-containing PFS. Results reveal that PFS consisting of powdered basil material contain other compounds with considerable in vitro SULT-inhibiting activity, whereas the presence of such compounds in PFS consisting of basil essential oil was limited. The inhibitor in powdered basil PFS was identified as nevadensin. Physiologically based kinetic (PBK) modeling was performed to elucidate if the observed inhibitory effects can occur in vivo. Subsequently, risk assessment was performed using the Margin of Exposure (MOE) approach. Results suggest that the consequences of the in vivo matrix-derived combination effect are significant when estragole would be tested in rodent bioassays with nevadensin at ratios detected in PFS, thereby increasing MOE values. However, matrix-derived combination effects may be limited at lower dose levels, indicating that the importance of matrix-derived combination effects for risk assessment of individual compounds should be done on a case-by-case basis considering dose-dependent effects. Furthermore, this study illustrates how PBK modeling can be used in risk assessment of PFS, contributing to further reduction in the use of experimental animals.


Asunto(s)
Anisoles/efectos adversos , Suplementos Dietéticos/análisis , Medición de Riesgo/métodos , Derivados de Alilbenceno , Animales , Anisoles/administración & dosificación , Anisoles/farmacología , Fraccionamiento Químico , Aductos de ADN/metabolismo , Suplementos Dietéticos/efectos adversos , Relación Dosis-Respuesta a Droga , Flavonas/toxicidad , Inocuidad de los Alimentos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ocimum basilicum/química , Ratas Sprague-Dawley , Sulfotransferasas/antagonistas & inhibidores , Sulfotransferasas/metabolismo
20.
Environ Toxicol Pharmacol ; 36(2): 320-331, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23708313

RESUMEN

Epidemiological studies indicated that there is an increased risk of respiratory tract cancer among cooks and bakers. The cooking oil fumes are believed to conduct this risk, and many studies have focused on evaluating the mutagenicity and finding the mutagenic components in oil fumes. COFs contains two major classes of compounds. One class consists of polycyclic aromatic hydrocarbons (PAHs), such as benzo[a]pyrene, benzo[b]fluoranthene, fluoranthene, and benzo[g,h,i]perylene. BaP is a known immunosuppressant. It can also alter cell cycle progression, induce inflammation, and impair DNA repair and apoptotic processes leading to aberrant cellular functioning. This study investigates the effect of toxicity of cooking oil fumes (COFs) in primary ICR mice' fetal lung type II-like epithelium cells (AEC II). The cells were cultured in different concentrations (0, 12.5, 25, 50, 100, and 200µg/ml) of COFs for different time periods. The results showed that cell viability decreased in a dose- and time- dependent manner, which is accompanied by increased malondialdehyde (MDA) level and decreased superoxide dismutase (SOD) and glutathione (GSH) activities. Moreover, comet assay suggested DNA damage, as well as increased production of DNA adducts induced by PAHs. The present study also shows that COFs may disturb cell cycles even at a very low dose. In summary, the present study indicates that COFs may lead to toxicity in AEC II cells.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Culinaria , Pulmón/efectos de los fármacos , Aceites de Plantas/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Animales , Ciclo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Aductos de ADN/metabolismo , Relación Dosis-Respuesta a Droga , Glutatión/metabolismo , Pulmón/embriología , Pulmón/metabolismo , Pulmón/patología , Malondialdehído/metabolismo , Ratones , Ratones Endogámicos ICR , Estrés Oxidativo/efectos de los fármacos , Aceite de Cacahuete , Superóxido Dismutasa/metabolismo , Factores de Tiempo , Volatilización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA