Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.110
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
PLoS One ; 19(4): e0301986, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38626158

RESUMEN

The production of sludge-based biochar to recover phosphorus (P) from wastewater and reuse the recovered phosphorus as agricultural fertilizer is a preferred process. This article mainly studied the removal of phosphate (PO4-P) from aqueous solution by synthesizing sludge-based biochar (MgSBC-0.1) from anaerobic fermentation sludge treated with magnesium (Mg)-loading-modification, and compared it with unmodified sludge-based biochar (SBC). The physicochemical properties, adsorption efficiency, and adsorption mechanism of MgSBC-0.1 were studied. The results showed that the surface area of MgSBC-0.1 synthesized increased by 5.57 times. The material surface contained MgO, Mg(OH)2, and CaO nanoparticles. MgSBC-0.1 can effectively remove phosphate in the initial solution pH range of 3.00-7.00, with a fitted maximum phosphorus adsorption capacity of 379.52 mg·g-1. The adsorption conforms to the pseudo second-order kinetics model and Langmuir isotherm adsorption curve. The characterization of the adsorbed composite material revealed the contribution of phosphorus crystal deposition and electrostatic attraction to phosphorus absorption.


Asunto(s)
Fosfatos , Contaminantes Químicos del Agua , Fosfatos/química , Magnesio , Aguas del Alcantarillado , Adsorción , Carbón Orgánico , Fósforo/química , Cinética , Contaminantes Químicos del Agua/análisis
2.
J Hazard Mater ; 470: 134182, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38583202

RESUMEN

Establishing an economic and sustained Fenton oxidation system to enhance sludge dewaterability and carbamazepine (CBZ) removal rate is a crucial path to simultaneously achieve sludge reduction and harmless. Leveraging the principles akin to "tea making", we harnessed tea waste to continually release tea polyphenols (TP), thus effectively maintaining high level of oxidation efficiency through the sustained Fenton reaction. The results illustrated that the incorporation of tea waste yielded more favorable outcomes in terms of water content reduction and CBZ removal compared to direct TP addition within the Fe(III)/hydrogen peroxide (H2O2) system. Concomitantly, this process mainly generated hydroxyl radical (•OH) via three oxidation pathways, effectively altering the properties of extracellular polymeric substances (EPS) and promoting the degradation of CBZ from the sludge mixture. The interval addition of Fe(III) and H2O2 heightened extracellular oxidation efficacy, promoting the desorption and removal of CBZ. The degradation of EPS prompted the transformation of bound water to free water, while the formation of larger channels drove the discharge of water. This work achieved the concept of treating waste with waste through using tea waste to treat sludge, meanwhile, can provide ideas for subsequent sludge harmless disposal.


Asunto(s)
Carbamazepina , Peróxido de Hidrógeno , Hierro , Oxidación-Reducción , Aguas del Alcantarillado , , Contaminantes Químicos del Agua , Carbamazepina/química , Peróxido de Hidrógeno/química , Té/química , Aguas del Alcantarillado/química , Hierro/química , Contaminantes Químicos del Agua/química , Matriz Extracelular de Sustancias Poliméricas/química , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Eliminación de Residuos Líquidos/métodos , Compuestos Férricos/química , Polifenoles/química
3.
Chemosphere ; 357: 141920, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636914

RESUMEN

Antimony contamination from textile industries has been a global environmental concern and the existing treatment technologies could not reduce Sb(V) to meet the discharge standards. To overcome this shortcoming, ferric flocs were introduced to expedite the biological process for enhanced Sb(V) removal in wastewater treatment plant (WWTP). For this purpose, a series of laboratorial-scale sequential batch reactor activated sludge processes (SBRs) were applied for Sb(V) removal with varied reactor conditions and the transformation of Fe and Sb in SBR system was investigated. Results showed a significant improvement in Sb(V) removal and the 20 mg L-1 d-1 iron ions dosage and iron loss rate was found to be only 15.2%. The influent Sb(V) concentration ranging 153-612 µg L-1 was reduced to below 50 µg L-1, and the maximum Sb(V) removal rate of the enhanced system reached about 94.3%. Furthermore, it exhibited high stability of Sb(V) removal in the face of antimonate load, Fe strike and matrix change of wastewater. Sludge total Sb determination and capacity calculation revealed decreasing in Sb adsorption capacity and desorption without fresh Fe dosage. While sludge morphology analysis demonstrated the aging and crystallization of iron hydroxides. These results verify the distinct effects of fresh iron addition and iron aging on Sb(V) removal. High-throughput gene pyrosequencing results showed that the iron addition changed microbial mechanisms and effect Fe oxidized bacterial quantity, indicating Sb(V) immobilization achieved by microbial synergistic iron oxidation. The present study successfully established a simple and efficient method for Sb(V) removal during biological treatment, and the modification of biological process by iron supplement could provide insights for real textile wastewater treatment.


Asunto(s)
Antimonio , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Aguas del Alcantarillado/química , Aguas del Alcantarillado/microbiología , Antimonio/química , Hierro/química , Adsorción , Industria Textil , Compuestos Férricos/química , Reactores Biológicos/microbiología , Textiles , Biodegradación Ambiental , Aerobiosis
4.
Waste Manag ; 180: 67-75, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38537600

RESUMEN

Due to the irreplaceable nature of phosphorus (P) in biological growth and the shortage of P rock, it is necessary to recover P from waste, such as sludge ash. P-containing products were prepared using sludge ash and calcium-based additives (CaCO3 and eggshell). In addition, the effects of different incineration methods (one-step method (OSM) and multi-step method (MSM)), additive doses, and incineration temperature on the P content and species in the products were investigated. The results indicated that as the dose of calcium-based additives increased, total P (TP) content in P-containing products reduced, apatite P (AP) content increased, non-apatite P (NAIP) content declined, and P solubility in citric acid content decreased. The amount of AP increased, NAIP reduced, and P solubility in citric acid decreased as the incineration temperature climbed. Although P in P-containing products prepared by OSM and MSM changed in a similar way at different additive doses and temperatures, P-containing products prepared by MSM had at least a 6.1% increase in P solubility in citric acid. Compared with OSM, MSM could save 10% of calcium-based additives when reaching the maximum AP value. Additionally, pure materials were employed to investigate how P species changed during the incineration procedure. The advantage of the MSM-prepared product over the OSM-prepared product may be explained by the high concentration of Ca3(PO4)2 and low concentration of amorphous calcium bound P (Ca-P). Overall, MSM is an effective method to reduce the dose of calcium-based additives and increase the bioavailability of P in P-containing products.


Asunto(s)
Calcio , Fósforo , Aguas del Alcantarillado , Incineración , Ácido Cítrico , Ceniza del Carbón
5.
Chemosphere ; 355: 141818, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38548085

RESUMEN

Skeleton builders were normally deemed to improve the high porosity and newly-generated permeability of sludge cakes by building water transfer channel during high pressure filtration, thus enhancing sludge dewaterability. However, currently a direct visualization proof of water transfer channel was still lacking. This study provided the direct proof for visualizing water transfer channel in dewatered sludge cakes conditioned with a typical skeleton builder (i.e., phosphogypsum (PG)) by X-ray micro-computed tomography (micro-CT) for the first time. After the addition of PG, the pixel value and image luminance increased significantly, indicating the presence of high density substances from both two-dimensional (2D) cross section and three-dimensional (3D) reconstruction CT images. Moreover, the CT numbers showed strong and negative correlations with specific resistance to filtration (SRF) (R = - 0.99, p < 0.05), capillary suction time (CST) (regression coefficient (R) = - 0.87, probability (p) < 0.05), and water content of the dewatered sludge cake (R = - 0.99, p < 0.05), respectively. These results indicated that the X-ray micro-CT could be a potential technique for analyzing the water distribution in sludge samples conditioned with skeleton builders.


Asunto(s)
Sulfato de Calcio , Filtración , Fósforo , Aguas del Alcantarillado , Microtomografía por Rayos X , Agua , Esqueleto , Eliminación de Residuos Líquidos/métodos
6.
J Hazard Mater ; 470: 134131, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38552390

RESUMEN

Arsenic (As) in sewage sludge poses a significant threat to environmental and human health, which has attracted widespread attention. This study investigated the value of adding sodium percarbonate (SP) on phosphorus (P) availability and As efflux detoxification through HS-P-As interactions. Due to the unique structure of humus (HS) and the similar chemical properties of P and As, the conditions for HS-P-As interaction are provided. This study discussed the content, morphology and microbial communities of HS, P and As by using metagenomic and correlation analysis. The results showed that the humification index in the experiment group (SPC) was 2.34 times higher than that in the control group (CK). The available phosphorus (AP) content of SPC increased from 71.09 mg/kg to 126.14 mg/kg, and SPC was 1.11 times that of CK. The relative abundance of ACR3/ArsB increased. Pst, Actinomyces and Bacillus commonly participated in P and As conversion. The correlation analysis revealed that the humification process was enhanced, the AP was strengthened, and the As was efflux detoxified after SP amendment. All in all, this study elucidated the key mechanism of HS-P-As interaction and put forward a new strategy for sewage sludge resource utilization and detoxification.


Asunto(s)
Arsénico , Compostaje , Sustancias Húmicas , Fósforo , Aguas del Alcantarillado , Fósforo/metabolismo , Fósforo/química , Aguas del Alcantarillado/microbiología , Arsénico/metabolismo , Arsénico/química , Microbiología del Suelo
7.
Sci Total Environ ; 926: 171890, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38521280

RESUMEN

A pilot-scale continuous-flow modified anaerobic-anoxic-oxic (MAAO) process examined the impact of external carbon sources (acetate, glucose, acetate/propionate) on ammonium assimilation, denitrifying phosphorus removal (DPR), and microbial community. Acetate exhibited superior efficacy in promoting the combined process of ammonia assimilation and DPR, enhancing both to 50.0 % and 60.0 %, respectively. Proteobacteria and Bacteroidota facilitated ammonium assimilation, while denitrifying phosphorus-accumulating organisms (DPAOs) played a key role in nitrogen (N) and phosphorus (P) removal. Denitrifying glycogen-accumulating organisms (DGAOs) aided N removal in the anoxic zone, ensuring stable N and P removal and recovery. Acetate/propionate significantly enhanced DPR (77.7 %) and endogenous denitrification (37.9 %). Glucose favored heterotrophic denitrification (29.6 %) but had minimal impact on ammonium assimilation. These findings provide valuable insights for wastewater treatment plants (WWTPs) seeking efficient N and P removal and recovery from low-strength wastewater.


Asunto(s)
Compuestos de Amonio , Aguas Residuales , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos , Anaerobiosis , Fósforo , Carbono , Propionatos , Desnitrificación , Reactores Biológicos/microbiología , Nitrógeno , Acetatos , Glucosa
8.
Bioresour Technol ; 399: 130562, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38460560

RESUMEN

The two-sludge anoxic dephosphation (DEPHANOX) process frequently encounters the challenge of elevated effluent ammonia levels in practical applications. In this study, the anaerobic ammonium oxidation (anammox) biofilm was introduced into the DEPHANOX system, transforming it into a three-sludge system, enabling synchronous nitrogen and phosphorus elimination, particularly targeting ammonia. Despite a chemical oxygen demand/total nitrogen ratio of 4.3 ± 0.8 in the actual municipal wastewater and 4.5 h of aeration, the effluent total nitrogen was 13.7 mg/L, lower than the parallel wastewater treatment plant. Additionally, the effluent ammonia reduced to 5.1 ± 2.5 mg/L. Notably, denitrifying phosphorus removal and anammox were coupled in the anoxic zone, yielding 74.5 % nitrogen and 87.8 % phosphorus removal. 16S rRNA gene sequencing identified denitrifying phosphorus-accumulating organisms primarily in floc sludge (Saprospiraceae 7.07 %, Anaerolineaceae 1.95 %, Tetrasphaera 1.57 %), while anammox bacteria inhabited the biofilm (Candidatus Brocadia 4.00 %). This study presents a novel process for efficiently treating municipal wastewater.


Asunto(s)
Compuestos de Amonio , Purificación del Agua , Aguas Residuales , Aguas del Alcantarillado/microbiología , Amoníaco , Anaerobiosis , Fósforo , ARN Ribosómico 16S/genética , Desnitrificación , Reactores Biológicos/microbiología , Oxidación-Reducción , Nitrógeno
9.
Water Res ; 254: 121424, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38460226

RESUMEN

Partial nitritation-anammox (PN/A), an energy-neutral process, is widely employed in the treatment of nitrogen-rich wastewater. However, the intrinsic nitrate accumulation limits the total nitrogen (TN) removal, and the practical application of PN/A continues to face a significant challenge at low temperatures (<15 °C). Here, an integrated partial nitritation-anammox and iron-based denitrification (PNAID) system was developed to address the concern. Two up-flow bioreactors were set up and operated for 400 days, with one as the control group and the other as the experiment group with the addition of Fe0. In comparison to the control group, the experiment group with the Fe0 supplement showed better nitrogen removal during the entire course of the experiment at different temperature levels. Specifically, the TN removal efficiency of the control group decreased from 82.9 % to 53.9 % when the temperature decreased from 30 to 12 °C, while in stark contrast, the experiment group consistently achieved 80 % of TN removal in the same condition. Apart from the enhanced nitrogen removal, the experiment group also exhibited better phosphorus removal (10.6 % versus 74.1 %) and organics removal (49.5 % versus 65.1 %). The enhanced and resilient nutrient removal performance of the proposed integrated process under low temperatures appeared to be attributed to the compact structure of granules and the increased microbial metabolism with Fe0 supplement, elucidated by a comprehensive analysis including microbial-specific activity, apparent activation energy, characteristics of granular sludge, and metagenomic sequencing. These results clearly confirmed that Fe0 supplement not only improved nitrogen removal of PN/A process, but also conferred a certain degree of robustness to the system in the face of temperature fluctuations.


Asunto(s)
Compuestos de Amonio , Desnitrificación , Temperatura , Oxidación Anaeróbica del Amoníaco , Aguas Residuales , Aguas del Alcantarillado , Reactores Biológicos , Oxidación-Reducción , Nitrógeno/metabolismo
10.
Chemosphere ; 354: 141732, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38499072

RESUMEN

Malignant invasive Erigeron canadensis, as a typical lignocellulosic biomass, is a formidable challenge for sustainable and efficient resource utilization, however nanobubble water (NBW) coupled with anaerobic digestion furnishes a prospective strategy with superior environmental and economic effectiveness. In this study, influence mechanism of various O2-NBW addition times on methanogenic performance of E. canadensis during anaerobic digestion were performed to achieve the optimal pollution-free energy conversion. Results showed that supplementation of O2-NBW in digestion system could significantly enhance the methane production by 10.70-16.17%, while the maximum cumulative methane production reached 343.18 mL g-1 VS in the case of one-time O2-NBW addition on day 0. Furthermore, addition of O2-NBW was conducive to an increase of 2-90% in the activities of dehydrogenase, α-glucosidase and coenzyme F420. Simultaneously, both facultative bacteria and methanogenic archaea were enriched as well, further indicating that O2-NBW might be responsible for facilitating hydrolytic acidification and methanogenesis. Based on Kyoto Encyclopedia of Genes and Genomes (KEGG) cluster analysis, provision of O2-NBW enhanced the metabolism of carbohydrate and amino acid, translation as well as membrane transport of bacteria and archaea. This study might offer the theoretical guidance and novel insights for efficient recovery of energy from lignocellulosic biomass on account of O2-NBW adhibition in anaerobic digestion system, progressing tenor of carbon-neutral vision.


Asunto(s)
Erigeron , Anaerobiosis , Agua , Bacterias , Archaea , Suplementos Dietéticos , Metano , Reactores Biológicos , Aguas del Alcantarillado/química
11.
Sci Total Environ ; 925: 171431, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38442755

RESUMEN

This study addresses the pressing environmental concerns associated with the rapidly growing distillery industry, which is a significant contributor to wastewater generation. By focusing on the treatment of distillery wastewater using anaerobic digestion, this research explores the potential to convert organic materials into biofuels (methane). Moreover, the study aims to recover both methane and phosphorus from distillery wastewater in a single anaerobic reactor, which represents a novel and unexplored approach. Laboratory-scale experiments were conducted using mesophilic and thermophilic upflow anaerobic sludge blanket reactors. A key aspect of the study involved the implementation of a unique strategy: the mixing of centrate and spent caustic wastewater streams. This approach was intended to enhance treatment performance, manipulate the microbial community structure, and thereby optimizing the overall treatment performance. The integration of the centrate and spent caustic streams yielded remarkable co-benefits, resulting in significant biomethane production and efficient phosphorus precipitation. The study demonstrated a phosphorus removal efficiency of ∼60 % throughout the 130-140 days operation period. The recovery of phosphorus via the reactor sludge offers exciting opportunities for its utilization as a fertilizer or as a raw material within the phosphorus refinery industry. The biomethane produced during the treatment exhibits significant energy potential, estimated at 0.5 GJ/(m3 distillery wastewater).


Asunto(s)
Cáusticos , Aguas Residuales , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Anaerobiosis , Fósforo , Biomineralización , Reactores Biológicos , Metano
12.
Water Res ; 254: 121378, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38430758

RESUMEN

This study delved into the efficacy of sludge digestion and the mechanisms involved in sludge destruction during the implementation of forward osmosis process for sludge thickening and digestion (FO-MSTD). Utilizing a lab-scale FO membrane reactor for the thickening and digestion of waste activated sludge (WAS), the investigation explored the effects of sludge thickening and digestion in FO-MSTD processes using draw solutions of varying concentrations. The findings underscored the significance of hydraulic retention time (HRT) as a pivotal parameter influencing the swift thickening or profound digestion of sludge. Consequently, tailoring the HRT to specific processing objectives emerged as a key strategy for achieving desired treatment outcomes. In the investigation, the use of a 1 M NaCl draw solution in the FO-MSTD process showcased enhanced thickening and digestion capabilities. This specific setup raised the concentration of mixed liquor suspended solids (MLSS) to over 30 g/L and achieved a 42.7% digestion efficiency of mixed liquor volatile suspended solids (MLVSS) within an operational timeframe of 18 days. Furthermore, the research unveiled distinct stages in the sludge digestion process of the FO-MSTD system, characterized by fully aerobic digestion and aerobic-local anaerobic co-existing digestion. In the fully aerobic digestion stage, the sludge digestion rate exhibited a steady increase, leading to the breakdown of sludge floc structures and the release of a substantial amount of nutrients into the sludge supernatant. The predominant microorganisms during this stage were typical functional microorganisms found in wastewater treatment systems. Transitioning into the aerobic-local anaerobic co-existing digestion stage, both MLSS concentration and MLVSS digestion efficiency continued to rise, accompanied by a decreasing dissolved oxygen (DO) concentration. More organic matter was released into the supernatant, and sludge microbial flocs tended to reaggregate. The localized anaerobic environment within the FO-MSTD reactor fostered an increase in the relative abundance of bacteria with nitrogen and phosphorus removal functions, thereby positively impacting the mitigation of total nitrogen (TN) and total phosphorus (TP) concentrations in the sludge supernatant. The results of this research enhance comprehension of the advanced FO-MSTD technology in the treatment of WAS.


Asunto(s)
Fósforo , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Ósmosis , Fósforo/metabolismo , Nitrógeno , Digestión , Reactores Biológicos , Eliminación de Residuos Líquidos/métodos
13.
Water Res ; 254: 121372, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38430761

RESUMEN

Watershed water quality modeling is a valuable tool for managing ammonium (NH4+) pollution. However, simulating NH4+ pollution presents unique challenges due to the inherent instability of NH4+ in natural environment. This study modified the widely-used Soil and Water Assessment Tool (SWAT) model to simulate non-point source (NPS) NH4+ processes, specifically incorporating the simulation of land-to-water NH4+ delivery. The Jiulong River Watershed (JRW) is the study area, a coastal watershed in Southeast China with substantial sewage discharge, livestock farming, and fertilizer application. The results demonstrate that the modified model can effectively simulate the NPS NH4+ processes. It is recommended to use multiple sets of observations to calibrate NH4+ simulation to enhance model reliability. Despite constituting a minor proportion (5.6 %), point source inputs significantly contribute to NH4+ load at watershed outlet (32.4∼51.9 %), while NPS inputs contribute 15.3∼17.3 % of NH4+ loads. NH4+ primarily enters water through surface runoff and lateral flow, with negligible leaching. Average NH4+ land-to-water delivery rate is about 2.35 to 2.90 kg N/ha/a. High delivery rates mainly occur at agricultural areas. Notably, proposed NH4+ mitigation measures, including urban sewage treatment enhancement, livestock manure management improvement, and fertilizer application reduction, demonstrate potential to collectively reduce the NH4+ load at watershed outlet by 1/4 to 1/3 and significantly enhance water quality standard compliance frequency. Insights gained from modeling experience in the JRW offer valuable implications for NH4+ modeling and management in regions with similar climates and significant anthropogenic nitrogen inputs.


Asunto(s)
Compuestos de Amonio , Contaminantes Químicos del Agua , Fertilizantes , Aguas del Alcantarillado , Reproducibilidad de los Resultados , Monitoreo del Ambiente/métodos , Nitrógeno/análisis , Calidad del Agua , China , Ríos , Contaminantes Químicos del Agua/análisis , Fósforo/análisis
14.
Chemosphere ; 354: 141633, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38442772

RESUMEN

The activated sludge method is widely used for the treatment of phenol-containing wastewater, which gives rise to the problem of toxic residual sludge accumulation. Indole-3-acetic acid (IAA), a typical phytohormone, facilitates the microalgal resistance to toxic inhibition while promoting biomass accumulation. In this study, Chlorococcum humicola (C. humicola) was cultured in toxic sludge extract and different concentrations of IAA were used to regulate its physiological properties and enrichment of high value-added products. Ultimately, proteomics analysis was used to reveal the response mechanism of C. humicola to exogenous IAA. The results showed that the IAA concentration of 5 × 10-6 mol/L (M) was most beneficial for C. humicola to cope with the toxic stress in the sludge extract medium, to promote the activity of rubisco enzyme, to enhance the efficiency of photosynthesis, and, finally, to accumulate protein as a percentage of specific dry weight 1.57 times more than that of the control group. Exogenous IAA altered the relative abundance of various amino acids in C. humicola cells, and proteomic analyses showed that exogenous IAA stimulated the algal cells to produce more indole-3-glycerol phosphate (IGP), indole, and serine by up-regulating the enzymes. These precursors are converted to tryptophan under the regulation of tryptophan synthase (A0A383V983), and tryptophan can be metabolized to endogenous IAA to promote the growth of C. humicola. These findings have important implications for the treatment of toxic residual sludge while enriching for high-value amino acids.


Asunto(s)
Proteómica , Triptófano , Triptófano/metabolismo , Aguas del Alcantarillado , Ácidos Indolacéticos/farmacología , Ácidos Indolacéticos/metabolismo , Extractos Vegetales
15.
Environ Sci Pollut Res Int ; 31(16): 24360-24374, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38443536

RESUMEN

Domestic wastewater source-separated treatment has attracted wide attention due to the efficiency improvement of sewage treatment systems, energy saving, resource reuse, and the construction and operation cost saving of pipeline networks. Nonetheless, the excess source-separated urine still demands further harmless treatment. Sequencing batch biofilm reactor (SBBR), a new type of composite biofilm reactor developed by filling different fillers into the sequential batch reactor (SBR) reactor, has higher pollutant removal performance and simpler operation and maintenance. However, the phosphorus removal ability of the SBBR filling with conventional fillers is still limited and needs further improvement. In this study, we developed two new fillers, the self-fabricated filler A and B (SFA/SFB), and compared their source-separated urine treatment performance. Long-term treatment experimental results demonstrated that the SBBR systems with different fillers had good removal performance on the COD and TN in the influent, and the removal rate increased with the increasing HRT. However, only the SBBR system with the SFA showed excellent PO43--P and TP removal performance, with the removal rates being 83.7 ± 11.9% and 77.3 ± 13.7% when the HRT was 1 d. Microbial community analysis results indicated that no special bacteria with strong phosphorus removal ability were present on the surface of the SFA. Adsorption experimental results suggested that the SFA had better adsorption performance for phosphorus than the SFB, but it could not always have stronger phosphorus adsorption and removal performance during long-term operation due to the adsorption saturation. Through a series of characterizations such as SEM, XRD, and BET, it was found that the SFA had a looser structure due to the use of different binder and production processes, and the magnesium in the SFA gradually released and reacted with PO43- and NH4+ in the source-separated urine to form dittmarite and struvite, thus achieving efficient phosphorus removal. This study provides a feasible manner for the efficient treatment of source-separated urine using the SBBR system with self-fabricated fillers.


Asunto(s)
Magnesio , Eliminación de Residuos Líquidos , Eliminación de Residuos Líquidos/métodos , Fósforo , Reactores Biológicos , Nitrógeno , Excipientes , Biopelículas , Aguas del Alcantarillado/química
16.
Water Res ; 254: 121401, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38447378

RESUMEN

Although being viewed as a promising technology for reclamation of carbon and phosphorus from excess sludge, anaerobic fermentation (AF) grapples with issues such as a low yield of volatile fatty acids (VFAs) and high phosphorus recovery costs. In this study, we synthesized Fe3O4@MOF-808 (FeM) with abundant defects and employed it to simultaneously enhance VFAs and phosphorus recovery during sludge anaerobic fermentation. Through pre-oxidization of sludge catalyzed by FeM-induced peroxydisulfate, the soluble organic matter increased by 2.54 times, thus providing ample substrate for VFAs production. Subsequent AF revealed a remarkable 732.73 % increase in VFAs and a 1592.95 % increase in phosphate. Factors contributing to the high VFAs yield include the non-biological catalysis of unsaturated Zr active sites in defective FeM, enhancing protein hydrolysis, and the inhibition of methanogenesis due to electron competition arising from the transformation between Fe(III) and Fe(II) under Zr influence. Remarkably, FeM exhibited an adsorption capacity of up to 92.64 % for dissolved phosphate through ligand exchange and electrostatic attractions. Furthermore, FeM demonstrated magnetic separation capability from the fermentation broth, coupled with excellent stability and reusability in both catalysis and adsorption processes.


Asunto(s)
Fósforo , Aguas del Alcantarillado , Fermentación , Aguas del Alcantarillado/química , Anaerobiosis , Carbono , Compuestos Férricos , Ácidos Grasos Volátiles/metabolismo , Fosfatos , Concentración de Iones de Hidrógeno
17.
Bioresour Technol ; 399: 130616, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38513924

RESUMEN

Removing nitrogen and phosphorus from low ratio of chemical oxygen demand to total nitrogen and temperature municipal wastewater stays a challenge. In this study, a pilot-scale anaerobic/aerobic/anoxic sequencing batch reactor (A/O/A-SBR) system first treated 15 m3/d actual municipal wastewater at 8.1-26.4 °C for 224 days. At the temperature of 15.7 °C, total nitrogen in influent and effluent were 45.5 and 10.9 mg/L, and phosphorus in influent and effluent were 3.9 and 0.1 mg/L. 16 s RNA sequencing results showed the relative abundance of Competibacter and Tetrasphaera raised to 1.25 % and 1.52 %. The strategy of excessive, no and normal sludge discharge enriched and balanced the functional bacteria, achieving an endogenous denitrification ratio more than 43.3 %. Sludge reduction and short aerobic time were beneficial to energy saving contrast with a Beijing municipal wastewater treatment. This study has significant implications for the practical application of the AOA-SBR process.


Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos/métodos , Anaerobiosis , Nitrógeno , Fósforo , Reactores Biológicos/microbiología , Carbono , China , Desnitrificación , Nitrificación
18.
Water Sci Technol ; 89(4): 989-1002, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38423613

RESUMEN

Using electrolytic zero-valent iron-activated sodium hypochlorite (EZVI-NaClO) to pretreat sludge, the capillary suction time (CST) was utilized to evaluate sludge dewaterability. Ammonia nitrogen (NH4-N), dissolved phosphorus, and total phosphorus in the supernatant were used to analyze sludge disintegration. This approach aimed to evaluate the effectiveness of the pretreatment process and its impact on the sludge composition. The migration and transformation of extracellular polymeric substances (EPS), including dissolved EPS (S-EPS), loosely boundEPS, and tightly bound-EPS (TB-EPS), were analyzed by detecting protein and polysaccharide concentrations and three-dimensional fluorescence excitation-emission spectroscopy (3D-EEM). The sludge particle properties, including sludge viscosity and particle size, were also analyzed. The results suggested that the optimal pH value, NaClO dosage, current, and reaction time were 2, 100 mg/gDS (dry sludge), 0.2A, and 30 min, respectively, with a CST reduction of 43%. Protein and polysaccharide contents in TB-EPS were significantly reduced in the EZVI-NaClO group. Conversely, protein and polysaccharides contents in S-EPS increased, suggesting that EZVI-NaClO treatment could disrupt the EPS. Besides, the viscosity of the treated sludge decreased from 195.4 to 54.9 mPa·S, indicating that sludge fluidity became better. ZEVI-NaClO could enhance sludge dewaterability by destructing protein and polysaccharide structure and improving sludge hydrophobicity.


Asunto(s)
Aguas del Alcantarillado , Hipoclorito de Sodio , Aguas del Alcantarillado/química , Proteínas , Polisacáridos , Hierro/química , Fósforo , Agua/química , Eliminación de Residuos Líquidos/métodos
19.
Water Sci Technol ; 89(4): 1047-1062, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38423616

RESUMEN

With the background of carbon neutrality, the resource and energy utilization of excess sludge (ES) have become the focus of future research. The pyrolysis of ES can produce biochar and enrich phosphorus (P). In this paper, the existing forms and recovery efficiencies of P in biochar from ES (BCES) were investigated. The results showed that the total phosphorus (TP) content of BCES at 850 °C was 65.1 mg/g, and the inorganic phosphorus (IP) content was 64.2 mg/g. The TP content of BCES was two times heavier than that of ES. The main ingredient of ES was quartz (SiO2), while the main phases of BCES were quartz (SiO2) and aluminum phosphate (AlPO4) at 650 -850 °C, and P mainly existed in the form of AlPO4. When the pyrolysis temperature was 800 and 850 °C, two new minerals appeared: Ca5(PO4)3OH and CaZn2(PO4)2·2H2O. Based on the conditions of a leaching time of 150 min, a H2SO4 concentration of 0.2 mol/L, a stirring rate of 220 rpm and a liquid-solid ratio of 50 mL/g, the leaching efficiency of P in BCES was found to be 100%. The pyrolysis temperature had no effect on leaching efficiencies of P; however, a higher pyrolysis temperature promoted metal leaching content.


Asunto(s)
Fósforo , Aguas del Alcantarillado , Cuarzo , Dióxido de Silicio , Carbón Orgánico
20.
Sci Total Environ ; 920: 170779, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38340849

RESUMEN

Machine learning (ML), a powerful artificial intelligence tool, can effectively assist and guide the production of bio-oil from hydrothermal liquefaction (HTL) of wet biomass. However, for hydrothermal co-liquefaction (co-HTL), there is a considerable lack of application of experimentally verified ML. In this work, two representative wet biomasses, sewage sludge and algal biomass, were selected for co-HTL. The Gradient Boosting Regression (GBR) and Random Forest (RF) algorithms were employed for regression and feature analyses on yield (Yield_oil, %), nitrogen content (N_oil, %), and energy recovery rate (ER_oil, %) of bio-oil. The single-task results revealed that temperature (T, °C) was the most significant factor. Yield_oil and ER_oil reached their maximum values around 350 °C, while that of N_oil was around 280 °C. The multi-task results indicated that the GBR-ML model of the dataset#4 (n_estimators = 40, and max_depth = 7,) owed the highest average test R2 (0.84), which was suitable for developing a prediction application. Subsequently, through experimental validation with actual biomass, the best GBR multi-task ML model (T ≥ 300 °C, Yield_oil error < 11.75 %, N_oil error < 2.40 %, and ER_oil error < 9.97 %) based on the dataset#6 was obtained for HTL/co-HTL. With these steps, we developed an application for predicting the multi-object of bio-oil, which is scarcely reported in co-hydrothermal liquefaction studies.


Asunto(s)
Nitrógeno , Aceites de Plantas , Polifenoles , Aguas del Alcantarillado , Biomasa , Inteligencia Artificial , Biocombustibles , Temperatura , Aprendizaje Automático , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA