Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Chem Biol Interact ; 326: 109139, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32454005

RESUMEN

Since several decades oximes have been used as part of treatment of nerve agent intoxication with the aim to restore the biological function of the enzyme acetylcholinesterase after its covalent inhibition by organophosphorus compounds such as pesticides and nerve agents. Recent findings have illustrated that, besides oximes, certain Mannich phenols can reactivate the inhibited enzyme very effectively, and may therefore represent an attractive complementary class of reactivators. In this paper we further probe the effect of structural variation on the in vitro efficacy of Mannich phenol based reactivators. Thus, we present the synthesis of 14 compounds that are close variants of the previously reported 4-amino-2-(1-pyrrolidinylmethyl)-phenol, a very effective non-oxime reactivator, and 3 dimeric Mannich phenols. All compounds were assessed for their ability to reactivate human acetylcholinesterase inhibited by the nerve agents VX, tabun, sarin, cyclosarin and paraoxon in vitro. It was confirmed that the potency of the compounds is highly sensitive to small structural changes, leading to diminished reactivation potency in many cases. However, the presence of 4-substituted alkylamine substituents (as exemplified with the 4-benzylamine-variant) was tolerated. More surprisingly, the dimeric compounds demonstrated non-typical behavior and displayed some reactivation potency as well. Both findings may open up new avenues for designing more effective non-oxime reactivators.


Asunto(s)
Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Agentes Nerviosos/química , Agentes Nerviosos/farmacología , Oximas/química , Oximas/farmacología , Sustancias para la Guerra Química/química , Sustancias para la Guerra Química/farmacología , Reactivadores de la Colinesterasa/metabolismo , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Humanos , Relación Estructura-Actividad
2.
J Med Chem ; 61(17): 7630-7639, 2018 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-30125110

RESUMEN

Acetylcholinesterase (AChE), a key enzyme in the central and peripheral nervous systems, is the principal target of organophosphorus nerve agents. Quaternary oximes can regenerate AChE activity by displacing the phosphyl group of the nerve agent from the active site, but they are poorly distributed in the central nervous system. A promising reactivator based on tetrahydroacridine linked to a nonquaternary oxime is also an undesired submicromolar reversible inhibitor of AChE. X-ray structures and molecular docking indicate that structural modification of the tetrahydroacridine might decrease inhibition without affecting reactivation. The chlorinated derivative was synthesized and, in line with the prediction, displayed a 10-fold decrease in inhibition but no significant decrease in reactivation efficiency. X-ray structures with the derivative rationalize this outcome. We thus show that rational design based on structural studies permits the refinement of new-generation pyridine aldoxime reactivators that may be more effective in the treatment of nerve agent intoxication.


Asunto(s)
Reactivadores de la Colinesterasa/química , Reactivadores de la Colinesterasa/farmacología , Agentes Nerviosos/toxicidad , Relación Estructura-Actividad , Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Animales , Dominio Catalítico , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos/métodos , Proteínas de Peces/química , Proteínas de Peces/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Agentes Nerviosos/química , Cloruro de Obidoxima/farmacología , Compuestos Organofosforados/química , Compuestos Organofosforados/toxicidad
3.
Chem Res Toxicol ; 30(4): 1076-1084, 2017 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-28267914

RESUMEN

Organophosphorus (OP) nerve agents continue to be a threat at home and abroad during the war against terrorism. Human exposure to nerve agents such as VX results in a cascade of toxic effects relative to the exposure level including ocular miosis, excessive secretions, convulsions, seizures, and death. The primary mechanism behind these overt symptoms is the disruption of cholinergic pathways. While much is known about the primary toxicity mechanisms of nerve agents, there remains a paucity of information regarding impacts on other pathways and systemic effects. These are important for establishing a comprehensive understanding of the toxic mechanisms of OP nerve agents. To identify novel proteins that interact with VX, and that may give insight into these other mechanisms, we used activity-based protein profiling (ABPP) employing a novel VX-probe on lysates from rat heart, liver, kidney, diaphragm, and brain tissue. By making use of a biotin linked VX-probe, proteins covalently bound by the probe were isolated and enriched using streptavidin beads. The proteins were then digested, labeled with isobarically distinct tandem mass tag (TMT) labels, and analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Quantitative analysis identified 132 bound proteins, with many proteins found in multiple tissues. As with previously published ABPP OP work, monoacylglycerol lipase associated proteins and fatty acid amide hydrolase (FAAH) were shown to be targets of VX. In addition to these two and other predicted neurotransmitter-related proteins, a number of proteins involved with energy metabolism were identified. Four of these enzymes, mitochondrial isocitrate dehydrogenase 2 (IDH2), isocitrate dehydrogenase 3 (IDH3), malate dehydrogenase (MDH), and succinyl CoA (SCS) ligase, were assayed for VX inhibition. Only IDH2 NADP+ activity was shown to be inhibited directly. This result is consistent with other work reporting animals exposed to OP compounds exhibit reduced IDH activity. Though clearly a secondary mechanism for toxicity, this is the first time VX has been shown to directly interfere with energy metabolism. Taken together, the ABPP work described here suggests the discovery of novel protein-agent interactions, which could be useful for the development of novel diagnostics or potential adjuvant therapeutics.


Asunto(s)
Agentes Nerviosos/química , Compuestos Organotiofosforados/química , Proteínas/química , Amidohidrolasas/química , Amidohidrolasas/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Cromatografía Líquida de Alta Presión , Corazón/efectos de los fármacos , Isocitrato Deshidrogenasa/química , Isocitrato Deshidrogenasa/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Malato Deshidrogenasa/química , Malato Deshidrogenasa/metabolismo , Masculino , Agentes Nerviosos/toxicidad , Compuestos Organotiofosforados/toxicidad , Péptidos/análisis , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteínas/metabolismo , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA