Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 644
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Infect Immun ; 92(5): e0008024, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38534100

RESUMEN

Traditional folk treatments for the prevention and management of urinary tract infections (UTIs) and other infectious diseases often include plants and plant extracts that are rich in phenolic compounds. These have been ascribed a variety of activities, including inhibition of bacterial interactions with host cells. Here, we tested a panel of four well-studied phenolic compounds-caffeic acid phenethyl ester (CAPE), resveratrol, catechin, and epigallocatechin gallate-for the effects on host cell adherence and invasion by uropathogenic Escherichia coli (UPEC). These bacteria, which are the leading cause of UTIs, can bind and subsequently invade bladder epithelial cells via an actin-dependent process. Intracellular UPEC reservoirs within the bladder are often protected from antibiotics and host defenses and likely contribute to the development of chronic and recurrent infections. In cell culture-based assays, only resveratrol had a notable negative effect on UPEC adherence to bladder cells. However, both CAPE and resveratrol significantly inhibited UPEC entry into the host cells, coordinate with attenuated phosphorylation of the host actin regulator Focal Adhesion Kinase (FAK or PTK2) and marked increases in the numbers of focal adhesion structures. We further show that the intravesical delivery of resveratrol inhibits UPEC infiltration of the bladder mucosa in a murine UTI model and that resveratrol and CAPE can disrupt the ability of other invasive pathogens to enter host cells. Together, these results highlight the therapeutic potential of molecules like CAPE and resveratrol, which could be used to augment antibiotic treatments by restricting pathogen access to protective intracellular niches.IMPORTANCEUrinary tract infections (UTIs) are exceptionally common and increasingly difficult to treat due to the ongoing rise and spread of antibiotic-resistant pathogens. Furthermore, the primary cause of UTIs, uropathogenic Escherichia coli (UPEC), can avoid antibiotic exposure and many host defenses by invading the epithelial cells that line the bladder surface. Here, we identified two plant-derived phenolic compounds that disrupt activation of the host machinery needed for UPEC entry into bladder cells. One of these compounds, resveratrol, effectively inhibited UPEC invasion of the bladder mucosa in a mouse UTI model, and both phenolic compounds significantly reduced host cell entry by other invasive pathogens. These findings suggest that select phenolic compounds could be used to supplement existing antibacterial therapeutics by denying uropathogens shelter within host cells and tissues and help explain some of the benefits attributed to traditional plant-based medicines.


Asunto(s)
Infecciones por Escherichia coli , Quinasa 1 de Adhesión Focal , Fenoles , Extractos Vegetales , Infecciones Urinarias , Escherichia coli Uropatógena , Animales , Femenino , Humanos , Ratones , Adhesión Bacteriana/efectos de los fármacos , Ácidos Cafeicos/farmacología , Catequina/farmacología , Catequina/análogos & derivados , Línea Celular , Células Epiteliales/microbiología , Células Epiteliales/efectos de los fármacos , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Fenoles/farmacología , Alcohol Feniletílico/análogos & derivados , Extractos Vegetales/farmacología , Resveratrol/farmacología , Vejiga Urinaria/microbiología , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/patología , Infecciones Urinarias/microbiología , Infecciones Urinarias/tratamiento farmacológico , Escherichia coli Uropatógena/efectos de los fármacos
2.
Food Chem ; 444: 138516, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38306771

RESUMEN

In this study, the phytochemical profile of fifty olive leaves (OL) extracts from Spain, Italy, Greece, Portugal, and Morocco was characterized and their anti-cholinergic, anti-inflammatory, and antioxidant activities were evaluated. Luteolin-7-O-glucoside, isoharmnentin, and apigenin were involved in the acetylcholinesterase (AChE) inhibitory activity, while oleuropein and hydroxytyrosol showed noteworthy potential. Secoiridoids contributed to the cyclooxygenase-2 inhibitory activity and antioxidant capacity. Compounds such as oleuropein, ligstroside and luteolin-7-O-glucoside, may exert an important role in the ferric reducing antioxidant capacity. It should be also highlighted the role of hydroxytyrosol, hydroxycoumarins, and verbascoside concerning the antioxidant activity. This research provides valuable insights and confirms that specific compounds within OL extracts contribute to distinct anti-cholinergic, anti-inflammatory, and anti-oxidative effects.


Asunto(s)
Antioxidantes , Glucósidos Iridoides , Olea , Alcohol Feniletílico/análogos & derivados , Antioxidantes/química , Acetilcolinesterasa , Olea/química , Ciclooxigenasa 2 , Extractos Vegetales/química , Iridoides/análisis , Fitoquímicos/análisis , Hojas de la Planta/química , Antiinflamatorios/farmacología , Antiinflamatorios/análisis , Antagonistas Colinérgicos/análisis
3.
Genes (Basel) ; 15(2)2024 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-38397163

RESUMEN

Extra virgin olive oil phenolic compounds have been identified as possible biostimulant agents against different pathological processes, including alterations in healing processes. However, there is little evidence on the molecular mechanisms involved in this process. The aim was to analyse the effect of hydroxytyrosol, tyrosol, and oleocanthal on fibroblast gene expression. PCR was used to determine the expression of different differentiation markers, extracellular matrix elements, and growth factors in cultured human fibroblasts CCD-1064Sk treated with different doses of hydroxytyrosol (10-5 M and 10-6 M), tyrosol (10-5 M and 10-6 M), and oleocanthal (10-6 M and 10-7 M). After 24 h of hydroxytyrosol treatment, increased expression of connective tissue growth factor, fibroblast growth factor (FGF), platelet-derived growth factor, vascular endothelial growth factor, transforming growth factor ß1 (TGF-ß1), and their receptors was observed. Tyrosol and olecanthal modulated the expression of FGF and TGFßR1. All phytochemicals tested modified the expression of differentiation markers and extracellular matrix elements, increasing gene expression of actin, fibronectin, decorin, collagen I, and III. Phenolic compounds present in extra virgin olive could have a beneficial effect on tissue regeneration by modulating fibroblast physiology.


Asunto(s)
Aldehídos , Monoterpenos Ciclopentánicos , Fenoles , Alcohol Feniletílico/análogos & derivados , Aceites de Plantas , Factor A de Crecimiento Endotelial Vascular , Humanos , Aceite de Oliva/farmacología , Aceites de Plantas/análisis , Biomarcadores , Antígenos de Diferenciación , Proliferación Celular , Fibroblastos , Expresión Génica
4.
Molecules ; 29(2)2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38257212

RESUMEN

Nowadays, olive leaf polyphenols have been at the center of scientific interest due to their beneficial effects on human health. The most abundant polyphenol in olive leaves is oleuropein. The biological properties of oleuropein are mainly due to the hydroxytyrosol moiety, a drastic catechol group, whose biological activity has been mentioned many times in the literature. Hence, in recent years, many nutritional supplements, food products, and cosmetics enriched in hydroxytyrosol have been developed and marketed, with unexpectedly positive results. However, the concentration levels of hydroxytyrosol in olive leaves are low, as it depends on several agricultural factors. In this study, a rapid and easy methodology for the production of hydroxytyrosol-enriched extracts from olive leaves was described. The proposed method is based on the direct acidic hydrolysis of olive leaves, where the extraction procedure and the hydrolysis of oleuropein are carried out in one step. Furthermore, we tested the in vitro bioactivity of this extract using cell-free and cell-based methods, evaluating its antioxidant and DNA-protective properties. Our results showed that the hydroxytyrosol-enriched extract produced after direct hydrolysis of olive leaves exerted significant in vitro antioxidant and geno-protective activity, and potentially these extracts could have various applications in the pharmaceutical, food, and cosmetic industries.


Asunto(s)
Glucósidos Iridoides , Olea , Alcohol Feniletílico/análogos & derivados , Humanos , Antioxidantes/farmacología , Grecia , Hidrólisis , Hojas de la Planta , Extractos Vegetales/farmacología
5.
Int J Mol Sci ; 25(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38203800

RESUMEN

Tendinopathy (TP) is a complex clinical syndrome characterized by local inflammation, pain in the affected area, and loss of performance, preceded by tendon injury. The disease develops in three phases: Inflammatory phase, proliferative phase, and remodeling phase. There are currently no proven treatments for early reversal of this type of injury. However, the metabolic pathways of the transition metabolism, which are necessary for the proper functioning of the organism, are known. These metabolic pathways can be modified by a number of external factors, such as nutritional supplements. In this study, the modulatory effect of four dietary supplements, maslinic acid (MA), hydroxytyrosol (HT), glycine, and aspartate (AA), on hepatic intermediary metabolism was observed in Wistar rats with induced tendinopathy at different stages of the disease. Induced tendinopathy in rats produces alterations in the liver intermediary metabolism. Nutraceutical treatments modify the intermediary metabolism in the different phases of tendinopathy, so AA treatment produced a decrease in carbohydrate metabolism. In lipid metabolism, MA and AA caused a decrease in lipogenesis at the tendinopathy and increased fatty acid oxidation. In protein metabolism, MA treatment increased GDH and AST activity; HT decreased ALT activity; and the AA treatment does not cause any alteration. Use of nutritional supplements of diet could help to regulate the intermediary metabolism in the TP.


Asunto(s)
Enfermedades Musculoesqueléticas , Ácido Oleanólico/análogos & derivados , Alcohol Feniletílico/análogos & derivados , Tendinopatía , Ratas , Animales , Ratas Wistar , Suplementos Dietéticos , Metabolismo de los Lípidos , Tendinopatía/etiología , Ácido Aspártico
6.
J Dent ; 143: 104867, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38286192

RESUMEN

OBJECTIVES: This study aimed to evaluate silver nanoparticles (AgNPs) obtained by a 'green' route associated or not to tyrosol (TYR) against Streptococcus mutans and Candida albicans in planktonic and biofilms states. METHODS: AgNPs were obtained by a 'green' route using pomegranate extract. The minimum inhibitory concentration (MIC) against S. mutans and C. albicans was determined for AgNPs and TYR combined and alone, and fractional inhibitory concentration index (FICI) was calculated. Single biofilms of C. albicans and S. mutans were cultivated for 24 h and then treated with drugs alone or in combination for 24 h. RESULTS: AgNPs and TYR were effective against C. albicans and S. mutans considering planktonic cells alone and combined. The MIC values obtained for C. albicans was 312.5 µg/mL (AgNPs) and 50 mM (TYR) and for S. mutans was 78.1 µg/mL (AgNPs) and 90 mM (TYR). The combination of these antimicrobial agents was also effective against both microorganisms: 2.44 µg/mL/0.08 mM (AgNPs/TYR) for C. albicans and 39.05 µg/mL /1.25 mM (AgNPs/TYR) for S. mutans. However, synergism was observed only for C. albicans (FICI 0.008). When biofilm was evaluated, a reduction of 4.62 log10 was observed for S. mutans biofilm cells treated with AgNPs (p < 0.05, Tukey test). However, the addition of TYR to AgNPs did not improve their action against biofilm cells (p > 0.05). AgNPs combined with TYR demonstrated a synergistic effect against C. albicans biofilms. CONCLUSIONS: These findings suggest the potential use of AgNPs with or without TYR against C. albicans and S. mutans, important oral pathogens. CLINICAL SIGNIFICANCE: AgNPs obtained by a 'green' route combined or not with TYR can be an alternative to develop several types of oral antimicrobial therapies and biomaterials.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Alcohol Feniletílico , Alcohol Feniletílico/análogos & derivados , Plata/farmacología , Antiinfecciosos/farmacología , Alcohol Feniletílico/farmacología , Candida albicans , Biopelículas , Streptococcus mutans
7.
Phytomedicine ; 116: 154860, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37201366

RESUMEN

BACKGROUND: Epidermal growth factor receptor (EGFR) is upregulated in prostate cancer (PCa). However, suppression of EGFR did not improve the patient outcome, possibly due to the activation of PI3K/Akt signaling in PCa. Compounds able to suppress both PI3K/Akt and EGFR signaling may be effective for treating advanced PCa. PURPOSE: We examined if caffeic acid phenethyl ester (CAPE) simultaneously suppresses the EGFR and Akt signaling, migration and tumor growth in PCa cells. METHODS: Wound healing assay, transwell migration assay and xenograft mice model were used to determine the effects of CAPE on migration and proliferation of PCa cells. Western blot, immunoprecipitation, and immunohistochemistry staining were performed to determine the effects of CAPE on EGFR and Akt signaling. RESULTS: CAPE treatment decreased the gene expression of HRAS, RAF1, AKT2, GSK3A, and EGF and the protein expression of phospho-EGFR (Y845, Y1069, Y1148, Y1173), phospho-FAK, Akt, and ERK1/2 in PCa cells. CAPE treatment inhibited the EGF-induced migration of PCa cells. Combined treatment of CAPE with EGFR inhibitor gefitinib showed additive inhibition on migration and proliferation of PCa cells. Injection of CAPE (15 mg/kg/3 days) for 14 days suppressed the tumor growth of prostate xenografts in nude mice as well as suppressed the levels of Ki67, phospho-EGFR Y845, MMP-9, phospho-Akt S473, phospho-Akt T308, Ras, and Raf-1 in prostate xenografts. CONCLUSIONS: Our study suggested that CAPE can simultaneously suppress the EGFR and Akt signaling in PCa cells and is a potential therapeutic agent for advanced PCa.


Asunto(s)
Alcohol Feniletílico , Neoplasias de la Próstata , Masculino , Humanos , Animales , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Próstata/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones Desnudos , Factor de Crecimiento Epidérmico , Neoplasias de la Próstata/patología , Ácidos Cafeicos/farmacología , Ácidos Cafeicos/uso terapéutico , Receptores ErbB , Alcohol Feniletílico/farmacología , Línea Celular Tumoral , Proliferación Celular
8.
J Ethnopharmacol ; 313: 116603, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37149069

RESUMEN

ETHNOBOTANICAL RELEVANCE: Rosa damascena Mill. (Rosaceae), commonly known as damask rose, is an ancient medicinal and perfumery plant used in Traditional Unani Medicine due to various therapeutic effects, including cardiovascular benefits. AIM OF THE STUDY: This study aimed to evaluate the vasorelaxant effect of the 2-phenyl ethyl alcohol (PEA) isolated from the spent flowers of R. damascena which remain after the extraction of essential oil. MATERIALS AND METHODS: The freshly collected flowers of R. damascena were hydro-distilled in a Clevenger's type apparatus to extract the rose essential oil (REO). After removing the REO, the spent-flower hydro-distillate was collected and extracted with organic solvents to yield a spent-flower hydro-distillate extract (SFHE), which was further purified by column chromatography. The SFHE and its isolate were characterized by gas chromatography (GC-FID), gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR) techniques. The PEA, isolated from SFHE, was evaluated for vasorelaxation response in conduit blood vessels like rat aorta and resistant vessels like mesenteric artery. The preliminary screening of PEA was done in aortic preparation pre-constricted with phenylephrine/U46619. Further, a concentration-dependent relaxation response to PEA has been elicited in both endothelium-intact and endothelium-denuded arterial rings, and the mode of action was explored. RESULTS: The SFHE revealed the presence of PEA as the main constituent (89.36%), which was further purified by column chromatography to a purity of 95.0%. The PEA exhibited potent vasorelaxation response both in conduit vessels like the rat aorta and resistance vessels like the mesenteric artery. The relaxation response is mediated without any involvement of vascular endothelium. Further, TEA sensitive BKCa channel was found to be the major target for PEA-induced relaxation response in these blood vessels. CONCLUSIONS: The spent flowers of R. damascena, which remain after the extraction of REO, could be used to extract PEA. The PEA possessed marked vasorelaxation properties in both aorta and mesenteric artery and showed promise for development into an herbal product against hypertension.


Asunto(s)
Aceites Volátiles , Alcohol Feniletílico , Rosa , Ratas , Animales , Vasodilatadores/farmacología , Rosa/química , Cromatografía de Gases y Espectrometría de Masas , Aceites Volátiles/farmacología , Aceites Volátiles/química
9.
Laryngoscope ; 133(6): 1473-1479, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36960884

RESUMEN

OBJECTIVE: Chinese herbal medicine (CHM) has been implemented as a form of treatment for olfactory dysfunction. In this study, we aimed to use a tailored Guizhi decoction for the treatment of traumatic olfactory dysfunction. METHODS: Patients who had lost olfactory function after experiencing head trauma and whose olfactory function was anosmic were selected. The eligible patients were randomly assigned to two groups. In the CHM group, a tailored Guizhi decoction was prescribed, with patients also undergoing olfactory training (OT). In the OT group, patients performed OT only. The olfactory function of each patient was evaluated by both the phenyl ethyl alcohol (PEA) odor detection threshold test and the traditional Chinese version of the University of Pennsylvania Smell Identification Test (TC-UPSIT), at both 3 and 6 months after the completion of treatment. RESULTS: A total of 38 patients in the CHM group and 40 in the OT group completed the study. The TC-UPSIT scores of patients slightly rose after treatment in both the CHM and OT groups. Nevertheless, there were no significant differences in TC-UPSIT scores before and after treatment in both groups. However, the PEA thresholds improved significantly in both CHM and OT groups (p = 0.005 and 0.016, respectively). Of note, there were no significant differences in threshold or identification scores between the CHM and OT groups. CONCLUSION: Our results show that adding a tailored Guizhi decoction to OT conferred a limited benefit to the olfactory function of patients experiencing traumatic anosmia. LEVEL OF EVIDENCE: 2 Laryngoscope, 133:1473-1479, 2023.


Asunto(s)
Medicamentos Herbarios Chinos , Trastornos del Olfato , Alcohol Feniletílico , Humanos , Trastornos del Olfato/tratamiento farmacológico , Trastornos del Olfato/etiología , Trastornos del Olfato/diagnóstico , Anosmia , Estudios Prospectivos , Medicamentos Herbarios Chinos/uso terapéutico , Olfato
10.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36835384

RESUMEN

Hydroxytyrosol (HT) is an olive polyphenol with anti-inflammatory and antioxidant properties. This study aimed to investigate the effect of HT treatment on epithelial-mesenchymal transition (EMT) in primary human respiratory epithelial cells (RECs) isolated from human nasal turbinate. HT dose-response study and growth kinetic study on RECs was performed. Several approaches on HT treatment and TGFß1 induction with varying durations and methods was studied. RECs morphology and migration ability were evaluated. Vimentin and E-cadherin immunofluorescence staining and Western blotting [E-cadherin, vimentin, SNAIL/SLUG, AKT, phosphorylated (p)AKT, SMAD2/3 and pSMAD2/3] were performed after 72-h treatment. In silico analysis (molecular docking) of HT was performed to evaluate the potential of HT to bind with the TGFß receptor. The viability of the HT-treated RECs was concentration-dependent, where the median effective concentration (EC50) was 19.04 µg/mL. Testing of the effects of 1 and 10 µg/mL HT revealed that HT suppressed expression of the protein markers vimentin and SNAIL/SLUG while preserving E-cadherin protein expression. Supplementation with HT protected against SMAD and AKT pathway activation in the TGFß1-induced RECs. Furthermore, HT demonstrated the potential to bind with ALK5 (a TGFß receptor component) in comparison to oleuropein. TGFß1-induced EMT in RECs and HT exerted a positive effect in modulating the effects of EMT.


Asunto(s)
Células Epiteliales Alveolares , Suplementos Dietéticos , Transición Epitelial-Mesenquimal , Alcohol Feniletílico , Proteínas Proto-Oncogénicas c-akt , Humanos , Cadherinas/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Simulación del Acoplamiento Molecular , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Vimentina/metabolismo , Alcohol Feniletílico/farmacología , Células Epiteliales Alveolares/efectos de los fármacos
12.
Nutrients ; 15(2)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36678196

RESUMEN

Table olives and olive oils are the main dietary sources of hydroxytyrosol (HT), a natural antioxidant compound that has emerged as a potential aid in protection against cardiovascular risk. Bioavailability studies with olive oils showed that HT is bioavailable from its free form and from conjugated forms such as oleuropein and its aglycone. Still, its low dietary intake, poor bioavailability, and high inter-individual variability after absorption through the gastrointestinal tract hamper its full benefits. In a randomized, controlled, blinded, cross-over study, we investigated the impact of HT metabolism and bioavailability by comparing two olive-derived watery supplements containing different doses of HT (30.58 and 61.48 mg of HT/dosage). Additionally, HT-fortified olive oil was used in the control group. To this aim, plasma and urine samples were evaluated in 12 healthy volunteers following the intake of a single dose of the supplements or fortified olive oil. Blood and urine samples were collected at baseline and at 0.5, 1, 1.5, 2, 4, and 12 h after intake. HT and its metabolites were analyzed using UHPLC-DAD-MS/MS. Pharmacokinetic results showed that dietary HT administered through the food supplements is bioavailable and bioavailability increases with the administered dose. After intake, homovanillic acid, HT-3-O-sulphate, and 3,4-dihydroxyphenylacetic acid are the main metabolites found both in plasma and urine. The maximum concentrations in plasma peaked 30 min after intake. As bioavailability of a compound is a fundamental prerequisite for its effect, these results promise a good potential of both food supplements for protection against oxidative stress and the consequent cardiovascular risk.


Asunto(s)
Olea , Alcohol Feniletílico , Humanos , Aceite de Oliva , Disponibilidad Biológica , Espectrometría de Masas en Tándem , Estudios Cruzados , Suplementos Dietéticos , Antioxidantes/metabolismo , Aceites de Plantas
13.
Phytother Res ; 37(3): 1115-1135, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36562210

RESUMEN

Caffeic acid phenethyl ester (CAPE), a main active component of propolis and a flavonoid, is one of the natural products that has attracted attention in recent years. CAPE, which has many properties such as anti-cancer, anti-inflammatory, antioxidant, antibacterial and anti-fungal, has shown many pharmacological potentials, including protective effects on multiple organs. Interestingly, molecular docking studies showed the possibility of binding of CAPE with replication enzyme. In addition, it was seen that in order to increase the binding security of the replication enzyme and CAPE, modifications can be made at three sites on the CAPE molecule, which leads to the possibility of the compound working more powerfully and usefully to prevent the proliferation of cancer cells and reduce its rate. Also, it was found that CAPE has an inhibitory effect against the main protease enzyme and may be effective in the treatment of SARS-CoV-2. This review covers in detail the importance of CAPE in alternative medicine, its pharmacological value, its potential as a cancer anti-proliferative agent, its dual role in radioprotection and radiosensitization, and its use against coronavirus disease 2019 (COVID-19).


Asunto(s)
COVID-19 , Alcohol Feniletílico , Humanos , Simulación del Acoplamiento Molecular , SARS-CoV-2 , Alcohol Feniletílico/química , Alcohol Feniletílico/metabolismo , Alcohol Feniletílico/farmacología , Ácidos Cafeicos/química , Antiinflamatorios/farmacología , Radicales Libres
14.
Int J Pharm ; 631: 122498, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36535454

RESUMEN

Olive Phenols (OPs) are known to be potent antioxidants and possess various bioactivities and health benefits. Epidemiological studies suggested that consumption of olive oil reduces the risk of different diseases exerting a protective effect against certain malignant tumors (prostate, breast, digestive tract, endothelium, etc.). However, extremely low absorption rate of olive phenolic compounds restricts their bioactivity. In this context, solid lipid nanoparticles (SLNs) are a promising solution because they provide higher drug stability and can incorporate both lipophilic and hydrophilic drugs. Interesting experimental results have been obtained using hydroxytyrosol oleate (HtyOle) as a main component of a nanoparticle delivery system containing oleuropein (OL), oleuropein aglycone (3,4-DHPEA-EA), or hydroxytyrosol itself (Hty). In this work, hydroxytyrosol oleate (HtyOle) and hydroxytyrosol oleate (HtyOle)-based solid lipid nanoparticles were prepared and characterized. In addition, we evaluatedin vitro their antioxidant activity by DPPH assays and by ROS formation using the SH-SY5Y cell line.


Asunto(s)
Neuroblastoma , Olea , Alcohol Feniletílico , Masculino , Humanos , Aceites de Plantas/química , Ácido Oléico , Aceite de Oliva/química , Fenoles/química , Antioxidantes/farmacología , Antioxidantes/química , Olea/química
15.
Food Chem ; 402: 134201, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36122474

RESUMEN

The effects of ß-glucosidase on the volatile profiles and aroma stability of black tea juice were evaluated using gas-chromatography-mass spectrometry coupled with sensory analysis. During liquid fermentation of tea leaves, the addition of ß-glucosidase increased the concentration of aldehydes, strengthening the undesirable "green grassy" odour. However, the "green grassy" odour was counteracted by adding green tea extract during fermentation. At the same time, "flowery" flavour notes were enhanced, improving the overall aroma quality and strengthening the characteristic "sweet" aroma of black tea. Increased addition of ß-glucosidase released more free aroma alcohols from their glucosides. Two "fruity" and "floral" aroma components, benzyl alcohol and phenylethyl alcohol, were not significantly affected by heat treatment (95 °C water bath) and the overall aroma stability was not significantly affected by ß-glucosidase treatment. ß-Glucosidase treatment improved the aroma, colour and overall suitability of fermented black tea juice as an ingredient for tea-based beverages.


Asunto(s)
Camellia sinensis , Alcohol Feniletílico , Compuestos Orgánicos Volátiles , Odorantes/análisis , Té/química , beta-Glucosidasa , Alcohol Feniletílico/análisis , Compuestos Orgánicos Volátiles/análisis , Camellia sinensis/química , Bebidas/análisis , Aldehídos/análisis , Extractos Vegetales , Glucósidos , Alcoholes Bencílicos , Agua
16.
BMC Genomics ; 23(1): 698, 2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36209069

RESUMEN

BACKGROUND: The dried stem of Cistanche, is a famous Chinese traditional medicine. The main active pharmacodynamic components are phenylethanol glycosides (PhGs). Cistanche tubulosa produces higher level of PhGs in its stems than that of Cistanche deserticola. However, the key genes in the PhGs biosynthesis pathway is not clear in C. tubulosa. RESULTS: In this study, we performed the full-length transcriptome sequencing and gene expression profiling of C. tubulosa using PacBio combined with BGISEQ-500 RNA-seq technology. Totally, 237,772 unique transcripts were obtained, ranging from 199 bp to 31,857 bp. Among the unique transcripts, 188,135 (79.12%) transcripts were annotated. Interestingly, 1080 transcripts were annotated as 22 enzymes related to PhGs biosynthesis. We measured the content of echinacoside, acteoside and total PhGs at two development stages, and found that the content of PhGs was 46.74% of dry matter in young fleshy stem (YS1) and then decreased to 31.22% at the harvest stage (HS2). To compare with YS1, 13,631 genes were up-regulated, and 15,521 genes were down regulated in HS2. Many differentially expressed genes (DEGs) were identified to be involved in phenylpropanoid biosynthesis pathway, phenylalanine metabolism pathway, and tyrosine metabolism pathway. CONCLUSIONS: This is the first report of transcriptome study of C. tubulosa which provided the foundation for understanding of PhGs biosynthesis. Based on these results, we proposed a potential model for PhGs biosynthesis in C. tubulosa.


Asunto(s)
Cistanche , Alcohol Feniletílico , Cistanche/genética , Cistanche/metabolismo , Perfilación de la Expresión Génica , Glicósidos , Fenilalanina/metabolismo , Alcohol Feniletílico/metabolismo , Tirosina/metabolismo
17.
Food Res Int ; 161: 111756, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36192871

RESUMEN

Many studies have shown that caffeic acid phenethyl ester (CAPE) has various functions, such as antioxidant, anti-inflammatory and anticancer activity, but its low bioavailability and stability limit its application. In this study, the colorectal targeted delivery system for CAPE based on a solid-in-oil-in-water (S/O/W) multilayer emulsion was prepared using CAPE-loaded nanoparticles as the solid phase, coconut oil as the oil phase, and a mixture of lecithin and sodium caseinate as the aqueous phase. The stability of the O/W interfacial layer was improved by using a sodium casein-lecithin mixture as the aqueous surface layer in the preparation. This S/O/W emulsion is a spherical droplet with an S/O/W trilayer structure with a particle size of 155.5 ± 0.72 nm and a polydispersity index (PDI) of 0.24 ± 0.01. The Fourier transform infrared (FTIR) results confirmed that CAPE was successfully loaded into the S/O/W emulsion. This S/O/W emulsion was able to maintain a stable liquid state at pH 6.00-7.4 or cholate concentration of 0-50 mg/mL but showed a gel state at pH 2.0-3.0. The storage experiments demonstrated that the S/O/W emulsion was stable for 15 days at 4 °C, but was prone to agglomeration and emulsion breakage at 25 °C. The in vivo digestion process indicated that the S/O/W emulsion was gradually digested in the digestive tract and released solid phase nanoparticles in the large intestine. Therefore, this newly developed targeted delivery system can effectively deliver CAPE to the colorectum and achieve a 12-hour delayed release, which improved the bioavailability and activity of CAPE.


Asunto(s)
Caseínas , Lecitinas , Antioxidantes/química , Ácidos Cafeicos , Colatos , Aceite de Coco , Digestión , Emulsiones/química , Alcohol Feniletílico/análogos & derivados , Sodio , Agua/química
18.
Food Res Int ; 161: 111843, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36192973

RESUMEN

Olive oil is one of the most important ingredients in the Mediterranean diet, in which its polyphenols adversely affect dietary lipid oxidation. In this study, the effect of olive oil polyphenols on lipid oxidation of high-fat beef during digestion was determined. Thirty-three phenolic compounds were tentatively identified, and the contents of 3,4-dihydroxyphenylethanol-elenolic acid dialdehyde (3,4-DHPEA-EDA), 3,4-dihydroxyphenylethanol-elenolic acid (3,4-DHPEA-EA), p-hydroxyphenylethanol elenolic acid (p-HPEA-EA) and hydroxytyrosol were higher than those of other compounds. In an in vitro model, the production of lipid oxidation products, including hydroperoxides, malondialdehyde, 4-hydroxy-2-hexenal and 4-hydroxy-2-nominal, were significantly inhibited by olive polyphenol in the gastrointestinal digests. Compared with the other four groups, the inhibition was better when the polyphenol content reached 600 mg GAE/kg. The 3,4-DHPEA-EDA and 3,4-DHPEA-EA played a better antioxidant role in the stomach stage, while hydroxytyrosol showed the more potent antioxidant activity in the intestinal phase. Electron spin resonance technology showed that two main free radicals, including alkyl radical and alkoxy radical, were detected during the high-fat beef digestion, and olive polyphenols could significantly reduce their formation. All these results showed that the lipid oxidation could be significantly inhibited by olive oil with higher polyphenol content, indicating that the consumption of olive oil with abundant levels of polyphenols could reduce lipid oxidation of high-fat meat during digestion.


Asunto(s)
Olea , Polifenoles , Animales , Antioxidantes/farmacología , Bovinos , Digestión , Malondialdehído , Aceite de Oliva , Fenoles , Alcohol Feniletílico/análogos & derivados , Aceites de Plantas/farmacología , Polifenoles/farmacología , Piranos
19.
Nutrients ; 14(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36145170

RESUMEN

Non-alcoholic fatty liver disease (NAFLD)-related liver fibrosis results in the encapsulation of injured liver parenchyma by a collagenous scar mainly imputable to hepatic stellate cells' activation. Approved pharmacological treatments against NAFLD-related fibrosis are still lacking, but natural compounds such as hydroxytyrosol (HXT) and vitamin E (VitE), are emerging as promising therapeutic opportunities. In this study, the potential anti-fibrotic effect of HXT + VitE combination therapy was investigated in vitro and in vivo. In particular, tumor growth factor (TGF)-ß-activated LX-2 cells as an in vitro model, and carbon tetrachloride plus a Western diet as a mice model were employed. The effect of HXT + VitE on fibrosis was also investigated in children with biopsy-proven NAFLD. Our results demonstrated that HXT + VitE caused a reduction of proliferation, migration, contractility, and expression of pro-fibrogenic genes in TGF-ß-activated LX-2 cells. HXT + VitE treatment also antagonized TGF-ß-dependent upregulation of pro-oxidant NOX2 by interfering with nuclear translocation/activation of SMAD2/3 transcription factors. The mouse model of NAFLD-related fibrosis treated with HXT + VitE showed a marked reduction of fibrosis pattern by histology and gene expression. Accordingly, in children with NAFLD, HXT + VitE treatment caused a decrease of circulating levels of PIIINP and NOX2 that was supported over time. Our study suggests that HXT + VitE supplementation may improve NAFLD-related fibrosis.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Tetracloruro de Carbono , Fibrosis , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Alcohol Feniletílico/análogos & derivados , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Vitamina E/uso terapéutico
20.
J AOAC Int ; 106(1): 212-220, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35946723

RESUMEN

BACKGROUND: Arq-e-Keora is a liquid formulation of the Unani system of medicine and used since long for the management of weakness of heart, palpitations, etc. OBJECTIVE: The study was carried out to generate a scientific data for its metabolite profiling, stability testing, pharmacokinetics, and pattern recognition analysis of Arq-e-Keora. METHOD: Arq-e-Keora has been prepared as water distillate of male wpadix of Pandanus odoratissimus L.f. TLC profiling of Arq-e-Keora was performed using hexane and acetone (7:3, v/v) as a solvent system. The metabolic profiling of volatile compounds was carried out using GC-MS. Pharmacokinetic analysis was performed through GC-MS to evaluate how quickly it absorbs and distributes in plasma. The pattern recognition analysis was performed in order to recognize the pattern and fate of metabolites in rat plasma up to 24 h after single oral administration of Arq-e-Keora. RESULTS: TLC and GC-MS analysis resulted in profiling of 11 and 21 metabolites, respectively. GC-MS analysis revealed that phenethyl alcohol, alpha-terpinolene, beta terpinene, alpha terpinene, beta fenchyl alcohol, hexadecanoic acid, and octadecanoic acid are the major metabolites found in Arq-e-Keora. The stability analysis showed that most of the compounds are stable at refrigerator temperature during their consumption. Pharmacokinetics data of phenethyl alcohol showed its absorption was rapid, with Tmax occurring within 1 h after oral administration of Arq-e-Keora. In vivo pattern recognition analysis suggests that some metabolite expression was altered after its oral administration. CONCLUSIONS: As a result, our model could be used for quality, stability, and pharmacokinetic evaluation of various Unani formulations mentioned in Unani Pharmacopoeia of India. HIGHLIGHTS: This is the first study of pharmacokinetic analysis and metabolite pattern of traditional Unani formulation after its oral administration in Wistar rats.


Asunto(s)
Alcohol Feniletílico , Ratas , Masculino , Animales , Ratas Wistar , Cromatografía de Gases y Espectrometría de Masas/métodos , India , Administración Oral , Cromatografía Líquida de Alta Presión/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA