Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Sci ; 305: 110748, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33691954

RESUMEN

Agave lechuguilla is one of the most abundant species in arid and semiarid regions of Mexico, and is used to extract fiber. However, 85 % of the harvested plant material is discarded. Previous bioprospecting studies of the waste biomass suggest the presence of bioactive compounds, although the extraction process limited metabolite characterization. This work achieved flavonoid profiling of A. lechuguilla in both processed and non-processed leaf tissues using transcriptomic analysis. Functional annotation of the first de novo transcriptome of A. lechuguilla (255.7 Mbp) allowed identifying genes coding for 33 enzymes and 8 transcription factors involved in flavonoid biosynthesis. The flavonoid metabolic pathway was mostly elucidated by HPLC-MS/MS screening of alcoholic extracts. Key genes of flavonoid synthesis were higher expressed in processed leaf tissues than in non-processed leaves, suggesting a high content of flavonoids and glycoside derivatives in the waste biomass. Targeted HPLC-UV-MS analyses confirmed the concentration of isorhamnetin (1251.96 µg), flavanone (291.51 µg), hesperidin (34.23 µg), delphinidin (24.23 µg), quercetin (15.57 µg), kaempferol (13.71 µg), cyanidin (12.32 µg), apigenin (9.70 µg) and catechin (7.91 µg) per gram of dry residue. Transcriptomic and biochemical profiling concur in the potential of lechuguilla by-products with a wide range of applications in agriculture, feed, food, cosmetics, and pharmaceutical industries.


Asunto(s)
Agave/química , Agave/genética , Agave/metabolismo , Biomasa , Flavonoides/metabolismo , Extractos Vegetales/química , Residuos/análisis , Perfilación de la Expresión Génica , México
2.
J Ethnobiol Ethnomed ; 16(1): 3, 2020 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-31948439

RESUMEN

BACKGROUND: Pulque is a fermented beverage prepared with sap of Agave species in Mexico. Management of agaves for this purpose has motivated domestication of some species and high phenotypic variation that commonly causes uncertainty about the taxonomic identity of varieties traditionally managed by people. This study assumed that varieties of crop species continually arise from mutations, sexual reproduction and hybridization, among other processes, and some of them are favoured and maintained by humans. Identifying these varieties may be difficult and a challenging issue for botanists and evolutionary biologists studying processes of domestication. Through a case study, we analysed the traditional varieties of agaves used to produce pulque in Michoacán, Mexico. We aimed at identifying the varieties, analysing the relatedness among them and developing a methodological approach that could help solve taxonomic problems and study variation under domestication of this and other plant groups. We documented (1) the traditional varieties of agave used and their identity, (2) how these varieties are perceived, used and managed by the local people and (3) how management influences phenotypic and genetic variation among varieties. METHODS: We interviewed pulque producers in two localities of the state of Michoacán, Mexico, where we recorded management practices of agaves, the traditional varieties used, the attributes characterizing those varieties, the varieties preferred by people, and features and mechanisms of selection. We conducted multivariate analyses of morphological features of the agave varieties, as well as genetic diversity and genetic distance studies among agave varieties through 11 nuclear microsatellites. RESULTS: Seven traditional varieties of Agave were recorded in the study area. Multivariate analyses of morphology identified varieties belonging to the species A. salmiana, A. mapisaga and, presumably, A. americana. The preferred varieties have morphological features selected to make easier their management and produce higher sap yields. Genetic diversities (HE = 0. 470 to 0.594) were high compared with other Agave species with similar life history traits and use. Genetic distance analyses grouped the varieties "Verde" and "Negro" (identified as A. salmiana), whereas the varieties "Tarímbaro" and "Listoncillo" (identified as A. mapisaga) formed another group. The varieties "Blanco" and "Carrizaleño" (most probably being A. americana) clustered with varieties of A. salmiana, whereas the variety "Cenizo" appeared as a distinct group. Bayesian analysis indicated that most individuals of varieties of A. salmiana form a group and those of the varieties of A. mapisaga form another, whereas individuals of the varieties putatively belonging to A. americana clustered in similar proportions with both groups. CONCLUSIONS: The traditional pulque production in the study area is an ongoing practice. It is still an important source of products for direct consumption by households and generation of economic incomes and as part of the cultural identity of local people. The most used traditional variety exhibited a marked gigantism, and although these agaves are mainly asexually propagated, populations have high genetic diversity. The local producers promote the maintenance of different traditional varieties. Our study shows the value of an integral research approach including ethnobiological, morphological and genetic information to clarify the state of variation influenced by humans on agaves, but it would be helpful to study other organisms under domestication. In addition, such approach would help to document human and non-human mechanisms generating crop varieties managed by local people.


Asunto(s)
Agave , Etnobotánica , Agave/anatomía & histología , Agave/genética , Bebidas , Biodiversidad , Producción de Cultivos/métodos , Domesticación , Etnobotánica/métodos , Fermentación , Variación Genética/genética , Humanos , México , Reacción en Cadena de la Polimerasa
3.
Genome ; 62(1): 19-29, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30481069

RESUMEN

In this study, we evaluated the efficacy of sample collection approaches and DNA metabarcoding to identify plants utilized by nectivorous bats. Samples included guano collected from beneath bat roosts and pollen-swabs from bat fur, both of which were subjected to DNA metabarcoding and visual identification of pollen (microscopy) to measure plant diversity. Our objectives were to determine whether DNA metabarcoding could detect likely food plants of nectivorous bats, whether sample types would produce different estimates of plant diversity, and to compare results of DNA metabarcoding to visual identification. Visual identification found that 99% of pollen was from Agave, which is thought to be the bats' main food source. The dominant taxon found by metabarcoding was also Agavoideae, but a broader diversity of plant species was also detected, many of which are likely "by-catch" from the broader environment. Metabarcoding outcomes differed between sample types, likely because pollen-swabs measured the plant species visited by bats and guano samples measured all items consumed in the bat's diet, even those that were not pollen or nectar. Overall, metabarcoding is a powerful, high-throughput tool to understand bat ecology and species interactions, but careful analysis of results is necessary to derive accurate ecological conclusions.


Asunto(s)
Agave/genética , Biodiversidad , Quirópteros/fisiología , Código de Barras del ADN Taxonómico/métodos , ADN de Plantas/genética , Metagenoma , Animales , Código de Barras del ADN Taxonómico/normas , Heces/química , Cadena Alimentaria , Herbivoria , Polen/genética
4.
Mol Ecol ; 19(8): 1622-37, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20345679

RESUMEN

Several Agave species have played an important ethnobotanical role since prehistory in Mesoamerica and semiarid areas to the north, including central Arizona. We examined genetic variation in relict Agave parryi populations northeast of the Mogollon Rim in Arizona, remnants from anthropogenic manipulation over 600 years ago. We used both allozymes and microsatellites to compare genetic variability and structure in anthropogenically manipulated populations with putative wild populations, to assess whether they were actively cultivated or the result of inadvertent manipulation, and to determine probable source locations for anthropogenic populations. Wild populations were more genetically diverse than anthropogenic populations, with greater expected heterozygosity, polymorphic loci, effective number of alleles and allelic richness. Anthropogenic populations exhibited many traits indicative of past active cultivation: fixed heterozygosity for several loci in all populations (nonexistent in wild populations); fewer multilocus genotypes, which differed by fewer alleles; and greater differentiation among populations than was characteristic of wild populations. Furthermore, manipulated populations date from a period when changes in the cultural context may have favoured active cultivation near dwellings. Patterns of genetic similarity among populations suggest a complex anthropogenic history. Anthropogenic populations were not simply derived from the closest wild A. parryi stock; instead they evidently came from more distant, often more diverse, wild populations, perhaps obtained through trade networks in existence at the time of cultivation.


Asunto(s)
Agave/genética , Productos Agrícolas/genética , Variación Genética , Genética de Población , Alelos , Arizona , Teorema de Bayes , Cruzamiento , ADN de Plantas/genética , Genotipo , Isoenzimas/genética , Repeticiones de Microsatélite , Carácter Cuantitativo Heredable , Análisis de Regresión
5.
BMC Plant Biol ; 2: 10, 2002 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-12396234

RESUMEN

BACKGROUND: Agave tequilana Weber var. azul, is the only one variety permitted by federal law in México to be used for tequila production which is the most popular contemporary alcoholic beverage made from agave and recognized worldwide. Despite the economic, genetic, and ornamental value of the plant, it has not been subjected to detailed cytogenetic research, which could lead to a better understanding of its reproduction for future genetic improvement. The objective of this work was to study the meiotic behavior in pollen mother cells and its implications on the pollen viability in Agave tequilana Weber var. azul. RESULTS: The analysis of Pollen Mother Cells in anaphase I (A-I) showed 82.56% of cells with a normal anaphase and, 17.44% with an irregular anaphase. In which 5.28% corresponded to cells with side arm bridges (SAB); 3.68% cells with one bridge and one fragment; 2.58% of irregular anaphase showed cells with one or two lagging chromosomes and 2.95% showed one acentric fragment; cells with two bridges and cells with two bridges and one acentric fragment were observed in frequencies of 1.60% and 1.35% respectively. In anaphase II some cells showed bridges and fragments too. Aberrant A-I cells had many shrunken or empty pollen grains (42.00%) and 58.00 % viable pollen. CONCLUSION: The observed meiotic irregularities suggest that structural chromosome aberrations have occurred, such as heterozygous inversions, sister chromatid exchanges, deletions and duplications which in turn are reflected in a low pollen viability.


Asunto(s)
Agave/genética , Cromosomas de las Plantas/genética , Agave/citología , Anafase/genética , Supervivencia Celular/genética , Aberraciones Cromosómicas , Emparejamiento Cromosómico , Diploidia , Meiosis/genética , Metafase/genética , Polen/citología , Polen/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA