Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Ethnopharmacol ; 321: 117541, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38052412

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The dried fruit and peduncle of Hovenia dulcis Thunberg (Rhamnaceae) (HD) has been used as a folk medicine to treat liver disease, detoxify alcoholism, and prevent and cure hangovers. AIM OF THE STUDY: We investigated the pharmacology of HD on the kinetics of EtOH and on the enzymes related to alcohol metabolism to seek the scientific evidence of HD to prevent hangover, the effectiveness as a folk medicine. MATERIALS AND METHODS: EtOH was orally administered 30 min after oral administration of HD boiling water extract in rats. Then, the profiles of blood EtOH concentrations were measured. Mice were reared with food containing powdered HD for 7 days, and the activities of alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) in liver were measured. Hepa1c1c7 cells were cultured with the medium containing HD extract, and the activities of ADH and ALDH were measured. RESULTS: HD extract reduced the blood EtOH concentrations in rats and induced the activities of ADH and ALDH and mRNA and protein expressions of ADH1B, ALDH1A1, and ALDH2 in the liver of mice and Hepa1c1c7 cells. Dihydromyricetin, one of the ingredients of HD, significantly induced the activities of ADH and ALDH in Hepa1c1c7 cells, however, the fractions containing hydrophilic organic compounds with small molecular weight contributed the most of the activities of HD extract. CONCLUSIONS: We clarified the experimental pharmacological evidences of HD as a folk medicine to detoxify alcoholism and prevent hangovers.


Asunto(s)
Intoxicación Alcohólica , Alcoholismo , Ratas , Animales , Frutas/metabolismo , Etanol , Aldehído Deshidrogenasa Mitocondrial , Alcohol Deshidrogenasa/metabolismo , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo
2.
J Med Food ; 25(10): 982-992, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36201260

RESUMEN

Excessive alcohol use often results in alcoholic liver disease (ALD). An early change in the liver due to excessive drinking is hepatic steatosis, which may ultimately progress to hepatitis, liver fibrosis, cirrhosis, and liver cancer. Among these debilitating processes, hepatic steatosis is reversible with the appropriate treatment. Therefore, it is important to find treatments and foods that reverse hepatic steatosis. Black carrot has antioxidant and anti-inflammatory effects. In this study, we examined the effectiveness of black carrot extract (BCE) on hepatic steatosis in in vivo and in vitro ethanol-induced liver injury models. For the in vivo experiments, serum aminotransferase activities enhanced by ethanol- and carbon tetrachloride were significantly suppressed by the BCE diet. Furthermore, morphological changes in the liver hepatic steatosis and fibrosis were observed in the in vivo ethanol-induced liver injury model, however, BCE feeding resulted in the recovery to an almost normal liver morphology. In the in vitro experiments, ethanol treatment induced reactive oxygen species (ROS) levels in hepatocytes at 9 h. Conversely, ROS production was suppressed to control levels and hepatic steatosis was suppressed when hepatocyte culture with ethanol were treated with BCE. Furthermore, we investigated enzyme activities, enzyme protein levels, and messenger RNA levels of alcohol dehydrogenase (ADH), cytochrome p450 2E1 (CYP2E1), and aldehyde dehydrogenase (ALDH) using enzyme assays, western blot, and quantitative reverse transcription-polymerase chain reaction analyses. We found that the activities of ADH, CYP2E1, and ALDH were regulated through the cAMP-PKA pathway at different levels, namely, translational, posttranslational, and transcriptional levels, respectively. The most interesting finding of this study is that BCE increases cAMP levels by suppressing the Pde4b mRNA and PDE4b protein levels in ethanol-treated hepatocytes, suggesting that BCE may prevent ALD.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Daucus carota , Hígado Graso , Hepatopatías Alcohólicas , Etanol/metabolismo , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/farmacología , Especies Reactivas de Oxígeno/metabolismo , Daucus carota/metabolismo , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Alcohol Deshidrogenasa/farmacología , Antioxidantes/farmacología , ARN Mensajero/metabolismo , Tetracloruro de Carbono , Hígado/metabolismo , Hígado Graso/metabolismo , Aldehído Deshidrogenasa/metabolismo , Aldehído Deshidrogenasa/farmacología , Cirrosis Hepática , Transaminasas/metabolismo , Antiinflamatorios/farmacología
3.
J Agric Food Chem ; 70(20): 6134-6144, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35544338

RESUMEN

The current chelation therapy has several drawbacks, including lack of selectivity, which could lead to trace metal depletion. Consequently, the proper function of metalloenzymes can be disrupted. Flavonoids possess chelating properties and hence interfere with the homeostasis of essential metals. We focused on zinc, an important trace metal required for the function of many enzymes and transcription factors. After making an initial evaluation of the Zn2+-chelating properties of a series of flavonoids, the effect of these compounds on various zinc-containing enzymes was also investigated. We performed enzyme inhibition assays spectrophotometrically using yeast and equine alcohol dehydrogenases and bovine glutamate dehydrogenase. Nine of the 21 flavonoids tested were capable of chelating Zn2+. Baicalein and 3-hydroxyflavone were the most potent Zn2+ chelators under slightly acidic and neutral pH conditions. This chelation was also confirmed by the ability to reverse Zn2+-induced enzymatic inhibition of bovine glutamate dehydrogenase. Although some flavonoids were also able to inhibit zinc-containing alcohol dehydrogenases, this inhibition was likely not caused by Zn2+ chelation. Luteolin was a relatively potent inhibitor of these enzymes regardless of the presence of Zn2+. Docking studies confirmed the binding of active flavonoids to equine alcohol dehydrogenase without any significant interaction with the catalytic zinc.


Asunto(s)
Flavonoides , Zinc , Alcohol Deshidrogenasa/metabolismo , Animales , Bovinos , Quelantes/química , Glutamato Deshidrogenasa , Caballos , Metales/metabolismo , Zinc/metabolismo
4.
J Ethnopharmacol ; 282: 114593, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34480998

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Acute alcohol intoxication (AAI) is a ubiquitous emergency worldwide, whereas the searching for both effective and safe drugs is still a task to be completed. Modified Lvdou Gancao decoction (MLG), a traditional Chinese medicine decoction, has been confirmed to be valid to alcohol-induced symptoms and hepatotoxicity clinically, whereas its protective mechanisms have not been determined. MATERIALS AND METHODS: AAI mice model was established by alcohol gavage (13.25 mL/kg) and MLG (5, 10, 20 g/kg BW) was administered to mice 2 h before and 30 min after the alcohol exposure. Assay kits for alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), aspartate aminotransferase (AST), alanine aminotransferase (ALT), glutamine transferase (GGT), total superoxide dismutase (T-SOD), malondialdehyde (MDA), nitric oxide (NO), and glutathione peroxidase (GSH-Px), as well as histopathology were used to explore the effects of MLG on acute alcohol-induced intoxication and hepatotoxicity. Mechanisms of MLG on oxidative stress and inflammatory were evaluated with RT-qPCR and Western Blot. RESULTS: MLG remarkably decreased the drunkenness rate, prolonged the tolerance time and shortened the sober-up time of AAI mice. After acute alcohol exposure, MLG treatment induced significant increment of ADH, ALDH, T-SOD and GSH-Px activities in liver, while serum ALT, AST, GGT and NO levels as well as hepatic MDA activity were reduced, in a dose-dependent manner. In contrast to the model group, the mRNA expression of TNFα, IL-1ß and NF-κB in the MLG treated groups had a downward trend while the Nrf-2 showed an upward trend simultaneously. Furthermore, the protein levels of p65, p-p65, p-IκBα in the MLG treated groups were considerably diminished, with HO-1 and Nrf2 elevated. To sum up, our results suggested that MLG could efficaciously ameliorate AAI via accelerating the metabolism of alcohol, alleviating acute hepatotoxicity, and weakening the oxidative stress coupled with inflammation response, which might be attributed to the inhibition of the NF-κB signaling pathway and the activation of the Nrf2/HO-1 signaling pathway. CONCLUSIONS: Taken together, our present study verified the protective effect and mechanisms of MLG to AAI mice, and we further conclude that MLG may be a potent and reliable candidate for the prevention and treatment of AAI.


Asunto(s)
Intoxicación Alcohólica , Enfermedad Hepática Inducida por Sustancias y Drogas , Medicamentos Herbarios Chinos/farmacología , Glycyrrhiza , Factor 2 Relacionado con NF-E2/metabolismo , Alcohol Deshidrogenasa/metabolismo , Intoxicación Alcohólica/tratamiento farmacológico , Intoxicación Alcohólica/metabolismo , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Monitoreo de Drogas/métodos , Hemo-Oxigenasa 1/metabolismo , Pruebas de Función Hepática/métodos , Proteínas de la Membrana/metabolismo , Ratones , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Transducción de Señal/efectos de los fármacos
5.
J Microbiol ; 59(4): 417-425, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33779954

RESUMEN

Probiotics are known to protect against liver damage induced by the alcohol and acetaldehyde accumulation associated with alcohol intake. However, there have been few studies of the direct effect of probiotics on alcohol metabolism, and the types of probiotics that were previously analyzed were few in number. Here, we investigated the effects of 19 probiotic species on alcohol and acetaldehyde metabolism. Four probiotic species that had a relatively high tolerance to alcohol and metabolized alcohol and acetaldehyde effectively were identified: Lactobacillus gasseri CBT LGA1, Lactobacillus casei CBT LC5, Bifidobacterium lactis CBT BL3, and Bifidobacterium breve CBT BR3. These species also demonstrated high mRNA expression of alcohol and acetaldehyde dehydrogenases. ProAP4, a mixture of these four probiotics species and excipient, was then administered to rats for 2 weeks in advance of acute alcohol administration. The serum alcohol and acetaldehyde concentrations were significantly lower in the ProAP4-administered group than in the control and excipient groups. Thus, the administration of ProAP4, containing four probiotic species, quickly lowers blood alcohol and acetaldehyde concentrations in an alcohol and acetaldehyde dehydrogenasedependent manner. Furthermore, the serum alanine aminotransferase activity, which is indicative of liver damage, was significantly lower in the ProAP4 group than in the control group. The present findings suggest that ProAP4 may be an effective means of limiting alcohol-induced liver damage.


Asunto(s)
Acetaldehído/sangre , Alcohol Deshidrogenasa/metabolismo , Aldehído Oxidorreductasas/metabolismo , Etanol/sangre , Probióticos/administración & dosificación , Alanina Transaminasa/sangre , Alcohol Deshidrogenasa/genética , Consumo de Bebidas Alcohólicas/metabolismo , Aldehído Oxidorreductasas/genética , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bifidobacterium animalis/genética , Bifidobacterium animalis/metabolismo , Bifidobacterium breve/genética , Bifidobacterium breve/metabolismo , Suplementos Dietéticos , Lacticaseibacillus casei/genética , Lacticaseibacillus casei/metabolismo , Lactobacillus gasseri/genética , Lactobacillus gasseri/metabolismo , Masculino , ARN Bacteriano , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa
6.
Clin Biochem ; 90: 66-72, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33539811

RESUMEN

BACKGROUND: A small amount of methanol is produced endogenously in the human body but it is efficiently metabolized by alcohol dehydrogenase (ADH) and other enzymes, and the products eliminated without harm. In this study, we present a new entity of inborn error of methanol metabolism due to a mutation in the ADH1C gene coding for the γ subunit that is part of several ADH isoenzymes. RESULTS: This disorder was discovered in an 11.58-year-old boy. During one 9-month hospital admission, he had periods of 1-4 days during which he was comatose, and between these periods he was sometimes verbose and euphoric, and had ataxia, dysarthria. Following hemodialysis treatments, he became conscious and appeared healthy. Organ evaluations and his laboratory tests were normal. Toxicological evaluation of his blood showed a high methanol level [12.2 mg/dL (3.8 mmol/L), normal range up to 3.5 mg/dL (1.09 mmol/L) while the formaldehyde level was undetectable. The finding of liver function tests that were within normal limits, coupled with a normal eye examination and size of the liver, elevated blood methanol levels and an undetectable formaldehyde level, suggested ADH insufficiency. Adding zinc to the drug regimen 15 mg/daily dramatically reduced the patient's methanol level and alleviated the abnormal symptoms. When zinc supplementation was discontinued, the patient relapsed into a coma and hemodialysis was once again required. A homozygous mutation in ADH1C gene located at exon 3 was found, and both parents were heterozygous for this mutation. CONCLUSION: Accumulation of methanol due to mutation in ADH1C gene may result in drunkenness and ataxia, and leads to coma. This condition can be successfully treated with zinc supplementation as the cofactor of ADH.


Asunto(s)
Alcohol Deshidrogenasa/genética , Errores Innatos del Metabolismo/diagnóstico , Errores Innatos del Metabolismo/genética , Metanol/sangre , Alcohol Deshidrogenasa/metabolismo , Intoxicación Alcohólica/complicaciones , Ataxia/complicaciones , Niño , Coma/etiología , Exones/genética , Heterocigoto , Humanos , Hígado/metabolismo , Masculino , Enfermedades Metabólicas/diagnóstico , Enfermedades Metabólicas/genética , Errores Innatos del Metabolismo/complicaciones , Errores Innatos del Metabolismo/terapia , Metanol/metabolismo , Mutación , Diálisis Renal/métodos , Resultado del Tratamiento , Zinc/administración & dosificación
7.
Enzyme Microb Technol ; 138: 109555, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32527525

RESUMEN

Hydroxy- or ketone- functionalized fatty acid methyl esters (FAMEs) are important compounds for production of pharmaceuticals, vitamins, cosmetics or dietary supplements. Biocatalysis through enzymatic cascades has drawn attention to the efficient, sustainable, and greener synthetic processes. Furthermore, whole cell catalysts offer important advantages such as cofactor regeneration by cell metabolism, omission of protein purification steps and increased enzyme stability. Here, we report the first whole cell catalysis employing an engineered P450 BM3 variant and cpADH5 coupled cascade reaction for the biosynthesis of hydroxy- and keto-FAMEs. Firstly, P450 BM3 was engineered through the KnowVolution approach yielding P450 BM3 variant YE_M1_2, (R47S/Y51W/T235S/N239R/I401 M) which exhibited boosted performance toward methyl hexanoate. The initial oxidation rate of YE_M1_2 toward methyl hexanoate was determined to be 23-fold higher than the wild type enzyme and a 1.5-fold increase in methyl 3-hydroxyhexanoate production was obtained (YE_M1_2; 2.75 mM and WT; 1.8 mM). Subsequently, the whole cell catalyst for the synthesis of methyl 3-hydroxyhexanoate and methyl 3-oxohexanoate was constructed by combining the engineered P450 BM3 and cpADH5 variants in an artificial operon. A 2.06 mM total product formation was achieved by the whole cell catalyst including co-expressed channel protein, FhuA and co-solvent addition. Moreover, the generated whole cell biocatalyst also accepted methyl valerate, methyl heptanoate as well as methyl octanoate as substrates and yielded ω-1 ketones as the main product.


Asunto(s)
Alcohol Deshidrogenasa/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Ésteres/metabolismo , Ácidos Grasos/biosíntesis , Alcohol Deshidrogenasa/genética , Bacillus megaterium/enzimología , Bacillus megaterium/genética , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Biocatálisis , Candida parapsilosis/enzimología , Candida parapsilosis/genética , Caproatos/metabolismo , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/genética , Evolución Molecular Dirigida , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ésteres/química , Ácidos Grasos/química , Hidroxilación , Operón , Especificidad por Sustrato
8.
Carbohydr Polym ; 219: 414-422, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31151542

RESUMEN

The bioconversion of rice straw into ethanol can alleviate the energy crisis and solve problems related to waste treatment. In this study, the effect of soluble polysaccharides (SPs) produced during rice straw saccharification on the formation of extracellular matrices (EMs) by the yeast Saccharomyces cerevisiae was investigated. SPs were characterized by high-performance liquid chromatography (HPLC) and fourier transform infrared spectroscopy (FT-IR). SPs reduced the inhibition of alcohol dehydrogenase activity by phenolic acids (PAs) and regulated the intracellular redox state, resulting in higher ethanol production. The results of flow cytometry, confocal laser scanning microscopy, and atomic force microscopy indicated that PAs changed microbial morphology and caused damage in microbial cell membranes. The protective effect of SPs against cell membrane damage could be attributed to the synthesis of polysaccharide-dependent extracellular matrix, which maintained cellular integrity even under phenolic acid stress. These findings provide new strategies to improve pretreatment and saccharification processes.


Asunto(s)
Membrana Celular , Matriz Extracelular , Oryza/química , Extractos Vegetales , Polisacáridos/farmacología , Saccharomyces cerevisiae , Alcohol Deshidrogenasa/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , China , Etanol/metabolismo , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Fermentación , Hidrólisis , Hidroxibenzoatos/toxicidad , Extractos Vegetales/química , Extractos Vegetales/farmacología , Polisacáridos/química , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo
9.
Food Chem ; 286: 608-615, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-30827653

RESUMEN

The effects of honeys from different floral origins on alcohol metabolism were compared, and the correlation between their chemical compositions and antialcholic effects was analyzed. The results demonstrated that the five types of investigated honeys from different floral origins had different effects on alcohol metabolism, and the blood alcohol removal rate by these honeys ranged from 18.01% to 49.17%. Ziziphus jujuba honey exhibited the best blood alcohol removal effect, and meanwhile significantly enhanced the activity of alcohol-metabolizing enzymes including alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). Chemical composition analysis also showed that honeys from different floral origins were considerably different in the contents of sugars, minerals, ascorbic acid and phenolics. Ziziphus jujuba honey had the highest fructose/glucose ratio, ascorbic acid and phenolics contents, and higher contents of minerals, especially K, Ca, Mg, Fe, Cu, Zn and Mn. This chemical composition might contribute to its better anti-alcoholic effect.


Asunto(s)
Etanol/farmacocinética , Flores , Miel/análisis , Alcohol Deshidrogenasa/metabolismo , Aldehído Deshidrogenasa/metabolismo , Animales , Ácido Ascórbico/análisis , Etanol/sangre , Etanol/metabolismo , Fructosa/análisis , Masculino , Ratones , Minerales/análisis , Fenoles/análisis , Robinia , Vicia , Ziziphus
10.
Colloids Surf B Biointerfaces ; 175: 136-142, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30529819

RESUMEN

Alcohol dehydrogenase from Saccharomyces cerevisiae was immobilized on different inorganic support materials, i.e. powders of Al2O3, SiC, TiO2 and YSZ-8, by covalent bonding and physical adsorption. The raw powders were characterized by scanning electron microscopy, BET surface area, particle size distribution and ζ-potential measurements. Enzyme activity retention, storage stability and recyclability were evaluated on the basis of the measured support material properties. Preliminary experiments showed that the buffer selection was a critical factor. The properties of both the enzyme and the powders varied considerably between the buffers used; namely Tris-HCl (100 mM, pH 7) and MES (40 mM, pH 6.5) buffers. The enzyme activity was higher and more stable in the MES buffer, whereas the commonly used Tris buffer was problematic due to apparent incompatibility with formaldehyde. In MES, the order of decreasing activity of covalently bonded enzyme was on SiC > YSZ-8 > Al2O3 > TiO2. The lower performance of TiO2 was ascribed to the negative ζ-potential of the material, which impeded an efficient immobilization. Particle agglomeration, caused by low colloidal stability of the particles in MES buffer, hampered the storage stability of the immobilized systems. The results from this study show the advantages and limitations of using nanoparticles as immobilization supports, and highlight which properties of nanoparticles must be considered to ensure an efficient immobilization.


Asunto(s)
Alcohol Deshidrogenasa/química , Enzimas Inmovilizadas/química , Compuestos Inorgánicos/química , Proteínas de Saccharomyces cerevisiae/química , Adsorción , Alcohol Deshidrogenasa/metabolismo , Alcohol Deshidrogenasa/ultraestructura , Óxido de Aluminio/química , Tampones (Química) , Estabilidad de Enzimas , Enzimas Inmovilizadas/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Microscopía Electrónica de Rastreo , Nanopartículas/química , Polvos , Proteínas de Saccharomyces cerevisiae/metabolismo , Propiedades de Superficie , Titanio/química
11.
Plant Cell Environ ; 42(1): 133-144, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29626361

RESUMEN

Plant microRNAs are commonly encoded in transcripts containing a single microRNA precursor. Processing by DICER-LIKE 1 and associated factors results in the production of a small RNA, followed by its incorporation into an AGO-containing protein complex to guide silencing of an mRNA possessing a complementary target sequence. Certain microRNA loci contain more than one precursor stem-loop structure, thus encoding more than one microRNA in the same transcript. Here, we describe a unique case where the evolutionary conserved miR398a is encoded in the same transcript as the legume-specific miR2119. The dicistronic arrangement found in common bean was also observed in other legumes. In Phaseolus vulgaris, mature miR398 and miR2119 are repressed in response to water deficit, and we demonstrate that both are functional as they target the mRNAs for CSD1 and ADH1, respectively. Our results indicate that the repression of miR398 and miR2119 leads to coordinated up-regulation of CSD1 and ADH1 mRNAs in response to water deficit in common bean and possibly in other legumes. Furthermore, we show that miRNA directed CSD1 and ADH1 mRNAs up-regulation also occurs when common bean plants are exposed to flooding, suggesting that plant redox status and fermentation metabolism must be closely coordinated under different adverse conditions.


Asunto(s)
Alcohol Deshidrogenasa/metabolismo , MicroARNs/metabolismo , Phaseolus/metabolismo , Proteínas de Plantas/metabolismo , Precursores del ARN/metabolismo , Superóxido Dismutasa/metabolismo , Alcohol Deshidrogenasa/genética , Deshidratación , Regulación de la Expresión Génica de las Plantas/genética , MicroARNs/genética , Phaseolus/fisiología , Proteínas de Plantas/genética , Reacción en Cadena de la Polimerasa , Precursores del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Superóxido Dismutasa/genética
12.
Ecotoxicol Environ Saf ; 168: 212-220, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30388539

RESUMEN

Iron plaque (IP) plays an important role in the absorption of heavy metals (HMs) and nutrients in wetland plants. The present study aims to investigate the effect of IP in Spartina alterniflora on the immobilization of wastewater borne HMs and nutrients. The physiological responses and effect of IP formation on the uptake of HMs, nitrogen (N), and phosphorus (P) were studied in S. alterniflora subjected to different synthetic wastewater (SW) levels and waterlogging durations. Results showed that IP formed in roots of S. alterniflora increased significantly with increasing SW concentration but decreased under prolonged waterlogging. Increasing the waterlogging time enhanced the alcohol dehydrogenase activity and the ethylene content in the roots of S. alterniflora. HMs including Cu, Pb, and Cr, did not significantly accumulate in the IP, despite that the IP content increased with the increasing of SW levels. The SEM-EDX analysis revealed that IP formed on the surface of S. alterniflora did absorb HMs such as Cu, Zn, and Cr. At a fixed level of SW, the amount of HMs that accumulated in the DCB extract was substantially proportional to the IP concentration in the root. Increasing of the SW level enhanced the accumulation of P in the leaves and roots of S. alterniflora. In conclusion, IP formed on S. alterniflora helped immobilize SW pollutants, including HMs and P, and the formation of IP and its effect on pollutant immobilization were influenced by the waterlogging conditions.


Asunto(s)
Hierro/análisis , Raíces de Plantas/efectos de los fármacos , Poaceae/efectos de los fármacos , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Alcohol Deshidrogenasa/metabolismo , Etilenos/metabolismo , Metales Pesados/análisis , Nitrógeno/análisis , Fósforo/análisis , Hojas de la Planta/química , Hojas de la Planta/efectos de los fármacos , Raíces de Plantas/química , Poaceae/química , Humedales
13.
Microbiologyopen ; 8(6): e00754, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30338941

RESUMEN

Crude oil is a major pollutant of marine and coastal ecosystems, and it causes environmental problems more seriously. It is believed ultimate and complete degradation is accomplished mainly by microorganisms. In this study, we aim to search out for bacterial strains with high ability in degrading crude oil. From sediments contaminated by the petroleum spilled in 2007, an accident in Taean, South Korea, we isolated thirty-one bacterial strains in total with potential application in crude oil contamination remediation. In terms of removal percentage after 7 days, one of the strains, Co17, showed the highest removal efficiency with 84.2% of crude oil in Bushnell-Haas media. The Co17 strain even exhibited outstanding ability removing crude oil at a high salt concentration. Through the whole genome sequencing annotation results, many genes related with n-alkane degradation in the genome of Gordonia sp. Co17, revealed alkane-1-monooxygenase, alcohol dehydrogenase, and Baeyer-Villiger monooxygenase. Specially, for confirmation of gene-level, alkB gene encoding alkane hydroxylase (alkane-1-monooxygenase) was found in the strain Co17. The expression of alkB upregulated 125-fold after 18 hr accompany with the removal of n-alkanes of 48.9%. We therefore propose the strain Gordonia iterans Co17, isolated from crude oil-contaminated marine sediment, could be used to offer a new strategy for bioremediation with high efficiency.


Asunto(s)
Actinobacteria/aislamiento & purificación , Actinobacteria/metabolismo , Sedimentos Geológicos/microbiología , Petróleo/metabolismo , Actinobacteria/clasificación , Actinobacteria/genética , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biodegradación Ambiental , Citocromo P-450 CYP4A/genética , Citocromo P-450 CYP4A/metabolismo , Genoma Bacteriano , Petróleo/microbiología , Filogenia
14.
Free Radic Biol Med ; 129: 323-337, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30268890

RESUMEN

We previously demonstrated that co-exposing pre-steatotic hepatocytes to benzo[a]pyrene (B[a]P), a carcinogenic environmental pollutant, and ethanol, favored cell death. Here, the intracellular mechanisms underlying this toxicity were studied. Steatotic WIF-B9 hepatocytes, obtained by a 48h-supplementation with fatty acids, were then exposed to B[a]P/ethanol (10 nM/5 mM, respectively) for 5 days. Nitric oxide (NO) was demonstrated to be a pivotal player in the cell death caused by the co-exposure in steatotic hepatocytes. Indeed, by scavenging NO, CPTIO treatment of co-exposed steatotic cells prevented not only the increase in DNA damage and cell death, but also the decrease in the activity of CYP1, major cytochrome P450s of B[a]P metabolism. This would then lead to an elevation of B[a]P levels, thus possibly suggesting a long-lasting stimulation of the transcription factor AhR. Besides, as NO can react with superoxide anion to produce peroxynitrite, a highly oxidative compound, the use of FeTPPS to inhibit its formation indicated its participation in DNA damage and cell death, further highlighting the important role of NO. Finally, a possible key role for AhR was pointed out by using its antagonist, CH-223191. Indeed it prevented the elevation of ADH activity, known to participate to the ethanol production of ROS, notably superoxide anion. The transcription factor, NFκB, known to be activated by ROS, was shown to be involved in the increase in iNOS expression. Altogether, these data strongly suggested cooperative mechanistic interactions between B[a]P via AhR and ethanol via ROS production, to favor cell death in the context of prior steatosis.


Asunto(s)
Benzo(a)pireno/toxicidad , Citocromo P-450 CYP1A1/genética , Etanol/toxicidad , Ácidos Grasos/farmacología , Hepatocitos/efectos de los fármacos , Óxido Nítrico/metabolismo , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Compuestos Azo/farmacología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Benzoatos/farmacología , Línea Celular Tumoral , Quimera , Citocromo P-450 CYP1A1/antagonistas & inhibidores , Citocromo P-450 CYP1A1/metabolismo , Daño del ADN , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Hepatocitos/metabolismo , Hepatocitos/patología , Imidazoles/farmacología , Metaloporfirinas/farmacología , FN-kappa B/genética , FN-kappa B/metabolismo , Necrosis/inducido químicamente , Necrosis/genética , Necrosis/metabolismo , Óxido Nítrico/agonistas , Pirazoles/farmacología , Ratas , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Transducción de Señal , Superóxidos/agonistas , Superóxidos/antagonistas & inhibidores , Superóxidos/metabolismo
15.
SLAS Discov ; 23(8): 815-822, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29630847

RESUMEN

Acetaldehyde dehydrogenase (AdhE) is a bifunctional acetaldehyde-coenzyme A (CoA) dehydrogenase and alcohol dehydrogenase involved in anaerobic metabolism in gram-negative bacteria. This enzyme was recently found to be a key regulator of the type three secretion (T3S) system in Escherichia coli. AdhE inhibitors can be used as tools to study bacterial virulence and a starting point for discovery of novel antibacterial agents. We developed a robust enzymatic assay, based on the acetaldehyde-CoA dehydrogenase activity of AdhE using both absorption and fluorescence detection models (Z' > 0.7). This assay was used to screen ~11,000 small molecules in 384-well format that resulted in three hits that were confirmed by resynthesis and validation. All three compounds are noncompetitive with respect to acetaldehyde and display a clear dose-response effect with hill slopes of 1-2. These new inhibitors will be used as chemical tools to study the interplay between metabolism and virulence and the role of AdhE in T3S regulation in gram-negative bacteria, and as starting points for the development of novel antibacterial agents.


Asunto(s)
Alcohol Deshidrogenasa/antagonistas & inhibidores , Aldehído Oxidorreductasas/antagonistas & inhibidores , Antibacterianos/farmacología , Evaluación Preclínica de Medicamentos , Escherichia coli Enterohemorrágica/efectos de los fármacos , Escherichia coli Enterohemorrágica/enzimología , Inhibidores Enzimáticos/farmacología , Proteínas de Escherichia coli/antagonistas & inhibidores , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Animales , Antibacterianos/química , Línea Celular , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos/métodos , Escherichia coli Enterohemorrágica/genética , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Ratones , Flujo de Trabajo
16.
Biosci Biotechnol Biochem ; 82(4): 724-731, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29616890

RESUMEN

Alcoholic beverages are enjoyed together with meals worldwide, but their excessive intake is associated with an increased risk of various diseases. We investigated whether S-allyl-L-cysteine sulfoxide (ACSO), a sulfuric odor precursor of garlic, suppresses elevation in plasma ethanol concentration by accelerating ethanol metabolism and preventing ethanol absorption from the gut in rats. ACSO and garlic extract with a high ACSO content (Garlic-H) suppressed elevation in concentrations of ethanol and acetaldehyde in plasma and promoted the activities of alcohol dehydrogenase and aldehyde dehydrogenase. However, ACSO and Garlic-H did not affect plasma acetate so much. Furthermore, we examined the change in plasma ethanol concentration by injecting ACSO or Garlic-H into the ligated stomach or jejunum together with ethanol solution. ACSO and Garlic-H suppressed the absorption of ethanol from the stomach and jejunum, but suppression in the jejunum was less than in the stomach. In conclusion, ACSO inhibits ethanol absorption and accelerates ethanol metabolism.


Asunto(s)
Bebidas Alcohólicas , Nivel de Alcohol en Sangre , Cisteína/análogos & derivados , Etanol/sangre , Ajo/química , Absorción Intestinal/efectos de los fármacos , Acetaldehído/sangre , Administración Oral , Alcohol Deshidrogenasa/metabolismo , Aldehído Deshidrogenasa/metabolismo , Amoníaco/análisis , Animales , Arginina/análisis , Cisteína/administración & dosificación , Cisteína/análisis , Cisteína/farmacología , Etanol/administración & dosificación , Etanol/metabolismo , Yeyuno , Hígado/enzimología , Masculino , Odorantes , Extractos Vegetales/química , Ácido Pirúvico/análisis , Ratas Sprague-Dawley , Estómago
17.
Sci Rep ; 8(1): 347, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29321611

RESUMEN

Alcohol consumption during pregnancy induces Fetal Alcohol Spectrum Disorder (FASD), which has been proposed to arise from competitive inhibition of retinoic acid (RA) biosynthesis. We provide biochemical and developmental evidence identifying acetaldehyde as responsible for this inhibition. In the embryo, RA production by RALDH2 (ALDH1A2), the main retinaldehyde dehydrogenase expressed at that stage, is inhibited by ethanol exposure. Pharmacological inhibition of the embryonic alcohol dehydrogenase activity, prevents the oxidation of ethanol to acetaldehyde that in turn functions as a RALDH2 inhibitor. Acetaldehyde-mediated reduction of RA can be rescued by RALDH2 or retinaldehyde supplementation. Enzymatic kinetic analysis of human RALDH2 shows a preference for acetaldehyde as a substrate over retinaldehyde. RA production by hRALDH2 is efficiently inhibited by acetaldehyde but not by ethanol itself. We conclude that acetaldehyde is the teratogenic derivative of ethanol responsible for the reduction in RA signaling and induction of the developmental malformations characteristic of FASD. This competitive mechanism will affect tissues requiring RA signaling when exposed to ethanol throughout life.


Asunto(s)
Acetaldehído/farmacología , Vías Biosintéticas/efectos de los fármacos , Etanol/efectos adversos , Etanol/metabolismo , Teratógenos/metabolismo , Tretinoina/metabolismo , Alcohol Deshidrogenasa/metabolismo , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Modelos Biológicos , Retinal-Deshidrogenasa/metabolismo , Xenopus
18.
Food Funct ; 9(2): 774-784, 2018 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-29309081

RESUMEN

In this study, the ameliorative effect of chicken breast muscle hydrolysates (CBMHs) against acute alcohol-induced liver injury was investigated and its probable mechanism was further elucidated. In vitro studies clearly showed that CBMHs are able to activate alcohol metabolic enzymes (i.e. alcohol dehydrogenase, ADH) in an exponential manner. Meanwhile, an in vivo experiment on male NIH mice indicated that the oral administration of CBMHs (150, 300 and 600 mg per kg bw) 30 min prior to acute alcohol ingestion could significantly promote alcohol metabolism as revealed by the reduced duration of the loss of righting reflex (LORR) and the enhanced activity of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in the liver, the latter accelerating alcohol oxidation and therefore the decreased blood alcohol concentration (BAC) level. Pretreatment with CBMHs significantly decreased the elevations of serum aspartate transaminase (AST) and alanine transaminase (ALT) after alcohol administration. CBMHs could also retard lipid peroxidation as revealed by the suppressed malondialdehyde (MDA) level and simultaneously enhance the activities of superoxide dismutase (SOD) in liver tissue. Furthermore, increased histological damage and higher (p < 0.05) hepatic triglyceride (TG) contents in acute alcoholic-diet fed mice were also reduced (p < 0.05) by supplementing with CBMHs. These benefits clearly suggested that CBMHs could be a potential nutraceutical to facilitate alcohol metabolism and prevent or ameliorate early liver injury induced by acute alcohol exposure.


Asunto(s)
Alcohol Deshidrogenasa/metabolismo , Alcoholes/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/enzimología , Músculos/química , Estrés Oxidativo/efectos de los fármacos , Péptidos/administración & dosificación , Enfermedad Aguda/terapia , Alanina Transaminasa/metabolismo , Animales , Aspartato Aminotransferasas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Pollos , Humanos , Hígado/efectos de los fármacos , Hígado/enzimología , Hígado/metabolismo , Masculino , Malondialdehído/metabolismo , Ratones , Péptidos/química , Hidrolisados de Proteína/administración & dosificación , Hidrolisados de Proteína/química , Superóxido Dismutasa/metabolismo
19.
J Am Chem Soc ; 139(44): 15556-15559, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29043790

RESUMEN

The synthesis, photophysics, and biochemical utility of a fluorescent NAD+ analogue based on an isothiazolo[4,3-d]pyrimidine core (NtzAD+) are described. Enzymatic reactions, photophysically monitored in real time, show NtzAD+ and NtzADH to be substrates for yeast alcohol dehydrogenase and lactate dehydrogenase, respectively, with reaction rates comparable to that of the native cofactors. A drop in fluorescence is seen as NtzAD+ is converted to NtzADH, reflecting a complementary photophysical behavior to that of the native NAD+/NADH. NtzAD+ and NtzADH serve as substrates for NADase, which selectively cleaves the nicotinamide's glycosidic bond yielding tzADP-ribose. NtzAD+ also serves as a substrate for ribosyl transferases, including human adenosine ribosyl transferase 5 (ART5) and Cholera toxin subunit A (CTA), which hydrolyze the nicotinamide and transfer tzADP-ribose to an arginine analogue, respectively. These reactions can be monitored by fluorescence spectroscopy, in stark contrast to the corresponding processes with the nonemissive NAD+.


Asunto(s)
NAD/análogos & derivados , NAD/metabolismo , ADP Ribosa Transferasas/metabolismo , Alcohol Deshidrogenasa/metabolismo , Animales , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Humanos , NAD/síntesis química , NAD+ Nucleosidasa/metabolismo , Piridinas/síntesis química , Piridinas/química , Piridinas/metabolismo , Especificidad por Sustrato , Porcinos , Tiazoles/síntesis química , Tiazoles/química , Tiazoles/metabolismo
20.
Nature ; 548(7669): 549-554, 2017 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-28813411

RESUMEN

The folate-driven one-carbon (1C) cycle is a fundamental metabolic hub in cells that enables the synthesis of nucleotides and amino acids and epigenetic modifications. This cycle might also release formaldehyde, a potent protein and DNA crosslinking agent that organisms produce in substantial quantities. Here we show that supplementation with tetrahydrofolate, the essential cofactor of this cycle, and other oxidation-prone folate derivatives kills human, mouse and chicken cells that cannot detoxify formaldehyde or that lack DNA crosslink repair. Notably, formaldehyde is generated from oxidative decomposition of the folate backbone. Furthermore, we find that formaldehyde detoxification in human cells generates formate, and thereby promotes nucleotide synthesis. This supply of 1C units is sufficient to sustain the growth of cells that are unable to use serine, which is the predominant source of 1C units. These findings identify an unexpected source of formaldehyde and, more generally, indicate that the detoxification of this ubiquitous endogenous genotoxin creates a benign 1C unit that can sustain essential metabolism.


Asunto(s)
Carbono/metabolismo , Ácido Fólico/química , Ácido Fólico/metabolismo , Formaldehído/química , Formaldehído/metabolismo , Redes y Vías Metabólicas , Mutágenos/química , Mutágenos/metabolismo , Alcohol Deshidrogenasa/metabolismo , Animales , Carbono/deficiencia , Línea Celular , Pollos , Coenzimas/metabolismo , Reactivos de Enlaces Cruzados/metabolismo , Daño del ADN , Reparación del ADN , Humanos , Inactivación Metabólica , Ratones , Nucleótidos/biosíntesis , Oxidación-Reducción , Serina/química , Serina/metabolismo , Tetrahidrofolatos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA