Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 374
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Phytomedicine ; 128: 155347, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38493717

RESUMEN

BACKGROUND: Bile acid (BA) enterohepatic circulation disorders are a main feature of chronic cholestatic diseases. Promoting BA metabolism is thus a potential method of improving enterohepatic circulation disorders, and treat enterohepatic inflammation, oxidative stress and fibrosis due to cholestasis. PURPOSE: To investigate the effect of JiaGaSongTang (JGST) and its blood-absorbed ingredient 6-gingerol on α-naphthylisothiocyanate (ANIT)-induced chronic cholestasis, as well as elucidate the underlying regulatory mechanism. METHODS: Chronic cholestasis was induced in mice via subcutaneous injection of ANIT (50 mg/kg) every other day for 14 d. Treatment groups were administered JGST orally daily. Damage to the liver and intestine was observed using histopathological techniques. Biochemical techniques were employed to assess total BA (TBA) levels in the serum, liver, and ileum samples. Liquid chromatograph-mass spectrometry/mass spectrometry (LC-MS/MS) was used to analyze fecal BA components. Bioinformatic methods were adopted to screen the core targets and pathways. The blood-absorbed ingredients of JGST were scrutinized via LC-MS/MS. The effects of the major JGST ingredients on farnesoid X receptor (FXR) transactivation were validated using dual luciferase reporter genes. Lastly, the effects of the FXR inhibitor, DY268, on JGST and 6-gingerol pharmacodynamics were observed at the cellular and animal levels. RESULTS: JGST ameliorated pathological impairments in the liver and intestine, diminishing TBA levels in the serum, liver and gut. Fecal BA profiling revealed that JGST enhanced the excretion of toxic BA constituents, including deoxycholic acid. Bioinformatic analyses indicated that JGST engaged in anti-inflammatory mechanisms, attenuating collagen accumulation, and orchestrating BA metabolism via interactions with FXR and other pertinent targets. LC-MS/MS analysis identified six ingredients absorbed to the bloodstream, including 6-gingerol. Surface plasmon resonance (SPR) and dual luciferase reporter gene assays confirmed the abilities of 6-gingerol to bind to FXR and activate its transactivation. Ultimately, in both cellular and animal models, the therapeutic efficacy of JGST and 6-gingerol in chronic cholestasis was attenuated in the presence of FXR inhibitors. CONCLUSION: The findings, for the first time, demonstrated that 6-gingerol, a blood-absorbed ingredient of JGST, can activate FXR to affect BA metabolism, and thereby attenuate ANIT-induced liver and intestinal injury in chronic cholestasis mice model via inhibition of inflammation, oxidative stress, and liver fibrosis, in part in a FXR-dependent mechanism.


Asunto(s)
1-Naftilisotiocianato , Ácidos y Sales Biliares , Catecoles , Colestasis , Alcoholes Grasos , Hígado , Receptores Citoplasmáticos y Nucleares , Animales , Ácidos y Sales Biliares/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Colestasis/tratamiento farmacológico , Colestasis/metabolismo , Masculino , Ratones , Catecoles/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , Alcoholes Grasos/farmacología , Medicamentos Herbarios Chinos/farmacología , Ratones Endogámicos C57BL , Humanos , Enfermedad Crónica , Modelos Animales de Enfermedad
2.
Kidney Blood Press Res ; 49(1): 137-143, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38266504

RESUMEN

INTRODUCTION: The process of vascular calcification has severe clinical consequences in a number of diseases, including diabetes, atherosclerosis, and end-stage renal disease. In the present study, we investigated the effect of policosanol (Poli), genistein (Gen), and vitamin D (VitD) separately and in association to evaluate the possible synergistic action on inorganic phosphate (Pi)-induced calcification of vascular smooth muscle cells (VSMCs). METHODS: Primary human VSMCs were cultured with either growth medium or growth medium supplemented with calcium and phosphorus (calcification medium) in combination with Poli, Gen, and VitD. Alizarin Red staining, mineralization, and the protein expression of RUNX2 and superoxide dismutase-2 (SOD2) were investigated. RESULTS: All three substances tested were effective at reducing osteogenic differentiation of VSMCs in a dose-dependent manner. Poli+Gen, Poli+VitD, Gen+VitD treatment induced a greater inhibition of calcification and RUNX2 expression compared to single compounds treatments. Moreover, the association of Poli+Gen+VitD (Reduplaxin®) was more effective at inhibiting VSMCs mineralization and preventing the increase in RUNX2 expression induced by calcification medium but not modified SOD2 expression. CONCLUSIONS: The association of Pol, Gen, and VitD (Reduplaxin®) has an additive inhibitory effect on the calcification process of VSMCs induced in vitro by a pro-calcifying medium.


Asunto(s)
Alcoholes Grasos , Genisteína , Músculo Liso Vascular , Calcificación Vascular , Vitamina D , Humanos , Vitamina D/farmacología , Alcoholes Grasos/farmacología , Células Cultivadas , Calcificación Vascular/prevención & control , Calcificación Vascular/inducido químicamente , Calcificación Vascular/tratamiento farmacológico , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citología , Genisteína/farmacología , Genisteína/uso terapéutico , Superóxido Dismutasa/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo
3.
Phytomedicine ; 115: 154835, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37121058

RESUMEN

BACKGROUND: The 6-Gingerol has significant anti-inflammatory, anti-oxidative and hypolipidemic activities and is widely used for treating cardiac-cerebral vascular diseases. However, the multi-target mechanism of 6-Gingerol in the treatment of atherosclerosis remains to be elucidated. METHODS: Firstly, the therapeutic actions of 6-Gingerol anti-atherosclerosis were researched based on an atherosclerotic ApoE-deficient mice model induced by high-fat feed. Then, network pharmacology and molecular docking were employed to reveal the anti-atherogenic mechanism of 6-Gingerol. Finally, the target for these predictions was validated by target protein expression assay in vitro and in vivo experiments and further correlation analysis. RESULTS: Firstly, 6-Gingerol possessed obvious anti-atherogenic activity, which was manifested by a significant reduction in the plaque area, decrease in the atherosclerosis index and vulnerability index. Secondly, based on network pharmacology, 14 predicted intersection target genes between the targets of 6-Gingerol and atherogenic-related targets were identified. The key core targets of 6-Gingerol anti-atherosclerosis were found to be TP53, RELA, BAX, BCL2, and CASP3. Lipid and atherosclerosis pathways might play a critical role in 6-Gingerol anti-atherosclerosis. Molecular docking results also further revealed that the 6-Gingerol bound well and stable to key core targets from network pharmacological predictions. Then, the experimental results in vivo and in vitro verified that the up-regulation of TP53, RELA, BAX, CASP3, and down-regulation of BCL2 from atherosclerotic ApoE-deficient mice model can be improved by 6-Gingerol intervention. Meanwhile, the correlation analysis further confirmed that 6-Gingerol anti-atherosclerosis was closely related to these targets. CONCLUSION: The 6-Gingerol can markedly improve atherosclerosis by modulating key multi-targets TP53, RELA, BAX, CASP3, and BCL2 in lipid and atherosclerosis pathways. These novel findings shed light on the anti-atherosclerosis mechanism of 6-Gingerol from the perspective of multiple targets and pathways.


Asunto(s)
Aterosclerosis , Medicamentos Herbarios Chinos , Animales , Ratones , Simulación del Acoplamiento Molecular , Caspasa 3 , Farmacología en Red , Proteína X Asociada a bcl-2 , Aterosclerosis/tratamiento farmacológico , Alcoholes Grasos/farmacología , Apolipoproteínas E , Modelos Animales de Enfermedad
4.
Naunyn Schmiedebergs Arch Pharmacol ; 396(4): 633-647, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36585999

RESUMEN

The rhizomes of ginger have been in use in many forms of traditional and alternative medicines. Besides being employed as condiment and flavoring agent, it is used in the treatment of nausea, osteoarthritis, muscle pain, menstrual pain, chronic indigestion, Alzheimer's disease, and cancer. Ginger rhizome contains volatile oils, phenolic compounds and resins, and characterization studies showed that [6]-gingerol, [6]-shogaol, and [6]-paradol are reported to be the pharmacologically active components. Gingerol is a major chemical constituent found as volatile oil in the rhizomes of ginger. It has several medicinal benefits and used for the treatment of rheumatoid arthritis, nausea, cancer, and diabetes. Many studies have been carried out in various parts of the world to isolate and standardize gingerol for their use as a complementary medicine. The present review summarizes wide range of research studies on gingerol and its pharmacological roles in various metabolic diseases.


Asunto(s)
Catecoles , Zingiber officinale , Catecoles/farmacología , Catecoles/uso terapéutico , Alcoholes Grasos/farmacología , Alcoholes Grasos/uso terapéutico , Alcoholes Grasos/química , Extractos Vegetales/química , Zingiber officinale/química , Zingiber officinale/metabolismo
5.
J Nat Med ; 77(1): 118-127, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36209453

RESUMEN

Ginger (Zingiber officinale Roscoe) is a perennial plant widely distributed in tropical and subtropical regions, and its rhizomes are sometimes processed for use in traditional medicine. In Japan, "ginger" (Shokyo in Japanese) and "processed ginger" (Kankyo in Japanese) are defined as crude drugs derived from ginger rhizomes, which have different medicinal properties due to complex changes in their chemical composition during processing. The effects of processing on gingerols and shogaols are well known, but for other phytochemicals remain unclear. Therefore, the present study prepared dried ginger and processed ginger derived from three ginger cultivars (Kintoki, Kogane, and Tosa ginger) and examined the effects of drying and processing on multiple secondary metabolites. Drying showed only a limited effect on ginger chemical constituents and significantly reduced [6]-gingerol content in Tosa ginger. In contrast, processing altered content of numerous metabolites, such as terpenes and gingerol-related compounds, in addition to those gingerols and shogaols. Notably, processing reduced labdane diterpene content, including labdadienedial, aframodial, and galanolactone in all ginger cultivars. Our results show galanolactone with anti-emetic activity was abundant in dried ginger and decreased following processing, highlighting different uses between "ginger" and "processed ginger" in traditional medicine. Overall, we comprehensively clarified the impact of drying and processing on terpenes and gingerol-related compounds. These findings help reveal the varying medicinal properties among crude drugs prepared from Z. officinale.


Asunto(s)
Diterpenos , Zingiber officinale , Zingiber officinale/química , Catecoles/química , Alcoholes Grasos/farmacología , Diterpenos/farmacología , Extractos Vegetales/química , Terpenos/farmacología , Terpenos/metabolismo
6.
Nutrients ; 14(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36501201

RESUMEN

BACKGROUND: Nutrients are widely used for treating illnesses in traditional medicine. Ginger has long been used in folk medicine to treat motion sickness and other minor health disorders. Chronic non-healing wounds might elicit an inflammation response and cancerous mutation. Few clinical studies have investigated 6-gingerol's wound-healing activity due to its poor pharmacokinetic properties. However, nanotechnology can deliver 6-gingerol while possibly enhancing these properties. Our study aimed to develop a nanophytosome system loaded with 6-gingerol molecules to investigate the delivery system's influence on wound healing and anti-cancer activities. METHODS: We adopted the thin-film hydration method to synthesize nanophytosomes. We used lipids in a ratio of 70:25:5 for DOPC(dioleoyl-sn-glycero-3-phosphocholine): cholesterol: DSPE/PEG2000, respectively. We loaded the 6-gingerol molecules in a concentration of 1.67 mg/mL and achieved size reduction via the extrusion technique. We determined cytotoxicity using lung, breast, and pancreatic cancer cell lines. We performed gene expression of inflammation markers and cytokines according to international protocols. RESULTS: The synthesized nanophytosome particle sizes were 150.16 ± 1.65, the total charge was -13.36 ± 1.266, and the polydispersity index was 0.060 ± 0.050. Transmission electron microscopy determined the synthesized particles' spherical shape and uniform size. The encapsulation efficiency was 34.54% ± 0.035. Our biological tests showed that 6-gingerol nanophytosomes displayed selective antiproliferative activity, considerable downregulation of inflammatory markers and cytokines, and an enhanced wound-healing process. CONCLUSIONS: Our results confirm the anti-cancer activity of PEGylated nanophytosome 6-gingerol, with superior activity exhibited in accelerating wound healing.


Asunto(s)
Catecoles , Alcoholes Grasos , Alcoholes Grasos/farmacología , Catecoles/farmacocinética , Tamaño de la Partícula , Cicatrización de Heridas
7.
Molecules ; 27(21)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36364048

RESUMEN

Ulcerative colitis, Crohn's disease, rheumatoid arthritis, psoriasis, and lupus erythematosus are some of common inflammatory diseases. These affections are highly disabling and share signals such as inflammatory sequences and immune dysregulation. The use of foods with anti-inflammatory properties such as ginger (Zingiber officinale Roscoe) could improve the quality of life of these patients. Ginger is a plant widely used and known by its bioactive compounds. There is enough evidence to prove that ginger possesses multiple biological activities, especially antioxidant and anti-inflammatory capacities. In this review, we summarize the current knowledge about the bioactive compounds of ginger and their role in the inflammatory process and its signaling pathways. We can conclude that the compounds 6-shoagol, zingerone, and 8-shoagol display promising results in human and animal models, reducing some of the main symptoms of some inflammatory diseases such as arthritis. For lupus, 6-gingerol demonstrated a protective attenuating neutrophil extracellular trap release in response to phosphodiesterase inhibition. Ginger decreases NF-kß in psoriasis, and its short-term administration may be an alternative coadjuvant treatment. Ginger may exert a function of supplementation and protection against cancer. Furthermore, when receiving chemotherapy, ginger may reduce some symptoms of treatment (e.g., nausea).


Asunto(s)
Psoriasis , Zingiber officinale , Animales , Humanos , Zingiber officinale/metabolismo , Calidad de Vida , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Alcoholes Grasos/farmacología , Catecoles/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Psoriasis/tratamiento farmacológico
8.
Eur Rev Med Pharmacol Sci ; 26(18): 6512-6522, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36196700

RESUMEN

OBJECTIVE: Accumulating studies have demonstrated the potential activity of ginger in treating and managing several diseases but little is known about its protective effects against teratogenicity of chemical toxins. Thus, in this study, we have evaluated the protective effect of gingerol fraction (GF) against methyl ethyl ketone (MEK) induced teratogenic effects in newborns of mice. MATERIALS AND METHODS: A total of 30 mature females and fifteen male mice (Mus musculus) weighing 25-30 g were included in this study. The pregnant mice were divided into three groups (10 mice each); control group (GI, mice received normal drinking water; NDW), methyl ethyl ketone (MEK) treated group (GII, received MEK at a dose of 350 mg/kg body weight in NDW), and GF treated group (GIII; mice received GF at a dose of 25 mg/kg in NDR). Histological analysis, cellular oxidative, and antioxidant enzymes, fibrosis, and apoptosis of brain, liver, and kidney tissues were estimated by histological and immunoassay techniques. RESULTS: In this study, the treatment of pregnant female mice with gingerol fractions (GF) at a dose of 25 mg/kg significantly protected all tissues organs of mothers and their offspring against the teratogenic effects induced by MEK at a dose of 350 mg/kg. A significant improvement in cellular antioxidant enzymes GSH, SOD, and peroxidase activities along with a reduction in the initiation of cellular oxidative free radicals (TBARS) was reported in GF treated mice compared to mice intoxicated with MEK (350 mg/kg). In addition, a significant reduction in cellular fibrosis and apoptosis was reported in all tissues of mothers and their offspring's following treatment with GF. HPLC analysis of ginger extracts estimated a set of polyphenolic compounds such [6]-gingerol, [8]-gingerol, [10]-gingerol, and [6]-shogaol which are responsible for the antioxidant, anti-fibrotic, and anti-apoptotic protective effects against teratogenic effects of MEK. CONCLUSIONS: Gingerol fractions (GF) at a dose of 25 mg/kg significantly protected all tissues organs of mothers and their offspring against the teratogenic effects induced by MEK at a dose of 350 mg/kg. The beneficial effects of ginger phenolic compounds; [6]-gingerol, [8]-gingerol, [10]-gingerol, and [6]-shogaol against teratogenic effects of MEK proceeded through their antioxidant, anti-fibrotic, and anti-apoptotic properties.


Asunto(s)
Catecoles , Alcoholes Grasos , Extractos Vegetales , Zingiber officinale , Animales , Femenino , Masculino , Ratones , Antioxidantes/química , Antioxidantes/farmacología , Butanonas/toxicidad , Catecoles/química , Catecoles/farmacología , Catecoles/uso terapéutico , Alcoholes Grasos/química , Alcoholes Grasos/farmacología , Alcoholes Grasos/uso terapéutico , Fibrosis , Zingiber officinale/química , Peroxidasas , Extractos Vegetales/uso terapéutico , Superóxido Dismutasa , Sustancias Reactivas al Ácido Tiobarbitúrico
9.
Biofactors ; 48(5): 993-1004, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36191294

RESUMEN

Metabolic syndrome is an inflammatory disorder characterized by diabetes, obesity, atherosclerosis, and hypertension. Globally, this disease is increasing, especially in developed countries. Supposedly, herbal treatments for this disease likely have fewer adverse effects than chemical medications. Thus, they can be suitable options among the available chemical treatments. Ginger has been used as a spice and medicinal plant in traditional medicine and cooking. This herbal compound and its derivatives, such as 6-gingerol, have shown promising effects on various molecular aspects of metabolic syndrome. In this study, we reviewed and discussed the significant impacts of gingerol, a derivative of ginger, on metabolic syndrome through various mechanisms. The benefits of 6-gingerol include its effects on AMP-activated protein kinase (AMPK), which prevent diabetes, lipid regulating effect (peroxisome proliferator-activated receptors, PPARs), as well as its effects on enzymes and proteins preventing hyperlipidemia caused by a high-fat diet. In addition, 6-gingerol has anti-atherosclerosis and anti-hypertension effects through several molecular mechanisms. The current review will discuss various effects of 6-gingerol on molecular pathways involved in diabetes, obesity, atherosclerosis, and hypertension as characterizing features of metabolic syndrome and suggests that 6-gingerol can be a potential treatment agent for metabolic syndrome and shed light on a higher requirement for more pre-clinical and clinical investigations.


Asunto(s)
Síndrome Metabólico , Zingiber officinale , Proteínas Quinasas Activadas por AMP/metabolismo , Catecoles , Alcoholes Grasos/química , Alcoholes Grasos/farmacología , Alcoholes Grasos/uso terapéutico , Zingiber officinale/química , Humanos , Síndrome Metabólico/tratamiento farmacológico , Obesidad , Receptores Activados del Proliferador del Peroxisoma , Extractos Vegetales/química
10.
Mar Drugs ; 20(9)2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36135775

RESUMEN

SARS-CoV-2 is the causative agent of the COVID-19 pandemic. This in silico study aimed to elucidate therapeutic efficacies against SARS-CoV-2 of phyco-compounds from the seaweed, Ulva fasciata. Twelve phyco-compounds were isolated and toxicity was analyzed by VEGA QSAR. Five compounds were found to be nonmutagenic, noncarcinogenic and nontoxic. Moreover, antiviral activity was evaluated by PASS. Binding affinities of five of these therapeutic compounds were predicted to possess probable biological activity. Fifteen SARS-CoV-2 target proteins were analyzed by the AutoDock Vina program for molecular docking binding energy analysis and the 6Y84 protein was determined to possess optimal binding affinities. The Desmond program from Schrödinger's suite was used to study high performance molecular dynamic simulation properties for 3,7,11,15-Tetramethyl-2-hexadecen-1-ol-6Y84 for better drug evaluation. The ligand with 6Y84 had stronger binding affinities (-5.9 kcal/mol) over two standard drugs, Chloroquine (-5.6 kcal/mol) and Interferon α-2b (-3.8 kcal/mol). Swiss ADME calculated physicochemical/lipophilicity/water solubility/pharmacokinetic properties for 3,7,11,15-Tetramethyl-2-hexadecen-1-ol, showing that this therapeutic agent may be effective against SARS-CoV-2.


Asunto(s)
Antivirales , SARS-CoV-2 , Ulva , Antivirales/química , Antivirales/farmacología , Cloroquina , Alcoholes Grasos/química , Alcoholes Grasos/farmacología , Humanos , Interferón-alfa , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas/química , SARS-CoV-2/efectos de los fármacos , Terpenos/química , Terpenos/farmacología , Ulva/química , Tratamiento Farmacológico de COVID-19
11.
J Proteomics ; 269: 104723, 2022 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-36096434

RESUMEN

Ginger extract has been reported to possess antioxidant properties. However, components isolated from ginger have been rarely reported to inhibit oxidation. Herein, the antioxidant properties of ginger and purified components derived from it (6-gingerol, zingerone, rutin, quercetin, and kaempferol) were confirmed by using HPLC and were further used to investigate its effect on lamb meat. Myofibrillar proteins isolated (MPI) from lamb meat were incubated with ginger and its constituents under induced Fenton oxidation (1.0 mmol/L FeCl3, 0.1 mmol/L Asc, and 20 mmol/L H2O2) for 1, 3,5, and 7 h. Incubating meat protein isolate in the absence of ginger extract or its components resulted in a substantial drop in sulfhydryl groups, an increase in protein carbonyl content, and a corresponding increase in TBARS content. However, ginger extract and its constituents demonstrated antioxidant properties, which might be attributed to their hydroxyl groups and suitable solubilizing side chains. Overall, ginger extract exhibited the highest antioxidant capabilities of all treated samples, suggesting that ginger extracts may be used as a natural antioxidant in meat and lipid/protein-containing processed products. SIGNIFICANCE OF THE STUDY: Ginger extract is also frequently used as a herbal medicine due to its anti-inflammatory, anti-cancer, and antibacterial qualities. Nonvolatile pungent chemicals found in ginger, such as gingerol, shogaols, paradols, and zingerone, as well as kaempferol, rutin, and other phenolic compounds, have been confirmed in ginger extract and have been shown to have antioxidant action driven by free radical elimination. Despite these findings, ginger extract and its pure constituent components have seldom been shown to have the ability to slow protein and lipid oxidation in meat and meat-related products. The effect of ginger extracts on the oxidative stability of myofibriller protein isolate has never been investigated. Exploiting the phenolic content of ginger extract may result in a discovery that would have a huge influence on both the ginger and meat industries as well as other food processing sectors. The first aim of our study was to confirm the presence of six selected phenolic compounds (rutin, kaempferol, 6-gingerol, zingerone, naringenin, and quercetin) in ginger as reported by literature, and the second objective was to determine the efficacy of ginger extracts and its purified constituents on myofibrillar protein isolate treated under induced Fenton oxidation.


Asunto(s)
Quempferoles , Zingiber officinale , Animales , Antibacterianos , Antiinflamatorios/química , Antioxidantes/metabolismo , Antioxidantes/farmacología , Catecoles , Alcoholes Grasos/química , Alcoholes Grasos/farmacología , Zingiber officinale/química , Zingiber officinale/metabolismo , Guayacol/análogos & derivados , Peróxido de Hidrógeno/metabolismo , Proteínas de la Carne , Fenoles , Extractos Vegetales/química , Extractos Vegetales/farmacología , Carbonilación Proteica , Quercetina , Rutina , Ovinos , Sustancias Reactivas al Ácido Tiobarbitúrico
12.
Int J Mol Sci ; 23(11)2022 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-35682770

RESUMEN

5-Lipoxygenase (5-LOX) converts arachidonic acid to lipidic inflammatory mediators such as leukotrienes (LTs). In diseases such as asthma, LTs contribute to a physiopathology that could be reverted by blocking 5-LOX. Natural products with anti-inflammatory potential such as ginger have been used as nutraceuticals since ancient times. 6-Gingerol and 6-shogaol are the most abundant compounds in the ginger rhizome; they possess anti-inflammatory, antioxidant, and chemopreventive properties. In the present study, 6-gingerol and 6-shogaol structures were analyzed and compared with two commercial 5-LOX inhibitors (zileuton and atreleuton) and with other inhibitor candidates (3f, NDGA, CP 209, caffeic acid, and caffeic acid phenethyl ester (CAPE)). The pharmacokinetics and toxicological properties of 6-gingerol, 6-shogaol, and the other compounds were evaluated. Targeted molecular coupling was performed to identify the optimal catalytic pocket for 5-LOX inhibition. The results showed that 6-gingerol and 6-shogaol follow all of the recommended pharmacokinetic parameters. These compounds could be inhibitors of 5-LOX because they present specific interactions with the residues involved in molecular inhibition. The current study demonstrated the potential of 6-gingerol and 6-shogaol as anti-inflammatory agents that inhibit 5-LOX, as they present a high level of performance in the toxicological analysis and could be catabolized by the cytochrome p450 enzymatic complex; however, 6-gingerol was superior in safety compared to 6-shogaol.


Asunto(s)
Zingiber officinale , Antiinflamatorios/farmacología , Araquidonato 5-Lipooxigenasa , Catecoles/química , Alcoholes Grasos/química , Alcoholes Grasos/farmacología , Zingiber officinale/química , Oxidación-Reducción , Extractos Vegetales/farmacología
13.
J Food Sci ; 87(7): 3307-3317, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35708209

RESUMEN

Ginger extract (GE) and its major component 6-gingerol (6G) have been reported to exert anti-tumor effects in various cancers. The underlying mechanism, however, has not been well demonstrated. Here, we have focused on the relationship between promotion of mitochondrial biogenesis in tumor infiltrating CD8+ T cells induced by GE and 6G and their cytotoxic effect. The results showed that GE induced 56% inhibition of tumor growth in Lewis lung carcinoma (LLC) xenograft mouse model and 6G induced 33% (25 mg/kg) and 37% (50 mg/kg) inhibition. GE increased mitochondrial mass of CD8+ T cells in tumor and draining lymph nodes (DLNs) significantly, while 6G had no significant effect. GE and 6G both had no significant influence on histopathological changes of liver and kidney in mice. In the co-culture system of CTLL-2 cells and LLC cells, GE enhanced the cytotoxicity of CTLL-2 cells against LLC cells by 14% and 19% at concentrations of 2.5 and 5 mg/ml, respectively. 6G did not promote cytotoxicity of CTLL-2 cells. GE increased mitochondrial mass at 5 and 10 mg/ml and mtDNA copy number and ATP production at 2.5, 5, 10 mg/ml in CTLL-2 cells. 6G promoted mtDNA copy number at 50, 100, 150 µM and mitochondrial mass and ATP production at 25, 50, 100, 150 µM in CTLL-2 cells. These results suggest that promotion of mitochondrial biogenesis and function in tumor infiltrating CD8+ T cells may play an essential role in GE-induced inhibition of tumor growth. The current results perfect the mechanism of anti-tumor effect of ginger, which is beneficial for further application in cancer management. PRACTICAL APPLICATION: Ginger, as a worldwide food seasoning and herbal medicine in traditional Chinese medicine, has been reported to possess anti-tumor efficacy. To our knowledge, it is the first time to focus on ginger's ability of promoting mitochondrial biogenesis in tumor infiltrating CD8+ T cells to explore the mechanism of its anti-tumor effect. Our observations demonstrate that ginger inhibits tumor growth via promoting mitochondrial biogenesis and function of T cells. The present study links food to anti-tumor immunity and provides impetus to investigate and design dietary supplements for cancer management.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias , Extractos Vegetales , Zingiber officinale , Adenosina Trifosfato , Animales , Linfocitos T CD8-positivos , Catecoles/química , Catecoles/farmacología , ADN Mitocondrial , Alcoholes Grasos/química , Alcoholes Grasos/farmacología , Zingiber officinale/química , Humanos , Ratones , Biogénesis de Organelos , Extractos Vegetales/química , Extractos Vegetales/farmacología
14.
Chem Phys Lipids ; 245: 105206, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35483420

RESUMEN

6-Gingerol (Gn) is an active compound derived from ginger which possesses various biological activities. The therapeutic applications of Gn are limited due to its hydrophobic nature. To ease its administration, one of the nano-emulsion methods, liposome was selected to encapsulate Gn. Response Surface Methodology (RSM) was used to optimize liposome ratio. 97.2% entrapment efficiency was achieved at the ratio of 1:20:2 (Drug: Lipid: Cholesterol). The optimized liposome attained size below 200 d nm, spherical shape, negative surface charge and showed sustain release upon physical characterization methods such as FESEM, DLS, Zeta potential, Drug release. The signature FTIR peaks of both free Gn and free liposome (FL) were also observed in Lipo-Gn peak. Lipo-Gn showed significant cytotoxic effect on A549 cells (IC50 160.5 ± 0.74 µM/ml) as well as inhibits the cell migration. DAPI staining showed higher apoptotic nuclear morphological change in the cells treated with Lipo-Gn, and also Lipo-Gn increased the apoptotic percentage in A549 as 39.89 and 70.32 for 12 and 24 h respectively which were significantly more than free Gn. Moreover, the formulation of Lipo-Gn showed significant cell cycle arrest at the G2/M phase compared with free Gn (28.9% and 34.9% in Free Gn vs. 42.7% and 50.1% in Lipo -Gn for 12 and 24 h respectively). Lipo-Gn have been assessed in NSCLC induced BALB/c mice and showed significantly improved pharmacological properties compared to those of free Gn. Thus, Lipo-Gn may be considered for its widening applications against lung cancer.


Asunto(s)
Alcoholes Grasos , Liposomas , Animales , Catecoles/farmacología , Alcoholes Grasos/farmacología , Ratones , Modelos Teóricos
15.
J Ethnopharmacol ; 290: 115077, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35131339

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: As a common medicinal and edible plant, Zingiber officinale Roscoe (ginger) is often used for the prevention of motion sickness. However, the mechanism of its anti-motion sickness remains to be elucidated. AIM OF THE STUDY: To explore novel treatment for motion sickness with less side effects, anti-motion sickness effect of ginger (Zingiber officinale) extract (GE) and the possible molecular mechanisms were investigated. MATERIALS AND METHODS: The anti-motion sickness effect of ginger was evaluated through mice animal experimental models. Components of ginger that might contribute to the anti-motion sickness effect were analyzed by LC-MS/MS. Subsequently, biochemical analysis integrated with serum metabolomic profiling were performed to reveal the systematic response of motion sickness mice to ginger extract's amelioration effect. RESULTS: Exhaustive swimming time of mice in the GE group reached 8.9 min, which was 52.2% longer than that in the model group. Motion sickness index scores and time taken traversing balance beam of mice in the GE group were decreased by 53.2% and 38.5%, respectively. LC-MS/MS analysis suggested that various active ingredients in GE, such as gingerol, ginger oil and terpenoids, might contribute to its appealing anti-motion sickness activity. Biochemical analysis revealed that GE can relieve motion sickness through reducing histamine and acetylcholine release in vestibular system, regulating fatty acid oxidation, sugar metabolism and bile acid metabolism in mice. CONCLUSION: Gavage of mice with GE can effectively relieve the symptoms of autonomic nervous system dysfunction, improve the balance and coordination ability and ameliorate the ability to complete complex work after rotation stimulation. GE has attractive potential for development and utilization as novel anti-motion sickness food or drugs.


Asunto(s)
Mareo por Movimiento/patología , Extractos Vegetales/farmacología , Zingiber officinale/química , Acetilcolina/metabolismo , Animales , Animales no Consanguíneos , Conducta Animal/efectos de los fármacos , Ácidos y Sales Biliares/metabolismo , Catecoles/farmacología , Cromatografía Liquida , Relación Dosis-Respuesta a Droga , Ácidos Grasos/metabolismo , Alcoholes Grasos/farmacología , Histamina/metabolismo , Masculino , Ratones , Aceites de Plantas/farmacología , Azúcares/metabolismo , Espectrometría de Masas en Tándem , Terpenos/farmacología
16.
J Biomol Struct Dyn ; 40(1): 389-400, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32876538

RESUMEN

Medicinal plants have been known to provide the essential raw material for the majority of antiviral drugs. This study demonstrated the putative inhibitory potential of curcumin, allicin, and gingerol towards cathepsin K, COVID-19 main protease, and SARS-CoV 3 C-like protease. The pharmacokinetic properties were predicted through the SwissADME server while the corresponding binding affinity of the selected phytocompounds towards the proteins was computed using PyRx-Python Prescription 0.8 and the binding free energy were computed based on conventional molecular dynamics using LARMD server. The ADMET properties revealed all the drugs possess drug-like properties. Curcumin has the highest binding affinities with all the selected proteases while allicin has the lowest binding affinities towards the proteases. Moreover, it was observed that curcumin exhibited the highest binding free energy of -17.90 ± 0.23,  -18.21 ± 0.25, and -9.67 ± 0.08 kcal/mol for Cathepsin K, COVID-19 main protease, and SARS-CoV 3 C-like protease, respectively. Based on the activities of the phytocompounds against coronavirus target proteases involved in the viral entry as evident from the results, the study, therefore, suggests that these phytocompounds could be valuable for the development of drugs useful for the prevention of coronavirus entry and replication.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Catecoles , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Curcumina , SARS-CoV-2/efectos de los fármacos , COVID-19 , Catecoles/farmacología , Catepsina K/antagonistas & inhibidores , Curcumina/farmacología , Disulfuros/farmacología , Alcoholes Grasos/farmacología , Humanos , Simulación del Acoplamiento Molecular , Ácidos Sulfínicos/farmacología
17.
Chem Biodivers ; 19(1): e202100608, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34786852

RESUMEN

A new globoscinic acid derivative, aspertubin A (1) along with four known compounds, were obtained from the co-culture of Aspergillus tubingensis S1120 with red ginseng. The chemical structures of compounds were characterized by using spectroscopic methods, the calculated and experimental electronic circular dichroism. Panaxytriol (2) from red ginseng, and asperic acid (4) showed significant antifeedant effect with the antifeedant rates of 75 % and 80 % at the concentrations of 50 µg/cm2 . Monomeric carviolin (3) and asperazine (5) displayed weak attractant activity on silkworm. All compounds were assayed for antifungal activities against phytopathogens A. tubingensis, Nigrospora oryzae and Phoma herbarum and the results indicated that autotoxic aspertubin A (1) and panaxytriol (2) possessed selective inhibition against A. tubingensis with MIC values at 8 µg/mL. The co-culture extract showed higher antifeedant and antifungal activities against P. herbarum than those of monoculture of A. tubingensis in ordinary medium. So the medicinal plant and endophyte showed synergistic effect on the plant disease resistance by active compounds from the coculture of A. tubingensis S1120 and red ginseng.


Asunto(s)
Antifúngicos/química , Aspergillus/química , Repelentes de Insectos/química , Panax/química , Animales , Antifúngicos/aislamiento & purificación , Antifúngicos/farmacología , Ascomicetos/efectos de los fármacos , Aspergillus/crecimiento & desarrollo , Aspergillus/metabolismo , Bombyx/efectos de los fármacos , Bombyx/crecimiento & desarrollo , Enediinos/química , Enediinos/aislamiento & purificación , Enediinos/farmacología , Alcoholes Grasos/química , Alcoholes Grasos/aislamiento & purificación , Alcoholes Grasos/farmacología , Repelentes de Insectos/aislamiento & purificación , Repelentes de Insectos/farmacología , Pruebas de Sensibilidad Microbiana , Conformación Molecular , Panax/crecimiento & desarrollo , Panax/metabolismo , Phoma/efectos de los fármacos , Plantas Medicinales/química , Plantas Medicinales/crecimiento & desarrollo , Plantas Medicinales/metabolismo
18.
Biomed Pharmacother ; 146: 112491, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34896967

RESUMEN

OBJECTIVES: Accumulating studies revealed that 6-gingerol, a compound extracted mainly from ginger, treats obesity by preventing hyperlipidemia in vivo induced by high-fat-diet (HFD). The present study intends to further evaluate the efficacy of 6-gingerol in the treatment of obesity and investigate its potential mechanism. METHODS: Obese mice were established by HFD induction. Bioinformatic analysis was used to predict the possible pathways enrolled by the application of 6-gingerol. Body weight and the levels of blood glucose and lipids were examined and analyzed for the evaluation of the therapeutic effect of 6-gingerol. The size and amounts as well as the status of adipocytes were determined by histological staining. The expression levels of related proteins in adipose tissue were assessed by immunohistochemical staining, immunofluorescent staining, and Western blot analysis. In addition, the expression levels of related mRNA were assessed by RT-qPCR. RESULTS: HFD induced obesity was significantly curbed by 6-gingerol treatment. Here inhibition mechanism of 6-gingerol is demonstrated on excessive hypertrophy and hyperplasia of adipocytes in white adipose tissue (WAT), which may be related to the regulation of adipocytokines, such as PPARγ, C/EBPα, FABP4 and adiponectin, and the TLR3/IL-6/JAK1/STAT3 axis. Moreover, 6-gingerol treatment suppressed the expressions of IL-1ß and CD68 in the liver and AKT/INSR/IRS-1 in epididymal WAT. CONCLUSION: The results suggested that 6-gingerol could alleviate metabolic inflammation in the liver and insulin resistance to treat obesity. The mechanism is mainly involved in the inhibition of excessive hypertrophy and hyperplasia of adipocytes.


Asunto(s)
Adipocitos/efectos de los fármacos , Fármacos Antiobesidad/uso terapéutico , Catecoles/uso terapéutico , Alcoholes Grasos/uso terapéutico , Enfermedades Metabólicas/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Adipocitos/patología , Animales , Fármacos Antiobesidad/farmacología , Catecoles/farmacología , Dieta Alta en Grasa , Alcoholes Grasos/farmacología , Hiperplasia/tratamiento farmacológico , Hiperplasia/metabolismo , Hipertrofia/tratamiento farmacológico , Hipertrofia/metabolismo , Resistencia a la Insulina , Interleucina-1beta/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Enfermedades Metabólicas/metabolismo , Ratones Endogámicos C57BL , PPAR gamma/metabolismo , Factor de Transcripción STAT3/metabolismo
19.
Anal Biochem ; 633: 114394, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34610334

RESUMEN

Human apurinic/pyrimidine endonuclease 1 (APE1) played a critical role in the occurrence, progress and prognosis of tumors through overexpression and subcellular localization. Thus, it has become an important target for enhancing the sensitivity of tumor cells to radiotherapy and chemotherapy. Therefore, detecting and imaging its intracellular activity is of great significance for inhibitor discovery, cancer diagnosis and therapy. In this work, using DNA-based nanoprobe, we developed a new method for monitor intracellular APE1 activity. The detecting system was consisted by single fluorophore labeled hairpin probe and reduced graphene oxide (rGO). The in vitro result showed that a liner response of the detection method ranged from 0.02 U/mL to 2 U/mL with a limit of detection of 0.02 U/mL. Furthermore, this strategy possessing high specificity was successfully applied for APE1-related inhibitor screening using intracellular fluorescence imaging. Panaxytriol, an effective inhibitor of APE1 activity, was screened from traditional Chinese medicine (TCM) and its effect on APE1 activity was monitored in real time in A549 cells. In summary, this sensitive and specific APE1 detection technology is expected to provide an assistance for APE1-related inhibitor screening and diseases diagnosis.


Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa/análisis , ADN/química , Grafito/química , Nanopartículas/química , Células A549 , ADN-(Sitio Apurínico o Apirimidínico) Liasa/antagonistas & inhibidores , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Evaluación Preclínica de Medicamentos , Enediinos/farmacología , Alcoholes Grasos/farmacología , Humanos , Imagen Óptica , Factores de Tiempo
20.
Molecules ; 26(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34641440

RESUMEN

Quorum sensing (QS) is employed by the opportunistic pathogen Pseudomonas aeruginosa to regulate physiological behaviors and virulence. QS inhibitors (QSIs) are potential anti-virulence agents for the therapy of P. aeruginosa infection. During the screening for QSIs from Chinese herbal medicines, falcarindiol (the major constituent of Notopterygium incisum) exhibited QS inhibitory activity. The subinhibitory concentration of falcarindiol exerted significant inhibitory effects on the formation of biofilm and the production of virulence factors such as elastase, pyocyanin, and rhamnolipid. The mRNA expression of QS-related genes (lasB, phzH, rhlA, lasI, rhlI, pqsA, and rhlR) was downregulated by falcarindiol while that of lasR was not affected by falcarindiol. The transcriptional activation of the lasI promoter was inhibited by falcarindiol in the P. aeruginosa QSIS-lasI selector. Further experiments confirmed that falcarindiol inhibited the las system using the reporter strain Escherichia coli MG4/pKDT17. Electrophoretic mobility shift assay (EMSA) showed that falcarindiol inhibited the binding of the transcription factor LasR and the lasI promoter region. Molecular docking showed that falcarindiol interacted with the Tyr47 residue, leading to LasR instability. The decrease of LasR-mediated transcriptional activation was responsible for the reduction of downstream gene expression, which further inhibited virulence production. The inhibition mechanism of falcarindiol to LasR provides a theoretical basis for its medicinal application.


Asunto(s)
Apiaceae/química , Diinos/farmacología , Alcoholes Grasos/farmacología , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Percepción de Quorum , Diinos/aislamiento & purificación , Alcoholes Grasos/aislamiento & purificación , Fitoquímicos/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA