Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Phytomedicine ; 64: 153081, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31568956

RESUMEN

BACKGROUND: Human tumors are still a major threat to human health and plant tumors negatively affect agricultural yields. Both areas of research are developing largely independent of each other. Treatment of both plant and human tumors remains unsatisfactory and novel therapy options are urgently needed. HYPOTHESIS: The concept of this paper is to compare cellular and molecular mechanisms of tumor development in plants and human beings and to explore possibilities to develop novel treatment strategies based on bioactive secondary plant metabolites. The interdisciplinary discourse may unravel commonalities and differences in the biology of plant and human tumors as basis for rational drug development. RESULTS: Plant tumors and galls develop upon infection by bacteria (e.g. Agrobacterium tumefaciens and A. vitis, which harbor oncogenic T-DNA) and by insects (e.g. gall wasps, aphids). Plant tumors are benign, i.e. they usually do not ultimately kill their host, but they can lead to considerable economic damage due to reduced crop yields of cultivated plants. Human tumors develop by biological carcinogenesis (i.e. viruses and other infectious agents), chemical carcinogenesis (anthropogenic and non-anthropogenic environmental toxic xenobiotics) and physical carcinogenesis (radioactivity, UV-radiation). The majority of human tumors are malignant with lethal outcome. Although treatments for both plant and human tumors are available (antibiotics and apathogenic bacterial strains for plant tumors, cytostatic drugs for human tumors), treatment successes are non-satisfactory, because of drug resistance and the severe adverse side effects. In human beings, attacks by microbes are repelled by cellular immunity (i.e. innate and acquired immune systems). Plants instead display chemical defense mechanisms, whereby constitutively expressed phytoanticipin compounds compare to the innate human immune system, the acquired human immune system compares to phytoalexins, which are induced by appropriate biotic or abiotic stressors. Some chemical weapons of this armory of secondary metabolites are also active against plant galls. There is a mutual co-evolution between plant defense and animals/human beings, which was sometimes referred to as animal plant warfare. As a consequence, hepatic phase I-III metabolization and excretion developed in animals and human beings to detoxify harmful phytochemicals. On the other hand, plants invented "pro-drugs" during evolution, which are activated and toxified in animals by this hepatic biotransformation system. Recent efforts focus on phytochemicals that specifically target tumor-related mechanisms and proteins, e.g. angiogenic or metastatic inhibitors, stimulators of the immune system to improve anti-tumor immunity, specific cell death or cancer stem cell inhibitors, inhibitors of DNA damage and epigenomic deregulation, specific inhibitors of driver genes of carcinogenesis (e.g. oncogenes), inhibitors of multidrug resistance (i.e. ABC transporter efflux inhibitors), secondary metabolites against plant tumors. CONCLUSION: The exploitation of bioactive secondary metabolites to treat plant or human tumors bears a tremendous therapeutic potential. Although there are fundamental differences between human and plant tumors, either isolated phytochemicals and their (semi)synthetic derivatives or chemically defined and standardized plant extracts may offer new therapy options to decrease human tumor incidence and mortality as well as to increase agricultural yields by fighting crown galls.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neoplasias/etiología , Enfermedades de las Plantas/etiología , Fenómenos Fisiológicos de las Plantas , Plantas/metabolismo , Agrobacterium tumefaciens/patogenicidad , Animales , Antibióticos Antineoplásicos/farmacología , Resistencia a Antineoplásicos , Humanos , Neoplasias/tratamiento farmacológico , Fitoquímicos , Inmunidad de la Planta , Plantas/microbiología , Metabolismo Secundario
2.
Mol Microbiol ; 111(1): 269-286, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30353924

RESUMEN

Agrobacterium tumefaciens transfers oncogenic T-DNA via the type IV secretion system (T4SS) into plants causing tumor formation. The acvB gene encodes a virulence factor of unknown function required for plant transformation. Here we specify AcvB as a periplasmic lysyl-phosphatidylglycerol (L-PG) hydrolase, which modulates L-PG homeostasis. Through functional characterization of recombinant AcvB variants, we showed that the C-terminal domain of AcvB (residues 232-456) is sufficient for full enzymatic activity and defined key residues for catalysis. Absence of the hydrolase resulted in ~10-fold increase in L-PG in Agrobacterium membranes and abolished T-DNA transfer and tumor formation. Overproduction of the L-PG synthase gene (lpiA) in wild-type A. tumefaciens resulted in a similar increase in the L-PG content (~7-fold) and a virulence defect even in the presence of intact AcvB. These results suggest that elevated L-PG amounts (either by overproduction of the synthase or absence of the hydrolase) are responsible for the virulence phenotype. Gradually increasing the L-PG content by complementation with different acvB variants revealed that cellular L-PG levels above 3% of total phospholipids interfere with T-DNA transfer. Cumulatively, this study identified AcvB as a novel virulence factor required for membrane lipid homeostasis and T-DNA transfer.


Asunto(s)
Agrobacterium tumefaciens/patogenicidad , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Homeostasis , Lisina/metabolismo , Fosfatidilgliceroles/metabolismo , Factores de Virulencia/metabolismo , Agrobacterium tumefaciens/crecimiento & desarrollo , Proteínas Bacterianas/genética , Dominio Catalítico , Análisis Mutacional de ADN , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/genética , Eliminación de Gen , Prueba de Complementación Genética , Proteínas Periplasmáticas/genética , Proteínas Periplasmáticas/metabolismo , Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología , Transformación Genética , Virulencia , Factores de Virulencia/genética
3.
Microb Pathog ; 113: 348-356, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29126952

RESUMEN

Three bacterial isolates were isolated from infected potato tubers showing soft and brown rots like symptoms as well as one isolate from infected peach tree showing crown gall symptom. The morphological, biochemical and molecular assays proved that bacterial isolates belonging to Pectobacterium carotovorum subsp. carotovorum, Ralstonia solanacearum, Dickeya spp. and Agrobacterium tumefaciens. The acetone (AcE) and n-butanol (ButE) extracts of Callistemon viminalis flowers and essential oil from aerial parts of Conyza dioscoridis as well as ButE of Eucalyptus camaldulensis bark are evaluated at different concentrations against the growth of the isolated bacteria. The diameter of inhibition zone (IZ) and the minimum inhibitory concentrations (MICs) are compared. Results indicated that the highest IZ values were 20.0 mm and 18.3 mm for E. camaldulensis bark ButE and C. viminalis flower ButE, respectively, against P. carotovorum; 16.3 mm and 16.0 mm for E. camaldulensis bark ButE and C. viminalis flower ButE, respectively, against R. solanacearum; 18.5 mm for C. viminalis flower AcE and C. dioscoridis aerial parts EO against Dickeya spp.; and 15.0 mm for C. viminalis flower AcE against A. tumefaciens. MICs ranged from <16 µg/mL for D. solani to >4000 µg/mL for A. tumefaciens. It was proved that C. viminalis flowers AcE contains mainly 5-hydroxymethylfurfural (20.6%), palmitic acid (18.5%), and pyrogallol (16.4%); while C. viminalis flower ButE contains palmitic acid (36.3%), 2-hydroxymyristic acid (9.4%), 5-hydroxymethylfurfural (7.2%), and shikimic acid (6.6%); whereas E. camaldulensis bark ButE contains 8-nonynoic acid methyl ester (45.6), camphor (30.9%), menthol (8.8%), and 1,8-cineole (eucalyptol) (8.2%), whilst the EO of C. dioscoridis aerial parts comprises Z-(13,14-epoxy)tetradec-11-en-1-ol acetate (11.6%), γ-elemene (10.2%), tau.-muurolol (7.1%), and cadina-3,9-diene (4.7%). It can be concluded that phytochemical extracts of C. viminalis, E. camaldulensis and C. dioscoridis demonstrated strong to moderate antibacterial effects against the studied plant bacterial pathogens.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Conyza/química , Eucalyptus/química , Myrtaceae/química , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Agrobacterium tumefaciens/efectos de los fármacos , Agrobacterium tumefaciens/patogenicidad , Bacterias/aislamiento & purificación , Bacterias/patogenicidad , Egipto , Flores/química , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/farmacología , Pectobacterium/efectos de los fármacos , Pectobacterium/patogenicidad , Pectobacterium carotovorum/efectos de los fármacos , Pectobacterium carotovorum/patogenicidad , Fitoquímicos/química , Enfermedades de las Plantas/microbiología , Aceites de Plantas/química , Aceites de Plantas/farmacología , Raíces de Plantas/microbiología , Ralstonia solanacearum/efectos de los fármacos , Ralstonia solanacearum/patogenicidad , Solanum tuberosum/microbiología
4.
PLoS One ; 9(6): e101142, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24971727

RESUMEN

Agrobacterium tumefaciens is a phytopathogenic bacterium that causes crown gall disease by transferring transferred DNA (T-DNA) into the plant genome. The translocation process is mediated by the type IV secretion system (T4SS) consisting of the VirD4 coupling protein and 11 VirB proteins (VirB1 to VirB11). All VirB proteins are required for the production of T-pilus, which consists of processed VirB2 (T-pilin) and VirB5 as major and minor subunits, respectively. VirB2 is an essential component of T4SS, but the roles of VirB2 and the assembled T-pilus in Agrobacterium virulence and the T-DNA transfer process remain unknown. Here, we generated 34 VirB2 amino acid substitution variants to study the functions of VirB2 involved in VirB2 stability, extracellular VirB2/T-pilus production and virulence of A. tumefaciens. From the capacity for extracellular VirB2 production (ExB2+ or ExB2-) and tumorigenesis on tomato stems (Vir+ or Vir-), the mutants could be classified into three groups: ExB2-/Vir-, ExB2-/Vir+, and ExB2+/Vir+. We also confirmed by electron microscopy that five ExB2-/Vir+ mutants exhibited a wild-type level of virulence with their deficiency in T-pilus formation. Interestingly, although the five T-pilus-/Vir+ uncoupling mutants retained a wild-type level of tumorigenesis efficiency on tomato stems and/or potato tuber discs, their transient transformation efficiency in Arabidopsis seedlings was highly attenuated. In conclusion, we have provided evidence for a role of T-pilus in Agrobacterium transformation process and have identified the domains and amino acid residues critical for VirB2 stability, T-pilus biogenesis, tumorigenesis, and transient transformation efficiency.


Asunto(s)
Agrobacterium tumefaciens/metabolismo , Sustitución de Aminoácidos , Proteínas Fimbrias/metabolismo , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/patogenicidad , Secuencia de Aminoácidos , Proteínas Fimbrias/química , Proteínas Fimbrias/genética , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/ultraestructura , Solanum lycopersicum/microbiología , Datos de Secuencia Molecular , Solanum tuberosum/microbiología , Transformación Genética , Virulencia/genética
5.
Med Chem ; 10(4): 382-7, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23909290

RESUMEN

The present paper reports an easy preparation of imines of N-methyl-1H-indole-3-carboxaldehyde by its condensation with alkyl and aromatic amines in ethanol without using any catalyst or dehydrating agent. The compounds have been screened for their antibacterial, antifungal, crown gall tumor inhibitory, and cytotoxic activities. As a major finding some of the compounds exhibited potential biological activity. The imine containing a 4-chlorophenyl group exhibits potential antitumor activity and brine shrimp lethality against crown gall tumor and brine shrimps, respectively. Furthermore, this imine containing a 4-chlorophenyl group also exhibits significant antifungal activity against Candida albicans fungal strains. The compound containing N-diphenylmethyl group has been observed most active against the Gram-positive bacteria.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Antineoplásicos/farmacología , Indoles/farmacología , Tumores de Planta , Agrobacterium tumefaciens/patogenicidad , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Antifúngicos/síntesis química , Antifúngicos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Artemia/efectos de los fármacos , Bacterias/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Hongos/efectos de los fármacos , Humanos , Indoles/síntesis química , Indoles/química , Pruebas de Sensibilidad Microbiana , Conformación Molecular , Estructura Molecular , Tumores de Planta/microbiología , Solanum tuberosum/microbiología , Relación Estructura-Actividad
6.
Transgenic Res ; 18(1): 121-34, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18668338

RESUMEN

Plant secondary metabolites, including pharmaceuticals, flavorings and aromas, are often produced in response to stress. We used chemical inducers of the pathogen defense response (jasmonic acid, salicylate, killed fungi, oligosaccharides and the fungal elicitor protein, cryptogein) to increase metabolite and biomass production in transformed root cultures of the medicinal plant, Withania somnifera, and the weed, Convolvulus sepium. In an effort to genetically mimic the observed effects of cryptogein, we employed Agrobacterium rhizogenes to insert a synthetic gene encoding cryptogein into the roots of C. sepium, W. somnifera and Tylophora tanakae. This genetic transformation was associated with stimulation in both secondary metabolite production and growth in the first two species, and in growth in the third. In whole plants of Convolvulus arvensis and Arabidopsis thaliana, transformation with the cryptogein gene led, respectively, to increases in the calystegines and certain flavonoids. A similar transgenic mimicry of pathogen attack was previously employed to stimulate resistance to the pathogen and abiotic stress. In the present study of biochemical phenotype, we show that transgenic mimicry is correlated with increased secondary metabolite production in transformed root cultures and whole plants. We propose that natural transformation with genes encoding the production of microbial elicitors could influence interactions between plants and other organisms.


Asunto(s)
Agrobacterium tumefaciens/patogenicidad , Proteínas Algáceas/metabolismo , Raíces de Plantas/fisiología , Plantas Medicinales/crecimiento & desarrollo , Transformación Genética , Tropanos/metabolismo , Agrobacterium tumefaciens/genética , Proteínas Algáceas/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Convolvulus/genética , Convolvulus/crecimiento & desarrollo , Flavonoides/metabolismo , Proteínas Fúngicas , Enfermedades de las Plantas , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Medicinales/genética , Tylophora/genética , Tylophora/crecimiento & desarrollo , Withania/genética , Withania/crecimiento & desarrollo
7.
Pak J Pharm Sci ; 20(2): 128-31, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17416568

RESUMEN

An alkaloid constituent 1-[5-(1,3-benzodioxol-5-yl)-1-oxo-2,4-pentadienyl]piperidine, trivial name piperine was isolated from Ludwigia hyssopifolia Linn. (Family-Onagraceae). The ethylacetate extract of the plant and the isolated compound piperine were studied for antitumor and in vitro antibacterial activity. Ethylacetate extract showed 73.05 and 84.14% inhibition of Agrobacterium tumefaciens-induced crown gall tumor formation in potato disc. Piperine exhibited antitumor activity with IC50 value of 13.50 microg/disc. Both ethylacetate extract and piperine showed mild to moderate antibacterial activity against selected Gram-positive and Gram-negative bacteria.


Asunto(s)
Acetatos/química , Alcaloides/farmacología , Antibacterianos/farmacología , Antineoplásicos Fitogénicos/farmacología , Benzodioxoles/farmacología , Onagraceae , Piperidinas/farmacología , Extractos Vegetales/farmacología , Alcamidas Poliinsaturadas/farmacología , Solventes/química , Agrobacterium tumefaciens/efectos de los fármacos , Agrobacterium tumefaciens/patogenicidad , Alcaloides/aislamiento & purificación , Antibacterianos/química , Antineoplásicos Fitogénicos/química , Benzodioxoles/aislamiento & purificación , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/crecimiento & desarrollo , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/crecimiento & desarrollo , Pruebas de Sensibilidad Microbiana , Piperidinas/aislamiento & purificación , Extractos Vegetales/química , Tumores de Planta/microbiología , Alcamidas Poliinsaturadas/aislamiento & purificación
8.
Nucleic Acids Res ; 34(22): 6496-504, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17130174

RESUMEN

During the infection of plants, Agrobacterium tumefaciens introduces several Virulence proteins including VirE2, VirF, VirD5 and VirE3 into plant cells in addition to the T-DNA. Here, we report that double mutation of virF and virE3 leads to strongly diminished tumor formation on tobacco, tomato and sunflower. The VirE3 protein is translated from a polycistronic mRNA containing the virE1, virE2 and virE3 genes, in Agrobacterium. The VirE3 protein has nuclear localization sequences, which suggests that it is transported into the plant cell nucleus upon translocation. Indeed we show here that VirE3 interacts in vitro with importin-alpha and that a VirE3-GFP fusion protein is localized in the nucleus. VirE3 also interacts with two other proteins, viz. pCsn5, a component of the COP9 signalosome and pBrp, a plant specific general transcription factor belonging to the TFIIB family. We found that VirE3 is able to induce transcription in yeast when bound to DNA through the GAL4-BD. Our data indicate that the translocated effector protein VirE3 is transported into the nucleus and there it may interact with the transcription factor pBrp to induce the expression of genes needed for tumor development.


Asunto(s)
Agrobacterium tumefaciens/patogenicidad , Proteínas Bacterianas/fisiología , Tumores de Planta/microbiología , Transactivadores/fisiología , Agrobacterium tumefaciens/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Bacterianas/análisis , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Eliminación de Gen , Canales Iónicos/biosíntesis , Canales Iónicos/genética , Carioferinas/metabolismo , Chaperonas Moleculares/biosíntesis , Chaperonas Moleculares/genética , Proteínas Nucleares/análisis , Cebollas/química , Tumores de Planta/genética , Transactivadores/análisis , Transactivadores/genética , Transcripción Genética , Levaduras/genética
9.
Mol Genet Genomics ; 270(2): 139-46, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12920577

RESUMEN

A cDNA for a putative cytochrome P450 (CYP72A29), which is down-regulated during Agrobacterium tumefaciens -mediated tumorigenesis, was isolated from potato ( Solanum tuberosumL. May Queen) tuber by differential display. Northern analysis indicated that the CYP72A29 gene was transiently up-regulated in tuber discs after a 24-h aging period, and expression gradually increased upon further incubation (up to 7 days). Inoculation of tuber discs with the non-pathogenic A. tumefaciens strain LBA4301 had a very similar effect, but inoculation with the wild-type strain A. tumefaciens A208 suppressed the accumulation of mRNA during further incubation. Furthermore, the accumulation of CYP72A29 mRNA was strongly suppressed by inoculation with mutant strains of A. tumefaciens that produce large amounts of indole-3-acetic acid. This down-regulation also occurred when the discs were treated with 2,4-dichlorophenoxyacetic acid or 1-naphthalenacetic acid. These results suggest that the expression of CYP72A29 is regulated by auxin. RT-PCR analysis revealed that the transcripts were most abundant in sprouts and eyes, less so in roots, and hardly detectable in leaves, flower buds and stems.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Genes de Plantas , Enfermedades de las Plantas/genética , Solanum tuberosum/genética , Agrobacterium tumefaciens/patogenicidad , Secuencia de Aminoácidos , Secuencia de Bases , ADN de Plantas/genética , Regulación hacia Abajo , Perfilación de la Expresión Génica , Datos de Secuencia Molecular , Filogenia , Enfermedades de las Plantas/microbiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Homología de Secuencia de Aminoácido , Solanum tuberosum/microbiología
10.
J Bacteriol ; 183(13): 4079-89, 2001 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-11395473

RESUMEN

The vir genes of octopine, nopaline, and L,L-succinamopine Ti plasmids exhibit structural and functional similarities. However, we observed differences in the interactions between octopine and nopaline vir components. The induction of an octopine virE(A6)::lacZ fusion (pSM358cd) was 2.3-fold higher in an octopine strain (A348) than in a nopaline strain (C58). Supplementation of the octopine virG(A6) in a nopaline strain with pSM358 did not completely restore virE(A6) induction. However, addition of the octopine virA(A6) to the above strain increased virE(A6) induction to a level almost comparable to that in octopine strains. In a reciprocal analysis, the induction of a nopaline virE(C58)::cat fusion (pUCD1553) was two- to threefold higher in nopaline (C58 and T37) strains than in octopine (A348 and Ach5) and L,L-succinamopine (A281) strains. Supplementation of nopaline virA(C58) and virG(C58) in an octopine strain (A348) harboring pUCD1553 increased induction levels of virE(C58)::cat fusion to a level comparable to that in a nopaline strain (C58). Our results suggest that octopine and L,L-succinamopine VirG proteins induce the octopine virE(A6) more efficiently than they do the nopaline virE(C58). Conversely, the nopaline VirG protein induces the nopaline virE(C58) more efficiently than it does the octopine virE(A6). The ability of Bo542 virG to bring about supervirulence in tobacco is observed for an octopine vir helper (LBA4404) but not for a nopaline vir helper (PMP90). Our analyses reveal that quantitative differences exist in the interactions between VirG and vir boxes of different Ti plasmids. Efficient vir gene induction in octopine and nopaline strains requires virA, virG, and vir boxes from the respective Ti plasmids.


Asunto(s)
Agrobacterium tumefaciens/genética , Proteínas Bacterianas/genética , Proteínas de Unión al ADN/metabolismo , Plásmidos/genética , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismo , Factores de Virulencia , Agrobacterium tumefaciens/patogenicidad , Arginina/análogos & derivados , Arginina/biosíntesis , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Plantas Tóxicas , Nicotiana/microbiología , Activación Transcripcional
11.
Appl Environ Microbiol ; 67(3): 1070-5, 2001 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11229893

RESUMEN

Infections of wound sites on dicot plants by Agrobacterium tumefaciens result in the formation of crown gall tumors. An early step in tumor formation is bacterial attachment to the plant cells. AttR mutants failed to attach to wound sites of both legumes and nonlegumes and were avirulent on both groups of plants. AttR mutants also failed to attach to the root epidermis and root hairs of nonlegumes and had a markedly reduced ability to colonize the roots of these plants. However, AttR mutants were able to attach to the root epidermis and root hairs of alfalfa, garden bean, and pea. The mutant showed little reduction in its ability to colonize these roots. Thus, A. tumefaciens appears to possess two systems for binding to plant cells. One system is AttR dependent and is required for virulence on all of the plants tested and for colonization of the roots of all of the plants tested except legumes. Attachment to root hairs through this system can be blocked by the acetylated capsular polysaccharide. The second system is AttR independent, is not inhibited by the acetylated capsular polysaccharide, and allows the bacteria to bind to the roots of legumes.


Asunto(s)
Agrobacterium tumefaciens/fisiología , Adhesión Bacteriana , Proteínas Bacterianas , Proteínas de la Membrana/genética , Mutación , Raíces de Plantas/microbiología , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/patogenicidad , Arabidopsis/microbiología , Fabaceae/microbiología , Solanum lycopersicum/microbiología , Medicago sativa/microbiología , Plantas Medicinales , Virulencia
12.
Plant Mol Biol ; 41(6): 765-76, 1999 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-10737141

RESUMEN

The Agrobacterium tumefaciens nopaline strain C58 transfers a large, 29 kb T-DNA into plant cells during infection. Part of this DNA (the 'common DNA') is also found on the T-DNA of octopine strains, the remaining DNA is nopaline strain-specific. Up to now, only parts of the C58 T-DNA and related T37 T-DNA have been sequenced. We have sequenced the remainder of the nopaline-specific T-DNA (containing genes a to d) and acs to iaaM. Gene c codes for a new unknown T-DNA protein. Gene a is homologous to the agrocinopine synthase gene. Genes b, c', d and e are part of a larger family: they are related to the T-DNA genes 5, rolB, lso and 3'. Genes 5, rolB and lso induce or modify plant growth and have been called T-DNA oncogenes. Our studies show that gene 3' (located on the TR-DNA of octopine strains) is also oncogenic. Although the b-e T-DNA fragment from C58 and its individual genes lack growth-inducing activity, an a-acs deletion mutant was distinctly less virulent on Kalanchoe daigremontiana and showed reduced shoot formation on Kalanchoe tubiflora. Shoot formation could be restored by genes c and c' in co-infection experiments. Contrary to an earlier report, a C58 e gene deletion mutant was fully virulent on all plants tested.


Asunto(s)
Agrobacterium tumefaciens/genética , ADN Bacteriano/genética , Plásmidos/genética , Agrobacterium tumefaciens/patogenicidad , Mapeo Cromosómico , ADN Bacteriano/química , Eliminación de Gen , Genes Bacterianos/genética , Prueba de Complementación Genética , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , Datos de Secuencia Molecular , Mutación , Filogenia , Tumores de Planta/genética , Tumores de Planta/microbiología , Plantas Medicinales/genética , Plantas Medicinales/microbiología , Plantas Tóxicas , Plásmidos/química , Análisis de Secuencia de ADN , Especificidad de la Especie , Nicotiana/genética , Nicotiana/microbiología , Virulencia/genética
13.
Phytochemistry ; 49(6): 1537-48, 1998 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-11711062

RESUMEN

Expression of Agrobacterium tumefaciens virulence genes and transformation of dicots by this organism are dependent upon host plant phenolic compounds. Several alkylsyringamides have recently been shown to be powerful inducers of these vir-genes. These synthetic amides, and especially ethylsyringamide, are much stronger inducers than syringic acid. In this work, four alkylamides derived from ferulic or sinapic acids were synthesized by a dicyclohexylcarbodiimide method and tested for their potential to induce vir-gene expression on A. tumefaciens strains harbouring virB::lacZ or virE::lacZ fusion plasmids. Their effectiveness was compared to that of ethylsyringamide and tyraminylferulamide, a naturally occurring amide in plants. Whatever the amine moiety of the amide (ethylamine, propylamine, tyramine or beta-alanine ethyl ester) conjugation of the acid functional group clearly diminished the toxicity to the bacteria of the respective acid at high concentration and thereby increased the vir-inducing potential. However, none of the inducers tested exhibited higher activity than acetosyringone, the reference compound for vir-gene induction, with the exception of ethylsyringamide at concentrations above 1mM. When tested on Agrobacterium tumefaciens strain A348(pSM243cd), ethylferulamide and ethylsinapamide were more efficient than the corresponding phenolic acids but only above 100 microM.


Asunto(s)
Agrobacterium tumefaciens/efectos de los fármacos , Agrobacterium tumefaciens/genética , Amidas/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Virulencia/genética , Acetofenonas/farmacología , Agrobacterium tumefaciens/patogenicidad , Amidas/síntesis química , Amidas/química , Ácidos Cumáricos/farmacología , Genes Bacterianos/genética , Extractos Vegetales/síntesis química , Extractos Vegetales/farmacología
14.
J Bacteriol ; 179(4): 1165-73, 1997 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-9023198

RESUMEN

The transferred DNA (T-DNA) portion of the Agrobacterium tumefaciens tumor-inducing (Ti) plasmid enters infected plant cells and integrates into plant nuclear DNA. Direct repeats define the T-DNA ends; transfer begins when the VirD2 endonuclease produces a site-specific nick in the right-hand border repeat and attaches to the 5' end of the nicked strand. Subsequent events liberate the lower strand of the T-DNA from the Ti plasmid, producing single-stranded DNA molecules (T strands) that are covalently linked to VirD2 at their 5' ends. A. tumefaciens appears to transfer T-DNA into plant cells as a T-strand-VirD2 complex. The bacterium also transports VirE2, a cooperative single-stranded DNA-binding protein, into plant cells during infection. Both VirD2 and VirE2 contain nuclear localization signals that may direct these proteins, and bound T strands, into plant nuclei. Here we report the locations of functional regions of VirE2 identified by eight insertions of XhoI linker oligonucleotides, and one deletion mutation, throughout virE2. We examined the effects of these mutations on virulence, single-stranded DNA (ssDNA) binding, and accumulation of VirE2 in A. tumefaciens. Two of the mutations in the C-terminal half of VirE2 eliminated ssDNA binding, whereas two insertions in the N-terminal half altered cooperativity. Four of the mutations, distributed throughout virE2, decreased the stability of VirE2 in A. tumefaciens. In addition, we isolated a mutation in the central region of VirE2 that decreased tumorigenicity but did not affect ssDNA binding or VirE2 accumulation. This mutation may affect export of VirE2 into plant cells or nuclear localization of VirE2, or it may affect an uncharacterized activity of VirE2.


Asunto(s)
Agrobacterium tumefaciens/metabolismo , Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Canales Iónicos , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/patogenicidad , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Mutagénesis Insercional , Enfermedades de las Plantas , Plásmidos , Proteínas Recombinantes de Fusión/metabolismo , Eliminación de Secuencia , Solanum tuberosum/microbiología , Virulencia
15.
J Bacteriol ; 178(19): 5706-11, 1996 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-8824616

RESUMEN

The mechanism of DNA transmission between distinct organisms has remained a subject of long-standing interest. Agrobacterium tumefaciens mediates the transfer of plant oncogenes in the form of a 25-kb T-DNA sector of a resident Ti plasmid. A growing body of evidence leading to the elucidation of the mechanism involved in T-DNA transfer comes from studies on the vir genes contained in six major operons that are required for the T-DNA transfer process. Recent comparative amino acid sequence studies of the products of these vir genes have revealed interesting similarities between Tra proteins of Escherichia coli F factor, which are involved in the biosynthesis and assembly of a conjugative pilus, and VirB proteins encoded by genes of the virB operon of A. tumefaciens pTiC58. We have previously identified VirB2 as a pilin-like protein with processing features similar to those of TraA of the F plasmid and have shown that VirB2 is required for the biosynthesis of pilin on a flagella-free Agrobacterium strain. In the present work, VirB2 is found to be processed and localized primarily to the cytoplasmic membrane in E. coli. Cleavage of VirB2 was predicted previously to occur between alanine and glutamine in the sequence -Pro-Ala-Ala-Ala-Glu-Ser-. This peptidase cleavage sequence was mutated by an amino acid substitution for one of the alanine residues (D for A at position 45 [A45D]), by deletion of the three adjacent alanines, and by a frameshift mutation 22 bp upstream of the predicted Ala-Glu cleavage site. With the exception of the frameshift mutation, the alanine mutations do not prevent VirB2 processing in E. coli, while in A. tumefaciens they result in VirB2 instability, since no holo- or processed protein is detectable. All of the above mutations abolish virulence. The frameshift mutation abolishes processing in both organisms. These results indicate that VirB2 is processed into a 7.2-kDa structural protein. The cleavage site in E. coli appears to differ from that predicted in A. tumefaciens. Yet, the cleavage sites are relatively close to each other since the final cleavage products are similar in size and are produced irrespective of the length of the amino-terminal portion of the holoprotein. As we observed previously, the similarity between the processing of VirB2 in A. tumefaciens and the processing of the propilin TraA of the F plasmid now extends to E. coli.


Asunto(s)
Agrobacterium tumefaciens/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli , Proteínas de la Membrana , Plásmidos/genética , Procesamiento Proteico-Postraduccional , Factores de Virulencia , Agrobacterium tumefaciens/patogenicidad , Compartimento Celular , Datura stramonium/microbiología , Escherichia coli/genética , Factor F , Proteínas Fimbrias , Cinética , Plantas Medicinales , Plantas Tóxicas , Precursores de Proteínas/metabolismo , Proteínas Recombinantes/metabolismo , Serina Endopeptidasas , Especificidad de la Especie
16.
J Bacteriol ; 178(4): 1207-12, 1996 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-8576060

RESUMEN

Agrobacterium tumefaciens transfers single-stranded DNAs (T strands) into plant cells. VirE1 and VirE2, which is a single-stranded DNA binding protein, are important for tumorigenesis. We show that T strands and VirE2 can enter plant cells independently and that export of VirE2, but not of T strands, depends on VirE1.


Asunto(s)
Agrobacterium tumefaciens/metabolismo , Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Canales Iónicos , Chaperonas Moleculares , Plantas/microbiología , Agrobacterium tumefaciens/patogenicidad , Proteínas Bacterianas/genética , Secuencia de Bases , Transporte Biológico , Datos de Secuencia Molecular , Eliminación de Secuencia , Solanum tuberosum/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA