Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Ethnopharmacol ; 329: 118154, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38614259

RESUMEN

ETHNOPHARMACOLOGY RELEVANCE: The plants of Amaryllidaceae family, such as Amaryllis belladonna L., have been used as herbal remedies for thousands of years to address various disorders, including diseases that might today be identified as cancer. AIM OF THE STUDY: The objective of this work was to evaluate the potential of three Amaryllidaceae alkaloids against four cancer cell lines. MATERIAL AND METHODS: The alkaloids lycorine, 1-O-acetylcaranine, and montanine were evaluated in vitro against colon adenocarcinoma cell line (HCT-116) and breast carcinoma cell lines (MCF-7, MDAMB231, and Hs578T). Computational experiments (target prediction and molecular docking) were conducted to gain a deeper comprehension of possible interactions between these alkaloids and potential targets associated with these tumor cells. RESULTS: Montanine presented the best results against HCT-116, MDAMB231, and Hs578T cell lines, while lycorine was the most active against MCF-7. In alignment with the target prediction outcomes and existing literature, four potential targets were chosen for the molecular docking analysis: CDK8, EGFR, ER-alpha, and dCK. The docking scores revealed two potential targets for the alkaloids with scores similar to co-crystallized inhibitors and substrates: CDK8 and dCK. A visual analysis of the optimal docked configurations indicates that the alkaloids may interact with some key residues in contrast to the other docked compounds. This observation implies their potential to bind effectively to both targets. CONCLUSIONS: In vitro and in silico results corroborate with data literature suggesting the Amaryllidaceae alkaloids as interesting molecules with antitumoral properties, especially montanine, which showed the best in vitro results against colorectal and breast carcinoma. More studies are necessary to confirm the targets and pharmaceutical potential of montanine against these cancer cell lines.


Asunto(s)
Alcaloides de Amaryllidaceae , Antineoplásicos Fitogénicos , Simulación del Acoplamiento Molecular , Humanos , Alcaloides de Amaryllidaceae/farmacología , Alcaloides de Amaryllidaceae/química , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Línea Celular Tumoral , Células MCF-7 , Amaryllidaceae/química , Células HCT116 , Simulación por Computador , Fenantridinas/farmacología , Fenantridinas/química , Isoquinolinas
2.
Phytomedicine ; 129: 155576, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38579643

RESUMEN

BACKGROUND: Nature has perennially served as an infinite reservoir of diverse chemicals with numerous applications benefiting humankind. In recent years, due to the emerging COVID-19 pandemic, there has been a surge in studies on repurposing natural products as anti-SARS-CoV-2 agents, including plant-derived substances. Among all types of natural products, alkaloids remain one of the most important groups with various known medicinal values. The current investigation focuses on Amaryllidaceae alkaloids (AAs) since AAs have drawn significant scientific attention as anti-SARS-CoV-2 agents over the past few years. PURPOSE AND STUDY DESIGN: This study serves as a mini-review, summarizing recent advances in studying the anti-SARS-CoV-2 potency of AAs, covering two aspects: structure-activity relationship and mechanism of action (MOA). METHODS: The study covers the period from 2019 to 2023. The information in this review were retrieved from common databases including Web of Science, ScienceDirect, PubMed and Google scholar. Reported anti-SARS-CoV-2 potency, cytotoxicity and possible biological targets of AAs were summarized and classified into different skeletal subclasses. Then, the structure-activity relationship (SAR) was explored, pinpointing the key pharmacophore-related structural moieties. To study the mechanism of action of anti-SARS-CoV-2 AAs, possible biological targets were discussed. RESULTS: In total, fourteen research articles about anti-SARS-CoV-2 was selected. From the SAR point of view, four skeletal subclasses of AAs (lycorine-, galanthamine-, crinine- and homolycorine-types) appear to be promising for further investigation as anti-SARS-CoV-2 agents despite experimental inconsistencies in determining in vitro half maximal inhibitory effective concentration (EC50). Narciclasine, haemanthamine- and montanine-type skeletons were cytotoxic and devoid of anti-SARS-CoV-2 activity. The lycorine-type scaffold was the most structurally diverse in this study and preliminary structure-activity relationships revealed the crucial role of ring C and substituents on rings A, C and D in its anti-SARS-CoV-2 activity. It also appears that two enantiomeric skeletons (haemanthamine- and crinine-types) displayed opposite activity/toxicity profiles regarding anti-SARS-CoV-2 activity. Pharmacophore-related moieties of the haemanthamine/crinine-type skeletons were the substituents on rings B, C and the dioxymethylene moiety. All galanthamine-type alkaloids in this study were devoid of cytotoxicity and it appears that varying substituents on rings C and D could enhance the anti-SARS-CoV-2 potency. Regarding MOAs, initial experimental results suggested Mpro and RdRp as possible viral targets. Dual functionality between anti-inflammatory activity on host cells and anti-SARS-CoV-2 activity on the SARS-CoV-2 virus of isoquinoline alkaloids, including AAs, were suggested as the possible MOAs to alleviate severe complications in COVID-19 patients. This dual functionality was proposed to be related to the p38 MAPK signaling pathway. CONCLUSION: Overall, Amaryllidaceae alkaloids appear to be promising for further investigation as anti-SARS-CoV-2 agents. The skeletal subclasses holding the premise for further investigation are lycorine-, crinine-, galanthamine- and homolycorine-types.


Asunto(s)
Alcaloides de Amaryllidaceae , Antivirales , SARS-CoV-2 , Alcaloides de Amaryllidaceae/farmacología , Alcaloides de Amaryllidaceae/química , Antivirales/farmacología , Antivirales/química , SARS-CoV-2/efectos de los fármacos , Humanos , Relación Estructura-Actividad , Tratamiento Farmacológico de COVID-19 , Amaryllidaceae/química
3.
Phytomedicine ; 128: 155464, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38484625

RESUMEN

BACKGROUND: Ang II induces hypertensive heart failure (HF) via hemodynamic and non-hemodynamic actions. Lycorine (LYC) is an alkaloid derived from Lycoris bulbs, and it possesses anti-cardiovascular disease-related activities. Herein, we explored the potential LYC-mediated regulation of Ang II-induced HF. METHODS: Over 4 weeks, we established a hypertensive HF mouse model by infusing Ang II into C57BL/6 mice using a micro-osmotic pump. For the final two weeks, mice were administered LYC via intraperitoneal injection. The LYC signaling network was then deduced using RNA sequencing. RESULTS: LYC administration strongly suppressed hypertrophy, myocardial fibrosis, and cardiac inflammation. As a result, it minimized heart dysfunction while causing no changes in blood pressure. The Nuclear Factor kappa B (NF-κB) network/phosphoinositol-3-kinase (PI3K)-protein kinase B (AKT) was found to be a major modulator of LYC-based cardioprotection using RNA sequencing study. We further confirmed that in cultured cardiomyocytes and mouse hearts, LYC reduced the inflammatory response and downregulated the Ang II-induced PI3K-AKT/NF-κB network. Moreover, PI3K-AKT or NF-κB axis depletion in cardiomyocytes completely abrogated the anti-inflammatory activities of LYC. CONCLUSION: Herein, we demonstrated that LYC safeguarded hearts in Ang II -stimulated mice by suppressing the PI3K-AKT/NF-κB-induced inflammatory responses. Given the evidence mentioned above, LYC is a robust therapeutic agent for hypertensive HF.


Asunto(s)
Alcaloides de Amaryllidaceae , Angiotensina II , Ratones Endogámicos C57BL , FN-kappa B , Fenantridinas , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Animales , Alcaloides de Amaryllidaceae/farmacología , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fenantridinas/farmacología , Masculino , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones , Insuficiencia Cardíaca/tratamiento farmacológico , Remodelación Ventricular/efectos de los fármacos , Inflamación/tratamiento farmacológico , Miocitos Cardíacos/efectos de los fármacos , Hipertensión/tratamiento farmacológico , Hipertensión/inducido químicamente , Modelos Animales de Enfermedad , Lycoris/química , Miocardio
4.
Z Naturforsch C J Biosci ; 79(3-4): 73-79, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38516999

RESUMEN

The Sceletium-type alkaloids, known for their anxiolytic and antidepressant activities, have been recently found to be biosynthesized in Narcissus cv. Hawera, which is largely used as an ornamental plant. An alkaloid fraction enriched with Sceletium-type alkaloids from the plant has shown promising antidepressant and anxiolytic activities. In the present study, qualitative and quantitative analyses of the alkaloids in the plant organs were performed during one vegetation season by GC-MS. The alkaloid pattern and total alkaloid content was found to depend strongly on the stage of development and plant organ. The alkaloid content of bulbs was found to be highest during the dormancy period and lowest in sprouting bulbs. The leaves showed the highest alkaloid content during the intensive vegetative growth and lowest during flowering. In total, 13 alkaloids were detected in the methanol extracts of Narcissus cv. Hawera, six Sceletium-type and seven typical Amaryllidaceae alkaloids. Major alkaloids in the alkaloid pattern were lycorine, 6-epi-mesembrenol, mesembrenone, sanguinine, and galanthamine. The leaves of flowering plants were found to have the highest amount of 6-epi-mesembrenol. Mesembrenone was found to be dominant alkaloid in the leaves of sprouting bulbs and in the flowers. Considering the biomass of the plant, the dormant bulbs are the best source of alkaloid fractions enriched with 6-epi-mesembrenol. The flowers and the young leaves can be used for preparation of alkaloid fractions enriched with mesembrenone. The results indicates that Narcissus cv. Hawera is an emerging source of valuable bioactive compounds and its utilization can be extended as a medicinal plant.


Asunto(s)
Alcaloides , Alcaloides Indólicos , Narcissus , Fenantridinas , Hojas de la Planta , Narcissus/química , Narcissus/metabolismo , Narcissus/crecimiento & desarrollo , Alcaloides/metabolismo , Alcaloides/química , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Flores/química , Flores/metabolismo , Flores/crecimiento & desarrollo , Extractos Vegetales/química , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Alcaloides de Amaryllidaceae/metabolismo , Alcaloides de Amaryllidaceae/química
5.
Phytomedicine ; 126: 155460, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38394731

RESUMEN

BACKGROUND: Multidrug resistance is the major obstacle to cancer chemotherapy. Modulation of P-glycoprotein and drug combination approaches have been considered important strategies to overcome drug resistance. PURPOSE: Aiming at generating a small library of Amaryllidaceae-type alkaloids to overcome drug resistance, two major alkaloids, isolated from Pancratium maritimum, lycorine (1), and 2α-10bα-dihydroxy-9-O-demethylhomolycorine (2), were derivatized, giving rise to nineteen derivatives (3 - 21). METHODS: The main chemical transformation of lycorine resulted from the cleavage of ring E of the diacetylated lycorine derivative (3) to obtain compounds that have carbamate and amine functions (5 - 16), while acylation of compound 2 provided derivatives 17 - 21. Compounds 1 - 21 were evaluated for their effects on cytotoxicity, and drug resistance reversal, using resistant human ovarian carcinoma cells (HOC/ADR), overexpressing P-glycoprotein (P-gp/ABCB1), as model. RESULTS: Excluding lycorine (1) (IC50 values of 1.2- 2.5 µM), the compounds were not cytotoxic or showed moderate/weak cytotoxicity. Chemo-sensitization assays were performed by studying the in vitro interaction between the compounds and the anticancer drug doxorubicin. Most of the compounds have shown synergistic interactions with doxorubicin. Compounds 5, 6, 9 - 14, bearing both carbamate and aromatic amine moieties, were found to have the highest sensitization rate, reducing the dose of doxorubicin 5-35 times, highlighting their potential to reverse drug resistance in combination chemotherapy. Selected compounds (4 - 6, 9 - 14, and 21), able of re-sensitizing resistant cancer cells, were further evaluated as P-gp inhibitors. Compound 11, which has a para­methoxy-N-methylbenzylamine moiety, was the strongest inhibitor. In the ATPase assay, compounds 9-11 and 13 behaved as verapamil, suggesting competitive inhibition of P-gp. At the same time, none of these compounds affected P-gp expression at the mRNA or protein level. CONCLUSIONS: This study provided evidence of the potential of Amaryllidaceae alkaloids as lead candidates for the development of MDR reversal agents.


Asunto(s)
Adenocarcinoma , Alcaloides , Alcaloides de Amaryllidaceae , Antineoplásicos , Fenantridinas , Humanos , Alcaloides de Amaryllidaceae/farmacología , Resistencia a Antineoplásicos , Antineoplásicos/farmacología , Doxorrubicina/farmacología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Alcaloides/farmacología , Carbamatos/farmacología , Línea Celular Tumoral
6.
Chem Biodivers ; 21(3): e202302122, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38354224

RESUMEN

Griffinia gardneriana Ravenna, Griffinia liboniana Morren and Griffinia nocturna Ravenna (Amarillydaceae) are bulbous plants found in tropical regions of Brazil. Our work aimed to determine the alkaloid profiles of Griffinia spp. and evaluate their anxiolytic potential through in vivo and in silico assays. The plants grown in greenhouses were dried and their ground bulbs were subjected to liquid-liquid partitions, resulting in alkaloid fractions that were analyzed by gas chromatography coupled to mass spectrometry (GC-MS). Anxiolytic activity was evaluated in zebrafish (Danio rerio) through intraperitoneal injection at doses of 40, 100 and 200 mg/kg in light-dark box test. GC-MS analyses revealed 23 alkaloids belonging to different skeleton types: lycorine, homolychorine, galanthamine, crinine, haemanthamine, montanine and narcisclasine. The chemical profiles were relatively similar, presenting 8 alkaloids common to the three species. The major component for G. gardneriana and G. liboniana was lycorine, while G. nocturna consisted mainly of anhydrolycorine. All three alkaloid fractions demonstrated anxiolytic effect. Furthermore, pre-treatment with diazepam and pizotifen drugs was able to reverse the anxiolytic action, indicating involving the GABAergic and serotonergic receptors. Molecular docking showed that the compounds vittatine, lycorine and 11,12-dehydro-2-methoxyassoanine had high affinity with both receptors, suggesting them to be responsible for the anxiolytic effect.


Asunto(s)
Alcaloides , Alcaloides de Amaryllidaceae , Amaryllidaceae , Ansiolíticos , Fenantridinas , Animales , Amaryllidaceae/química , Pez Cebra , Ansiolíticos/farmacología , Simulación del Acoplamiento Molecular , Cromatografía de Gases y Espectrometría de Masas/métodos , Alcaloides de Amaryllidaceae/farmacología , Alcaloides de Amaryllidaceae/química , Alcaloides/farmacología , Alcaloides/química , Extractos Vegetales/farmacología , Extractos Vegetales/química
7.
J Pharm Biomed Anal ; 240: 115935, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38181554

RESUMEN

Ligand fishing, also described as affinity-based assay, represents a convenient and efficient approach to separate potential ligands from complex matrixes or chemical libraries. This approach contributes to the identification of lead compounds that can bind to a specific target. In the context of COVID-19, the search for novel therapeutic agents is crucial. Small molecule-based antiviral drugs, such as Amaryllidaceae alkaloids, have been described as potential candidates because they can inhibit RNA viruses. Among various SARS-CoV-2 proteins, Nsp3, Nsp4, and Nsp6 play a crucial role in the pathogenicity of the virus and are attractive targets for developing COVID-19 treatments. These proteins are responsible for the replication/transcription complex (RTC) within double-membrane vesicles (DMVs), and their inhibition disrupts the virus's infectious cycle. Herein, we have successfully expressed and immobilized the SARS-CoV-2 Nsp4 protein on magnetic beads (Nsp4-MBs) and employed a ligand fishing assay to screen a collection of ten Amaryllidaceae-based alkaloids and applied to Hippeastrum aulicum extract. Remarkably, four out of ten alkaloids, namely 2-α-7-dimethoxyhomolycorine (6), haemanthamine (5), albomaculine (8), and tazettine (9), exhibited selective affinities for Nsp4. Albomaculine (8) and haemanthamine (5) were also identified from extract by the affinity assay. These findings highlight the potential of these alkaloids as model compounds for future drug discovery studies aimed at developing therapeutic interventions against SARS-CoV-2 infections.


Asunto(s)
Alcaloides , Alcaloides de Amaryllidaceae , COVID-19 , Fenantridinas , Humanos , Alcaloides de Amaryllidaceae/farmacología , SARS-CoV-2 , Ligandos , Alcaloides/farmacología , Alcaloides/química , Extractos Vegetales/química , Antivirales/farmacología
8.
Phytochemistry ; 217: 113929, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37984589

RESUMEN

Eleven previously undescribed Amaryllidaceae alkaloids, crinalatifolines A-K (1-11), and two first naturally occurring alkaloids, dihydroambelline (12) and N-demethyldihydrogalanthamine (13), were isolated from the bulbs of Crinum latifolium L. Additionally, thirty-seven known alkaloids and one alkaloid artifact were also isolated from this plant species. Their structures and absolute configurations were elucidated using extensive spectroscopic techniques, including IR, NMR, MS, and ECD. Evaluations of the cholinesterase inhibitory activities of most of these compounds were conducted. Among the tested compounds, ungeremine exhibited the highest potency against acetylcholinesterase and butyrylcholinesterase, with the IC50 values of 0.10 and 1.21 µM, respectively. These values were 9.4- and 2.4-fold more potent than the reference drug galanthamine.


Asunto(s)
Alcaloides , Alcaloides de Amaryllidaceae , Crinum , Alcaloides de Amaryllidaceae/farmacología , Alcaloides de Amaryllidaceae/química , Crinum/química , Butirilcolinesterasa , Acetilcolinesterasa , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Alcaloides/farmacología , Alcaloides/química , Extractos Vegetales/farmacología , Extractos Vegetales/química
9.
New Phytol ; 241(5): 2258-2274, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38105545

RESUMEN

Alkaloids are a large group of plant secondary metabolites with various structures and activities. It is important to understand their functions in the interplay between plants and the beneficial and pathogenic microbiota. Amaryllidaceae alkaloids (AAs) are unique secondary metabolites in Amaryllidaceae plants. Here, we studied the interplay between AAs and the bacteriome in Lycoris radiata, a traditional Chinese medicinal plant containing high amounts of AAs. The relationship between AAs and bacterial composition in different tissues of L. radiata was studied. In vitro experiments revealed that AAs have varying levels of antimicrobial activity against endophytic bacteria and pathogenic fungi, indicating the importance of AA synthesis in maintaining a balance between plants and beneficial/pathogenic microbiota. Using bacterial synthetic communities with different compositions, we observed a positive feedback loop between bacteria insensitive to AAs and their ability to increase accumulation of AAs in L. radiata, especially in leaves. This may allow insensitive bacteria to outcompete sensitive ones for plant resources. Moreover, the accumulation of AAs enhanced by insensitive bacteria could benefit plants when challenged with fungal pathogens. This study highlights the functions of alkaloids in plant-microbe interactions, opening new avenues for designing plant microbiomes that could contribute to sustainable agriculture.


Asunto(s)
Alcaloides , Alcaloides de Amaryllidaceae , Lycoris , Alcaloides de Amaryllidaceae/farmacología , Alcaloides de Amaryllidaceae/química , Alcaloides de Amaryllidaceae/metabolismo , Lycoris/química , Lycoris/metabolismo , Alcaloides/metabolismo , Extractos Vegetales/química
10.
Phytochemistry ; 216: 113883, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37820888

RESUMEN

Crinum x powellii 'Album' belongs to the Amaryllidaceae medicinal plant family that produces a range of structurally diverse alkaloids with potential therapeutic properties. The optimal conditions for in vitro tissue growth, morphogenesis, and alkaloid biosynthesis remain unclear. Auxin and light play critical roles in regulating plant growth, development, and alkaloid biosynthesis in several Amaryllidaceae plants. Here, we have succeeded in showing, for the first time, that the combination of auxin and light significantly influence C. x powellii "Album" in vitro tissue growth, survival, and morphogenesis compared to individual treatments. Furthermore, this combination also upregulates the expression of alkaloid biosynthetic genes and led to an increase in the content of certain alkaloids, suggesting a positive impact on the defense and therapeutic potential of the calli. Our findings provide insights into the regulation of genes involved in alkaloid biosynthesis in C. x powellii "Album" callus and underline the potential of auxin and light as tools for enhancing their production in plants. This study provides a foundation for further exploration of C. x powellii "Album" calli as a sustainable source of bioactive alkaloids for pharmaceutical and agricultural applications. Furthermore, this study paves the way to the discovery of the biosynthetic pathway of specialized metabolites from C. x powellii "Album", such as cherylline and lycorine.


Asunto(s)
Alcaloides , Alcaloides de Amaryllidaceae , Crinum , Crinum/metabolismo , Ácidos Indolacéticos , Alcaloides de Amaryllidaceae/farmacología , Alcaloides/metabolismo , Extractos Vegetales , Morfogénesis
11.
Biochem Pharmacol ; 217: 115833, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37769714

RESUMEN

Pancreatic cancer is highly metastatic and lethal with an increasing incidence globally and a 5-year survival rate of only 8%. One of the factors contributing to the high mortality is the lack of effective drugs in the clinical setting. We speculated that effective compounds against pancreatic cancer exist in natural herbs and explored active small molecules among traditional Chinese medicinal herbs. The small molecule lycorine (MW: 323.77) derived from the herb Lycoris radiata inhibited pancreatic cancer cell growth with an IC50 value of 1 µM in a concentration-dependent manner. Lycorine markedly reduced pancreatic cancer cell viability, migration, invasion, neovascularization, and gemcitabine resistance. Additionally, lycorine effectively suppressed tumor growth in mouse xenograft models without obvious toxicity. Pharmacological studies revealed that the levels and half-life of Notch1 oncoprotein in the pancreatic cancer cells Panc-1 and Patu8988 were notably reduced. Moreover, the expression of the key vasculogenic genes Semaphorin 4D (Sema4D) and angiopoietin-2 (Ang-2) were also significantly inhibited by lycorine. Mechanistically, lycorine strongly triggered the degradation of Notch1 oncoprotein through the ubiquitin-proteasome system. In conclusion, lycorine effectively inhibits pancreatic cancer cell growth, migration, invasion, neovascularization, and gemcitabine resistance by inducing degradation of Notch1 oncoprotein and downregulating the key vasculogenic genes Sema4D and Ang-2. Our findings provide a new therapeutic candidate and treatment strategy against pancreatic cancer.


Asunto(s)
Alcaloides de Amaryllidaceae , Neoplasias Pancreáticas , Animales , Ratones , Humanos , Línea Celular Tumoral , Alcaloides de Amaryllidaceae/farmacología , Alcaloides de Amaryllidaceae/uso terapéutico , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Transformación Celular Neoplásica , Proteínas Oncogénicas , Proliferación Celular , Neoplasias Pancreáticas
12.
Molecules ; 28(14)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37513280

RESUMEN

The genus Clinanthus Herb. is found in the Andes Region (South America), mainly in Peru, Ecuador, and Bolivia. These plants belong to the Amaryllidaceae family, specifically the Amaryllidoideae subfamily, which presents an exclusive group of alkaloids known as Amaryllidaceae alkaloids that show important structural diversity and pharmacological properties. It is possible to find some publications in the literature regarding the botanical aspects of Clinanthus species, although there is little information available about their chemical and biological activities. The aim of this work was to obtain the alkaloid profile and the anti-cholinesterase activity of four different samples of Clinanthus collected in South America: Clinanthus sp., Clinanthus incarnatus, and Clinanthus variegatus. The alkaloid extract of each sample was analyzed by gas chromatography coupled with mass spectrometry (GC-MS), and their potential against the enzymes acetyl- and butyrylcholinesterase were evaluated. Thirteen alkaloids have been identified among these species, while six unidentified structures have also been detected in these plants. The alkaloid extract of the C. variegatus samples showed the highest structural diversity as well as the best activity against AChE, which was likely due to the presence of the alkaloid sanguinine. The results suggest this genus as a possible interesting new source of Amaryllidaceae alkaloids, which could contribute to the development of new medicines.


Asunto(s)
Alcaloides , Alcaloides de Amaryllidaceae , Amaryllidaceae , Alcaloides de Amaryllidaceae/farmacología , Butirilcolinesterasa/química , Amaryllidaceae/química , Alcaloides/química , Inhibidores de la Colinesterasa/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , América del Sur
13.
Molecules ; 28(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37241796

RESUMEN

The alkaloids are one of the most represented family of natural occurring biological active compounds. Amaryllidaceae are also very well known for their beautiful flower and are thus used as ornamental plants in historic and public gardens. The Amaryllidacea alkaloids constitute an important group that is subdivided into different subfamilies with different carbon skeletons. They are well known from ancient times for their long application in folk medicine, and in particular, Narcissus poeticus L. was known to Hippocrates of Cos (ca. B.C. 460-370), who treated uterine tumors with a formulate prepared from narcissus oil. To date, more than 600 alkaloids of 15 chemical groups exhibiting various biological activities have been isolated from the Amaryllidaceae plants. This plant genus is diffused in regions of Southern Africa, Andean South America and the Mediterranean basin. Thus, this review describes the chemical and biological activity of the alkaloids collected in these regions in the last two decades as weel those of isocarbostyls isolated from Amaryllidaceae in the same regions and same period.


Asunto(s)
Alcaloides , Alcaloides de Amaryllidaceae , Amaryllidaceae , Narcissus , Extractos Vegetales/química , Sudáfrica , Narcissus/química , Alcaloides de Amaryllidaceae/química
14.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36901927

RESUMEN

Alkaloids are a class of nitrogen-containing alkaline organic compounds found in nature, with significant biological activity, and are also important active ingredients in Chinese herbal medicine. Amaryllidaceae plants are rich in alkaloids, among which galanthamine, lycorine, and lycoramine are representative. Since the difficulty and high cost of synthesizing alkaloids have been the major obstacles in industrial production, particularly the molecular mechanism underlying alkaloid biosynthesis is largely unknown. Here, we determined the alkaloid content in Lycoris longituba, Lycoris incarnata, and Lycoris sprengeri, and performed a SWATH-MS (sequential window acquisition of all theoretical mass spectra)-based quantitative approach to detect proteome changes in the three Lycoris. A total of 2193 proteins were quantified, of which 720 proteins showed a difference in abundance between Ll and Ls, and 463 proteins showed a difference in abundance between Li and Ls. KEGG enrichment analysis revealed that differentially expressed proteins are distributed in specific biological processes including amino acid metabolism, starch, and sucrose metabolism, implicating a supportive role for Amaryllidaceae alkaloids metabolism in Lycoris. Furthermore, several key genes collectively known as OMT and NMT were identified, which are probably responsible for galanthamine biosynthesis. Interestingly, RNA processing-related proteins were also abundantly detected in alkaloid-rich Ll, suggesting that posttranscriptional regulation such as alternative splicing may contribute to the biosynthesis of Amaryllidaceae alkaloids. Taken together, our SWATH-MS-based proteomic investigation may reveal the differences in alkaloid contents at the protein levels, providing a comprehensive proteome reference for the regulatory metabolism of Amaryllidaceae alkaloids.


Asunto(s)
Alcaloides , Alcaloides de Amaryllidaceae , Lycoris , Alcaloides de Amaryllidaceae/metabolismo , Galantamina/metabolismo , Lycoris/metabolismo , Proteoma/metabolismo , Proteómica , Alcaloides/química
15.
Rapid Commun Mass Spectrom ; 37(12): e9506, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-36942466

RESUMEN

RATIONALE: Gas chromatography-mass spectrometry (GC-MS) is the most frequently applied technique for analyzing Amaryllidaceae alkaloids in plant extracts. Having these compounds, known for their potent bioactivities, is a distinctive chemotaxonomic feature of the Amaryllidoideae subfamily (Amaryllidaceae). The Amaryllidaceae alkaloids of homolycorine type with a C3-C4 double bond generally show molecular and diagnostic ions at the high-mass region with low intensity in the EIMS mode, leading to problematic identification in complex plant extracts. METHODS: Eleven standard homolycorine-type alkaloids (isolated and identified by 1D and 2D nuclear magnetic resonance) were subjected to separation with GC and studied with electron impact mass spectrometry (EIMS) including single quadrupole (GC-EIMS), tandem (GC-EIMS/MS), and high-resolution (GC-HR-EIMS) detectors, as well as with chemical ionization mass spectrometry (GC-CIMS). Alkaloid fractions from two Hippeastrum species and Clivia miniata were subjected to GC-EIMS and GC-CIMS for alkaloid identification. RESULTS: GC-EIMS in combination with GC-CIMS provided significant structural information of homolycorine-type alkaloids with C3-C4 double bond, facilitating their unambiguous identification. Based on the obtained typical fragmentation, other 11 homolycorine-type compounds were identified in extracts from two Hippeastrum species by parallel GC-EIMS, GC-CIMS, and liquid chromatography-electrospray ionization time-of-flight mass spectrometry and in extracts from C. miniata by GC-EIMS. CONCLUSIONS: GC-MS can be successfully applied for the identification of new and known homolycorine-type alkaloids, among others within the Amaryllidoideae subfamily, as well as for chemotaxonomical and chemoecological studies.


Asunto(s)
Alcaloides , Alcaloides de Amaryllidaceae , Amaryllidaceae , Alcaloides de Amaryllidaceae/química , Cromatografía de Gases y Espectrometría de Masas , Alcaloides/química , Extractos Vegetales/química
16.
Molecules ; 28(6)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36985571

RESUMEN

Cancer is a major cause of death and an impediment to increasing life expectancy worldwide. With the aim of finding new molecules for chemotherapeutic treatment of epidemiological relevance, ten alkaloid fractions from Amaryllidaceae species were tested against six cancer cell lines (AGS, BT-549, HEC-1B, MCF-7, MDA-MB 231, and PC3) with HaCat as a control cell line. Some species determined as critically endangered with minimal availability were propagated using in vitro plant tissue culture techniques. Molecular docking studies were carried out to illustrate binding orientations of the 30 Amaryllidaceae alkaloids identified in the active site of some molecular targets involved with anti-cancer activity for potential anti-cancer drugs. In gastric cancer cell line AGS, the best results (lower cell viability percentages) were obtained for Crinum jagus (48.06 ± 3.35%) and Eucharis bonplandii (45.79 ± 3.05%) at 30 µg/mL. The research focused on evaluating the identified alkaloids on the Bcl-2 protein family (Mcl-1 and Bcl-xL) and HK2, where the in vitro, in silico and statistical results suggest that powelline and buphanidrine alkaloids could present cytotoxic activity. Finally, combining experimental and theoretical assays allowed us to identify and characterize potentially useful alkaloids for cancer treatment.


Asunto(s)
Alcaloides , Alcaloides de Amaryllidaceae , Amaryllidaceae , Antineoplásicos , Neoplasias , Extractos Vegetales/farmacología , Amaryllidaceae/química , Simulación del Acoplamiento Molecular , Alcaloides/química , Alcaloides de Amaryllidaceae/farmacología
17.
Phytomedicine ; 108: 154480, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36240608

RESUMEN

BACKGROUND: Viral-borne diseases are amongst the oldest diseases known to mankind. They are responsible for some of the most ravaging effects wrought on human health and well-being. The use of plants against these ailments is entrenched in both traditional and secular medicine around the globe. Their natural abundance and chemical diversity have also boosted their appeal in drug discovery. AIM: The plant family Amaryllidaceae is distinguished for its alkaloid principles, some of which are of considerable interest in the clinical arena. This account is the outcome of a literature review undertaken to establish the applicability of these substances as antiviral agents. METHODS: The survey utilized the search engines Google Scholar, PubMed, SciFinder, Scopus and Web of Science engaging the word 'antiviral' in conjunction with 'Amaryllidaceae' and 'Amaryllidaceae alkaloid'. The search returned over five hundred hits, of which around eighty were of relevance to the theme of the text. RESULTS: Over eighty isoquinoline alkaloids have been screened against nearly fifty pathogens from fourteen viral families, the majority of which were RNA viruses. Potent activities were reported in some instances, such as that of trans-dihydronarciclasine against Yellow fever virus (IC50 0.003 µg/ml), with minimal effects being manifested on host cells. There were also promising results obtained from in vivo studies, in most cases without lethal effects on test subjects. Structure-activity relationship studies afforded useful insight to the antiviral pharmacophore, with the phenanthridone alkaloid nucleus shown to be the most enabling. Although the mechanistic basis to these activities pertained mostly to inhibition of DNA, RNA and protein synthesis, evidence was also forthcoming about the inhibitory action of some of the alkaloids against viral neuraminidase, protease and reverse transcriptase. In silico methods of analysis have offered further perspectives of how some of the alkaloids interact at the active sites of their targets. CONCLUSION: The Amaryllidaceae offers a viable platform for plant-based antiviral drug discovery. Its cause is strengthened not only by its wide proliferation and exploitation of its members in alternative forms of medicine, but also by its rich chemical diversity which has already spawned useful antiviral drug leads.


Asunto(s)
Alcaloides , Alcaloides de Amaryllidaceae , Amaryllidaceae , Humanos , Amaryllidaceae/química , Alcaloides de Amaryllidaceae/farmacología , Alcaloides de Amaryllidaceae/química , Antivirales/farmacología , Alcaloides/farmacología , Alcaloides/química , Extractos Vegetales/farmacología , Extractos Vegetales/química
18.
Planta Med ; 89(1): 99-115, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34921374

RESUMEN

The Amaryllidaceae features prominently amongst bulbous flowering plant families. Accommodating about a third of its species, South Africa affords a sound basis for Amaryllidaceae plant research. Boophone, Nerine, Crossyne, Clivia, Cryptostephanus, Haemanthus and Scadoxus have been well-represented in such endeavors. The account herein summarizes the studies undertaken between 2013 - 2020 on these genera in regards to their chemical and biological characteristics. A total of 136 compounds comprising 63 alkaloids and 73 non-alkaloid entities were described during this period from eighteen members of the title genera. The alkaloids were reflective of the structural diversity found in eight isoquinoline alkaloid groups of the Amaryllidaceae. Of these, the crinane (29 compounds), lycorane and homolycorine (11 compounds each) groups were the most-represented. The non-alkaloid substances were embracive of the same number of unrelated groups including, acids, phenolics, flavonoids and triterpenoids. A wide variety of assays were engaged to ascertain the biological activities of the isolated compounds, notably in regards to cancer and motorneuron-related diseases. There were also attempts made to determine the antimicrobial, anti-inflammatory and antioxidant effects of some of the substances. New information has also emerged on the herbicidal, insecticidal and plant growth regulatory effects of selected alkaloid principles. Coupled to the biological screening measures were in instances probes made to establish the molecular basis to some of the activities, particularly in relation to cancer and Parkinson's disease.


Asunto(s)
Alcaloides , Alcaloides de Amaryllidaceae , Amaryllidaceae , Sudáfrica , Amaryllidaceae/química , Alcaloides de Amaryllidaceae/química , Alcaloides/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química
19.
BMC Cancer ; 22(1): 873, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35948939

RESUMEN

Lycorine (Lyc) is a natural alkaloid derived from medicinal plants of the Amaryllidaceae family. Lyc has been reported to inhibit the recurrence and metastasis of different kinds of tumors. However, Lyc's effect on angiogenesis and its specific mechanism are still not clear. This study was designed to test the antiangiogenesis effect of Lyc and to explore the possible mechanisms. We performed cell experiments to confirm Lyc's inhibitory effect on angiogenesis and employed sunitinib as a positive control. Moreover, the synergistic effect of Lyc and sunitinib was also explored. Next, we conducted bioinformatics analyses to predict the potential targets of Lyc and verified them by western blotting and immunofluorescence. Molecular docking, kinase activity assays, Biacore assays and cellular thermal shift assays (CETSAs) were applied to elucidate the mechanism by which Lyc inhibited target activity. Lyc inhibited angiogenesis in human umbilical vein endothelial cells (HUVECs). Employing bioinformatics, we found that Lyc's target was PDGFRα and that Lyc attenuated PDGFRα phosphorylation. We also found that Lyc inhibited PDGFRα activation by docking to it to restrain its activity. Additionally, Lyc significantly inhibited PDGF-AA-induced angiogenesis. This study provides new insights into the molecular functions of Lyc and indicates its potential as a therapeutic agent for tumor angiogenesis.


Asunto(s)
Neoplasias , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Alcaloides de Amaryllidaceae , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Proliferación Celular , Células Endoteliales de la Vena Umbilical Humana , Humanos , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Fenantridinas , Sunitinib/uso terapéutico
20.
Molecules ; 27(14)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35889346

RESUMEN

Amaryllidaceae is a significant source of bioactive phytochemicals with a strong propensity to develop new drugs. The genera Allium, Tulbaghia, Cyrtanthus and Crinum biosynthesize novel alkaloids and other phytochemicals with traditional and pharmacological uses. Amaryllidaceae biomolecules exhibit multiple pharmacological activities such as antioxidant, antimicrobial, and immunomodulatory effects. Traditionally, natural products from Amaryllidaceae are utilized to treat non-communicable and infectious human diseases. Galanthamine, a drug from this family, is clinically relevant in treating the neurocognitive disorder, Alzheimer's disease, which underscores the importance of the Amaryllidaceae alkaloids. Although Amaryllidaceae provide a plethora of biologically active compounds, there is tardiness in their development into clinically pliable medicines. Other genera, including Cyrtanthus and Tulbaghia, have received little attention as potential sources of promising drug candidates. Given the reciprocal relationship of the increasing burden of human diseases and limited availability of medicinal therapies, more rapid drug discovery and development are desirable. To expedite clinically relevant drug development, we present here evidence on bioactive compounds from the genera Allium, Tulgbaghia, Cyrtanthus and Crinum and describe their traditional and pharmacological applications.


Asunto(s)
Allium , Alcaloides de Amaryllidaceae , Amaryllidaceae , Crinum , Alcaloides de Amaryllidaceae/química , Alcaloides de Amaryllidaceae/farmacología , Crinum/química , Humanos , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA