Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Holist Nurs ; 38(2): 186-192, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31475604

RESUMEN

The purpose of this article is to report a case study of the effect of therapeutic drumming on motor, communication skills, and behavior of a preteen diagnosed with agenesis of the corpus callosum. This 12-year-old participated in 30- to 45-minute weekly sessions over a 12-month period in which rudimentary drumming exercises were used to analyze and then measure any changes in equilibrium reactions, postural transfers, and trunk control. Measurable documentation evidenced marked improvement in motor skills while suggesting communication and behavioral improvement. The findings support the theory that therapeutic drumming would benefit preteens with agenesis of the corpus callosum, which provides promising evidence to other neurologic developmental diagnoses and therefore indicates a need for further research. While the therapeutic nature of music is well documented, how the listener participates can influence the effect of the music. For example, passive music listening can improve pain or anxiety, however, active music listening with expected intentional action may improve physical, mental, behavioral, and spiritual healing. Active music listening could be a valuable holistic nursing intervention.


Asunto(s)
Agenesia del Cuerpo Calloso/terapia , Musicoterapia/normas , Agenesia del Cuerpo Calloso/fisiopatología , Niño , Emociones/fisiología , Femenino , Humanos , Fuerza Muscular/fisiología , Musicoterapia/métodos , Musicoterapia/estadística & datos numéricos , Resistencia Física/fisiología , Equilibrio Postural/fisiología , Propiocepción/fisiología , Desempeño Psicomotor/fisiología
2.
Brain Struct Funct ; 223(6): 2893-2905, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29687282

RESUMEN

The left hemisphere specialization for language is a well-established asymmetry in the human brain. Structural and functional asymmetries are observed as early as the prenatal period suggesting genetically determined differences between both hemispheres. The corpus callosum is a large tract connecting mostly homologous areas; some have proposed that it might participate in an enhancement of the left-hemispheric advantage to process speech. To investigate its role in early development, we compared 13 3-4-month-old infants with an agenesis of the corpus callosum ("AgCC") with 18 typical infants using high-density electroencephalography in an auditory task. We recorded event-related potentials for speech stimuli (syllables and babbling noise), presented binaurally (same syllable in both ears), monaurally (babbling noise in one ear) and dichotically (syllable in one ear and babbling noise in the other ear). In response to these stimuli, both groups developed an anterior positivity synchronous with a posterior negativity, yet the topography significantly differed between groups likely due to the atypical gyration of the medial surface in AgCC. In particular, the anterior positivity was lateral in AgCC infants while it covered the midline in typical infants. We then measured the latencies of the main auditory response (P2 at this age) for the different conditions on the symmetrical left and right clusters. The main difference between groups was a ~ 60 ms delay in typical infants relative to AgCC, for the ipsilateral response (i.e. left hemisphere) to babbling noise presented in the left ear, whereas no difference was observed in the case of right-ear stimulation. We suggest that our results highlight an asymmetrical callosal connectivity favoring the right-to-left hemisphere direction in typical infants. This asymmetry, similar to recent descriptions in adults, might contribute to an enhancement of left lateralization for language processing beyond the initial cortical left-hemisphere advantage.


Asunto(s)
Agenesia del Cuerpo Calloso/fisiopatología , Vías Auditivas/fisiopatología , Mapeo Encefálico , Lateralidad Funcional/fisiología , Transferencia de Experiencia en Psicología/fisiología , Estimulación Acústica , Agenesia del Cuerpo Calloso/patología , Análisis de Varianza , Vías Auditivas/patología , Pruebas de Audición Dicótica , Electroencefalografía , Potenciales Evocados Auditivos/fisiología , Femenino , Humanos , Lactante , Masculino , Tiempo de Reacción/fisiología
3.
J Neurosci ; 36(16): 4522-33, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-27098695

RESUMEN

The development of hemispheric lateralization for language is poorly understood. In one hypothesis, early asymmetric gene expression assigns language to the left hemisphere. In an alternate view, language is represented a priori in both hemispheres and lateralization emerges via cross-hemispheric communication through the corpus callosum. To address this second hypothesis, we capitalized on the high temporal and spatial resolution of magnetoencephalographic imaging to measure cortical activity during language processing, speech preparation, and speech execution in 25 participants with agenesis of the corpus callosum (AgCC) and 21 matched neurotypical individuals. In contrast to strongly lateralized left hemisphere activations for language in neurotypical controls, participants with complete or partial AgCC exhibited bilateral hemispheric activations in both auditory or visually driven language tasks, with complete AgCC participants showing significantly more right hemisphere activations than controls or than individuals with partial AgCC. In AgCC individuals, language laterality positively correlated with verbal IQ. These findings suggest that the corpus callosum helps to drive language lateralization. SIGNIFICANCE STATEMENT: The role that corpus callosum development has on the hemispheric specialization of language is poorly understood. Here, we used magnetoencephalographic imaging during linguistic tests (verb generation, picture naming) to test for hemispheric dominance in patients with agenesis of the corpus callosum (AgCC) and found reduced laterality (i.e., greater likelihood of bilaterality or right hemisphere dominance) in this cohort compared with controls, especially in patients with complete agenesis. Laterality was positively correlated with behavioral measures of verbal intelligence. These findings provide support for the hypothesis that the callosum aids in functional specialization throughout neural development and that the loss of this mechanism correlates with impairments in verbal performance.


Asunto(s)
Agenesia del Cuerpo Calloso/fisiopatología , Cuerpo Calloso/fisiología , Lateralidad Funcional/fisiología , Lenguaje , Habla/fisiología , Estimulación Acústica/métodos , Adolescente , Adulto , Agenesia del Cuerpo Calloso/diagnóstico , Estudios de Cohortes , Femenino , Humanos , Magnetoencefalografía/métodos , Masculino , Persona de Mediana Edad , Desempeño Psicomotor/fisiología , Adulto Joven
4.
Brain Struct Funct ; 221(2): 941-54, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25445840

RESUMEN

Agenesis of the corpus callosum (AgCC) is a congenital condition associated with wide-ranging emotional and social impairments often overlapping with the diagnostic criteria for autism. Mapping functional connectivity in the acallosal brain can help identify neural correlates of the deficits associated with this condition, and elucidate how congenital white matter alterations shape the topology of large-scale functional networks. By using resting-state BOLD functional magnetic resonance imaging (rsfMRI), here we show that acallosal BTBR T+tpr3tf/J (BTBR) mice, an idiopathic model of autism, exhibit impaired intra-hemispheric connectivity in fronto-cortical, but not in posterior sensory cortical areas. We also document profoundly altered subcortical and intra-hemispheric connectivity networks, with evidence of marked fronto-thalamic and striatal disconnectivity, along with aberrant spatial extension and strength of ipsilateral and local connectivity. Importantly, inter-hemispheric tracing of monosynaptic connections in the primary visual cortex using recombinant rabies virus confirmed the absence of direct homotopic pathways between posterior cortical areas of BTBR mice, suggesting a polysynaptic origin for the synchronous rsfMRI signal observed in these regions. Collectively, the observed long-range connectivity impairments recapitulate hallmark neuroimaging findings in autism, and are consistent with the behavioral phenotype of BTBR mice. In contrast to recent rsfMRI studies in high functioning AgCC individuals, the profound fronto-cortical and subcortical disconnectivity mapped suggest that compensatory mechanism may not necessarily restore the full connectional topology of the brain, resulting in residual connectivity alterations that serve as plausible substrates for the cognitive and emotional deficits often associated with AgCC.


Asunto(s)
Conducta Animal/fisiología , Conectoma/métodos , Imagen por Resonancia Magnética/métodos , Conducta Social , Agenesia del Cuerpo Calloso/fisiopatología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Neocórtex/patología , Red Nerviosa/fisiopatología , Neuroimagen/métodos , Tálamo/patología , Corteza Visual/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA