Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.290
Filtrar
Más filtros

Intervalo de año de publicación
1.
JBRA Assist Reprod ; 28(2): 284-288, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38640350

RESUMEN

OBJECTIVE: Aluminum is a widely used metal in homes and industries. Xylopia aethiopica is an important medicinal plant with antioxidant properties. The objective of this study is to investigate the ameliorative potential of Xylopia aethiopica on aluminum-induced ovarian toxicity in Wistar rat. METHODS: Twenty-five rats were randomized into five groups with five rats per group. Group 1 received only distilled water; Group 2: received 150mg/kg of aluminum chloride; Group 3: received 150mg/kg aluminum chloride with 100/kg Xylopia aethiopica seed extracts; Group 4: received 150mg/kg aluminum chloride with 50 mg/kg Xylopia aethiopica seed extracts, and Group 5: received 150mg/kg aluminum chloride with 50mg/Kg zinc sulphate. For twenty-one days, all administrations were done orally. The rats were then sacrificed following chloroform anesthesia. The ovaries were harvested for histological examination. RESULTS: The data were analyzed on IBM SPSS software version 21 and the differences in mean values were considered significant at p<0.05. Xylopia aethiopica extracts significantly (p<0.05) reversed the detrimental effects of aluminum chloride on luteinizing hormone, follicle stimulating hormone, progesterone and estradiol. The histological analysis of the ovaries showed a significant improvement in rats treated with Xylopia aethiopica extract and zinc sulphate. However, Xylopia aethiopica was more effective in a dose-dependent manner. CONCLUSIONS: This study suggests that Xylopia aethiopica has ameliorative potential on aluminum-induced toxicity in the ovaries of adult female Wistar Rats.


Asunto(s)
Ovario , Extractos Vegetales , Ratas Wistar , Xylopia , Animales , Femenino , Extractos Vegetales/farmacología , Ratas , Ovario/efectos de los fármacos , Ovario/patología , Xylopia/química , Cloruro de Aluminio/toxicidad , Estradiol , Aluminio/toxicidad , Hormona Folículo Estimulante/sangre
2.
J Environ Manage ; 356: 120751, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38531131

RESUMEN

Cost-effective treatment or even valorization of the bauxite residue (red mud) from the alumina industry is in demand to improve their environmental and economic liabilities. This study proposes a strategy that provides a near-complete conversion of bauxite residue to valuable products. The first step involves dilute acid leaching, which allowed the fractionation of raw residues into (1) an aqueous fraction rich in silica and aluminium and (2) a solid residue rich in iron, titanium and rare earth elements. For the proposed process, 91% of the original silicon, 67% of the aluminium, 78% of the scandium and 69% of the cerium were recovered. The initial cost evaluation suggested that this approach is profitable with a gross margin of 167 $US per tonne. This "Residue2Product" approach should be considered for large-scale practices as one of the most economical and sustainable solutions to this environmental and economic liability for the alumina industry.


Asunto(s)
Óxido de Aluminio , Aluminio , Óxido de Aluminio/química , Hierro , Titanio , Agua
3.
Food Chem Toxicol ; 187: 114586, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38493978

RESUMEN

The risk assessment of heavy metals in tea is extremely imperative for the health of tea consumers. However, the effects of varietal variations and seasonal fluctuations on heavy metals and minerals in tea plants remain unclear. Inductively coupled plasma optical emission spectrometry (ICP-OES) was used to evaluate the contents of aluminum (Al), manganese (Mn), magnesium (Mg), boron (B), calcium (Ca), copper (Cu), cobalt (Co), iron (Fe), sodium (Na), zinc (Zn), arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), and antimony (Sb) in the two categories of young leaves (YL) and mature leaves (ML) of tea (Camellia sinensis) cultivars throughout the growing seasons. The results showed significant variations in the contents of the investigated nutrients both among the different cultivars and growing seasons as well. Furthermore, the average concentrations of Al, Mn, Mg, B, Ca, Cu, Co, Fe, Na, Zn, As, Cd, Cr, Ni, and Sb in YL ranged, from 671.58-2209.12, 1260.58-1902.21, 2290.56-2995.36, 91.18-164.68, 821.95-5708.20, 2.55-3.80, 3.96-25.22, 37.95-202.84, 81.79-205.05, 27.10-69.67, 0.028-0.053, 0.065-0.127, 2.40-3.73, 10.57-12.64, 0.11-0.14 mg kg-1, respectively. In ML, the concentrations were 2626.41-7834.60, 3980.82-6473.64, 3335.38-4537.48, 327.33-501.70, 9619.89-13153.68, 4.23-8.18, 17.23-34.20, 329.39-567.19, 145.36-248.69, 40.50-81.42, 0.089-0.169, 0.23-0.27, 5.24-7.89, 18.51-23.97, 0.15-0.19 mg kg-1, respectively. The contents of all analyzed nutrients were found to be higher in ML than in YL. Target hazard quotients (THQ) of As, Cd, Cr, Ni, and Sb, as well as the hazard index (HI), were all less than one, suggesting no risk to human health via tea consumption. This research might provide the groundwork for essential minerals recommendations, as well as a better understanding and management of heavy metal risks in tea.


Asunto(s)
Arsénico , Camellia sinensis , Metales Pesados , Humanos , Estaciones del Año , Cadmio/análisis , Monitoreo del Ambiente/métodos , Metales Pesados/toxicidad , Metales Pesados/análisis , Arsénico/análisis , Minerales , Cromo/análisis , Níquel/análisis , Manganeso/análisis , Aluminio/análisis , Medición de Riesgo , Zinc/análisis , Té/química
4.
Int J Biol Macromol ; 264(Pt 2): 130766, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38462101

RESUMEN

An inorganic/organic nanocomposite was used to develop an afterglow and color-tunable smart window. A combination of polylactic acid (PLA) plastic waste as an environmentally-friendly hosting agent, and lanthanide-activated strontium aluminum oxide nanoparticles (SAON) encapsulated with silica nanoparticles (SAON@Silica) as a photoluminescent efficient agent resulted in a smart organic/inorganic nanocomposite. In order to prepare SAON-encapsulated silica nanoparticles (SAON@Silica), the SAON nanoparticles were coated with silica using the heterogeneous precipitation method. By using transmission electron microscopy (TEM), SAON showed a diameter range of 5-12 nm, while the SAON@Silica nanoparticles showed a diameter range of 50-100 nm. In order to ensure the development of a colorless plastic film, a homogeneous dispersion of the phosphorescent Phosphor@Silica nanoparticles throughout the plastic bulk was confirmed. CIE Lab coordinates and luminescence spectra were used to study the color shift characteristics. Under visible light conditions, the plastic films were transparent. The photoluminescent films emitted green light at 525 nm when excited at 375 nm. The hydrophobicity and ultraviolet protection were enhanced without altering the fundamental physico-mechanical performance of the plastic sheet. The current color-tunable plastic can be used in many potential applications, such as warning signs, anti-counterfeiting barcodes, smart windows, and protective apparel.


Asunto(s)
Metales de Tierras Raras , Nanopartículas , Dióxido de Silicio , Poliésteres , Óxido de Aluminio , Aluminio
5.
Environ Sci Pollut Res Int ; 31(18): 27388-27402, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38512573

RESUMEN

In aluminum electrolysis, the iron-rich cover material is formed on the cover material and the steel rod connecting the carbon anode. Due to the high iron content in the iron-rich cover material, it differs from traditional cover material and thus requires harmless recycling and treatment. A process was proposed and used in this study to recovery F, Al, and Fe elements from the iron-rich cover material. This process involved aluminum sulfate solution leaching for fluorine recovery and alkali-acid synergistic leaching for α-Al2O3 and Fe2O3 recovery were obtained. The optimal leaching rates for F, Na, Ca, Fe, and Si were 93.92, 96.25, 94.53, 4.48, and 28.87%, respectively. The leaching solution and leaching residue were obtained. The leaching solution was neutralized to obtain the aluminum hydroxide fluoride hydrate (AHFH, AlF1.5(OH)1.5·(H2O)0.375). AHFH was calcined to form a mixture of AlF3 and Al2O3 with a purity of 96.14%. The overall recovery rate of F in the entire process was 92.36%. Additionally, the leaching residue was sequentially leached with alkali and acid to obtain the acid leach residue α-Al2O3. The pH of the acid-leached solution was adjusted to produce a black-brown precipitate, which was converted to Fe2O3 under a high-temperature calcination, and the recovery rate of Fe in the whole process was 94.54%. Therefore, this study provides a new method for recovering F, Al, and Fe in iron-rich cover material, enabling the utilization of aluminum hazardous waste sources.


Asunto(s)
Óxido de Aluminio , Aluminio , Electrólisis , Compuestos Férricos , Fluoruros , Compuestos Férricos/química , Aluminio/química , Fluoruros/química , Óxido de Aluminio/química , Hierro/química , Compuestos de Aluminio/química , Reciclaje
6.
ACS Nano ; 18(11): 8143-8156, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38436248

RESUMEN

The complexity and heterogeneity of individual tumors have hindered the efficacy of existing therapeutic cancer vaccines, sparking intensive interest in the development of more effective in situ vaccines. Herein, we introduce a cancer nanovaccine for reactive oxygen species-augmented metalloimmunotherapy in which FeAl-layered double hydroxide (LDH) is used as a delivery vehicle with dihydroartemisinin (DHA) as cargo. The LDH framework is acid-labile and can be degraded in the tumor microenvironment, releasing iron ions, aluminum ions, and DHA. The iron ions contribute to aggravated intratumoral oxidative stress injury by the synergistic Fenton reaction and DHA activation, causing apoptosis, ferroptosis, and immunogenic cell death in cancer cells. The subsequently released tumor-associated antigens with the aluminum adjuvant form a cancer nanovaccine to generate robust and long-term immune responses against cancer recurrence and metastasis. Moreover, Fe ion-enabled T1-weighted magnetic resonance imaging can facilitate real-time tumor therapy monitoring. This cancer-nanovaccine-mediated metalloimmunotherapy strategy has the potential for revolutionizing the precision immunotherapy landscape.


Asunto(s)
Artemisininas , Nanopartículas , Neoplasias , Humanos , Especies Reactivas de Oxígeno/metabolismo , Nanovacunas , Aluminio , Neoplasias/tratamiento farmacológico , Hierro , Hidróxidos , Inmunoterapia/métodos , Microambiente Tumoral
7.
Chemosphere ; 352: 141338, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38331260

RESUMEN

Resource recovery from solid organic wastes, such as degradable plastics, and upgrading raw bio-oil are important ways for reducing carbon and pollution emissions. Hydrodeoxygenation (HDO) is a common thermochemical treatment to upgrade crude bio-oil. In this study, in order to realize in situ HDO during the hydropyrolysis of heavy bio-oil and degradable plastics, a reduced Fe/Ce oxygen carrier (OC) was used to catalytically remove oxygen from organics under the methanol-zero valent aluminum (ZV Al) media, where the hydrogen was produced during pyrolysis instead of a direct hydrogen supply. The results showed that the reduced OC captured the oxygen from the pyrolysis products of heavy bio-oil and degradable plastic, representing the multi-selectivity of reduced OC to phenols, ketones, etc. The ZV Al system promoted the production and utilization of hydrogen, as evidenced by the increased hydrogen content in gas phase and hydrocarbon content in liquid phase. The hydrocarbon component distribution in the liquid phase increased clearly when hydropyrolysis with degradable plastics addtion, but the excess degradable plastics addition caused increasing of the liquid product viscosity, and decreasing of the liquid products yield for the higher ash content in degradable plastic, and a higher ZV Al amount was required to maintain the hydropyrolysis. Molecular dynamics simulations verified the synergistic effect of degradable plastics and bio-oil by the pyrolysis behavior in different systems and temperatures, and the pyrolysis pathways were proposed. This non-autocatalytic system realized the resource recovery and heavy bio-oil upgrading using an Fe/Ce OC.


Asunto(s)
Aluminio , Oxígeno , Aceites de Plantas , Metanol , Polifenoles , Hidrógeno , Biocombustibles/análisis , Calor , Catálisis , Plásticos
8.
Sci Rep ; 14(1): 4717, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413655

RESUMEN

Aluminum (Al) inhibits growth and limits plant productivity in acidic soils. An important strategy to increase Al tolerance is the use of silicon (Si) nutrition. Thus, the aim of this study was to evaluate the interactive role of Si in increasing the growth, physiological and morphoanatomy responses of sugarcane plants under Al toxicity. A 4 × 2 factorial scheme in a completely randomized design was used to study the impact of Si (2 mM) on attenuating Al toxicity (0, 10, 15 and 20 mg L-1, as Al2(SO4)3·18H2O) in sugarcane seedlings. After 45 days, Al toxicity affected sugarcane growth by increasing Al uptake and accumulation, modifying root growth, thickness, and morphoanatomy, and decreasing pigment content, gas exchange parameters, and the number of adaxial and abaxial stomata. However, Si attenuated Al toxicity in the sugarcane seedlings by limiting Al uptake and transport to the shoots, causing positive changes in root morphoanatomy, higher pigment content, improving gas exchange parameters, thereby increased growth. Furthermore, cultivar 'CTC9003' showed beneficial impacts from Si supplementation than 'CTC9002', especially under Al toxicity. The findings of this study suggest that Si plays a notable role in improving anatomical and physiological aspects, particularly the growth of sugarcane seedlings under Al toxicity.


Asunto(s)
Saccharum , Silicio , Silicio/farmacología , Aluminio/toxicidad , Fotosíntesis , Plantas , Plantones , Raíces de Plantas
9.
J Environ Manage ; 351: 119939, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38169267

RESUMEN

Secondary aluminum ash (SAD) disposal is challenging, particularly in developing countries, and presents severe eco-environmental risks. This paper presents the treatment techniques, mechanisms, and effects of SAD at the current technical-economic level based on aluminum ash's resource utilization and environmental properties. Five recovery techniques were summarized based on aluminum's recoverability in SAD. Four traditional utilization methods were outlined as per the utilization of alumina in SAD. Three new utilization methods of SAD were summarized based on the removability (or convertibility) of aluminum nitride in SAD. The R-U-R (recoverability, utilizability, and removability) theory of SAD was formed based on several studies that helped identify the fingerprint of SAD. Furthermore, the utilization strategies of SAD, which supported the recycling of aluminum ash, were proposed. To form a perfect fingerprint database and develop various relevant techniques, future research must focus on an extensive examination of the characteristics of aluminum ash. This research will be advantageous for addressing the resource and environmental challenges of aluminum ash.


Asunto(s)
Óxido de Aluminio , Aluminio , Reciclaje
10.
Methods Mol Biol ; 2759: 107-130, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38285144

RESUMEN

Commercial plant tissue culture now primarily serves the ornamental horticulture industry. The main pillars of the commercial tissue culture business are scalability of production, cost reduction, limited labor involvement, high quality, and genetic homogeneity of propagated plants. Based on these requirements, the current protocol employs a partially immersed liquid culture medium supported by a flexible aluminum mesh raft with a wire stand to facilitate shoot organogenesis from the horizontally placed root explants and hold the plants upright for shoot multiplication and rooting of Limonium Misty Blue. It is a florist crop that is in high demand as both dried and fresh flower fillers in various floral decorations. The majority of cultivated Limonium or statice cultivars are heterozygous in nature and propagate commercially through in vitro propagation to cater to the huge demand for planting materials needed for flower production. This is the first protocol to describe direct shoot organogenesis from the roots in a liquid half-component of Murashige and Skoog's (1962) (MS) basal medium supplemented with 1.6 µM NAA and 1.1 µM BA. The regenerated shoots are multiplied and rooted at the same time on the raft in a MS-based liquid culture medium that included 0.44 µM BA and 1.07 µM NAA. In comparison to agar-gelled medium, plants cultured in liquid medium grow more quickly without any signs of hyperhydricity. In liquid medium, a clump of 4-5 shoots is formed from a single shoot explant within 4 weeks and are rooted simultaneously within 6 weeks. On average, seven explants may fit on each raft, so on average, 25 healthy plants are produced from a single bottle. The regenerated plants are easily hardened in the greenhouse, and using ISSR-based molecular markers, the genetic homogeneity of the randomly selected hardened plants can be determined.


Asunto(s)
Aluminio , Plumbaginaceae , Comercio , Medios de Cultivo , Suplementos Dietéticos
11.
Environ Sci Pollut Res Int ; 31(8): 12052-12070, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38225498

RESUMEN

An aluminum sludge-based composite material was constructed against the problems of phosphorus pollution and the waste of aluminum sludge resources. Utilizing metal Ce doping and hydrogel microbeads with pore preparation, the adsorption performance of the original sludge was improved. Meanwhile, the macroscopic body was constructed, and on this basis, polyethyleneimine (PEI) was introduced to complete the amino functionalization further to enhance the adsorption of phosphorus by the adsorbent, and NH-CeAIS-10 microbeads were successfully prepared. In adsorption, microbeads with larger specific surface area and richer functional groups are better choice compared to original sludge. The results of SEM, BET, FT-IR, and XPS analyses indicate that the adsorption of phosphorus by the microbeads is mainly achieved through electrostatic interactions, ligand exchange, and the formation of inner-sphere complexes. According to the Langmuir model, the maximum phosphorus adsorption capacity of NH-CeAIS-10 was 29.56 mg g-1, which was four times higher compared to native aluminum sludge. This also confirms the significant enhancement of phosphorus adsorption through the modification of aluminum sludge. Besides, in dynamic adsorption column experiments, the material exhibited up to 99% removal in simulated wastewater for up to 30 days, demonstrating the great adsorption potential of NH-CeAIS-10 in engineering applications.


Asunto(s)
Aguas del Alcantarillado , Contaminantes Químicos del Agua , Aluminio , Hidrogeles , Espectroscopía Infrarroja por Transformada de Fourier , Fósforo , Adsorción , Cinética , Concentración de Iones de Hidrógeno
12.
J Trace Elem Med Biol ; 83: 127394, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38262194

RESUMEN

BACKGROUND: Aluminum-based adjuvants (ABAs) enhance the immune response following vaccine injection. Their mechanisms of action are not fully understood, and their bio-persistency have been described associated with long-term adverse effects. METHODS: We evaluated and compared the cellular effects of the two main ABAs and whole vaccines on ATP production, ROS generation and cytokines production (IL-6 and IL-10), using THP-1 cells. RESULTS: ABAs altered the cell energy metabolism by increasing ROS production after 24 h and reducing ATP production after 48 h. In addition, both ABAs and whole vaccines induced different kinetics of IL-6 production, whereas only ABAs induced IL-10 secretion. CONCLUSION: This study showed clearly, for a first time, a difference in cellular response to the ABAs and whole vaccines which should be taken into consideration in future studies focusing on the effect of ABA in vaccines. Future studies on ABAs should also pay attention to mitochondrial function alterations following exposure to ABA-containing vaccines.


Asunto(s)
Aluminio , Vacunas , Humanos , Aluminio/farmacología , Interleucina-10 , Monocitos , Células THP-1 , Interleucina-6 , Especies Reactivas de Oxígeno , Adyuvantes Inmunológicos/efectos adversos , Adenosina Trifosfato
13.
Waste Manag ; 176: 128-139, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38281344

RESUMEN

Municipal solid waste incineration (MSWI) bottom ash, due to its high mineral content, presents great potential as supplementary cementitious material (SCM). Weathering, also known as aging, is a treatment process commonly employed in waste management to minimize the risk of heavy metal leaching from MSWI bottom ash. Using weathered MSWI bottom ash to produce blended cement pastes is considered as a high-value-added and sustainable waste disposal solution. However, a critical challenge arises from the metallic aluminum (Al) in weathered MSWI bottom ash, which is known to induce detrimental effects such as volume expansion and strength loss of blended cement pastes. While most metallic Al in weathered MSWI bottom ash can be removed with eddy current separators in metal recovery plants, the residual metallic Al, owing to its small particle size, cannot be removed with the same technique. This study is dedicated to addressing this issue. An in-depth analysis was conducted on residual metallic Al embedded in weathered MSWI bottom ash particles, aiming to guide the removal of this metal. This analysis revealed that mechanical removal was the most suitable method for extracting metallic Al. The specific processes and mechanisms underlying this method were elucidated. After reducing metallic Al content in weathered MSWI bottom ash by 77 %, a significant improvement in the quality of blended cement pastes was observed. This work contributes to the broader adoption of mechanical treatments for removing residual metallic Al from weathered MSWI bottom ash and facilitates the application of treated ash as SCM.


Asunto(s)
Metales Pesados , Eliminación de Residuos , Residuos Sólidos/análisis , Ceniza del Carbón , Aluminio , Incineración , Eliminación de Residuos/métodos , Metales Pesados/análisis , Carbono
14.
Environ Technol ; 45(10): 2012-2021, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36576062

RESUMEN

Increasing attention has been focused on the comprehensive utilisation of alkaline red mud (RM) derived from the aluminium industry. Phytoremediation serves as an effective strategy, but it is limited by the drawbacks of red mud. This study proposed 'co-hydrothermally treating red mud and sewage sludge (SS)' for producing a soil-like matrix, and explored the impacts of SS addition on the characteristics of hydrothermal solid and liquid products of RM. The results showed that the introduction of SS could improve the characteristics of hydrothermal products, including pH, the particle aggregation, and organic components. During hydrothermal treatment, the acid components released from SS could neutralise the alkalinity of RM, reducing the pH of hydrothermal product from 10.1 (without SS) to and 8.2 (80% SS), respectively. With the increase of addition ratio of SS, the main range of particle size distribution in hydrothermal solid products changed from 0.1∼1 µm to 10∼100 µm, suggesting the positive role of SS in improving the particle aggregation. XRD analysis showed that the addition of SS hindered the mineral crystallization of RM during hydrothermal treatment, while FTIR and XPS analysis confirmed that SS could serve as a 'supply source' of organic components, which created favourable conditions for hydrothermal solid products as soil-like matrix. The addition ratio of SS presented the negative correlation with the pH value and positive relative with chemical oxygen demand of hydrothermal liquid products. The hydrothermal liquid product modified by SS was beneficial to further improve soil-like matrix. The strategy of co-hydrothermal treating RM and SS to produce the soil-like matrix could massively consume solid wastes, which is a prospective approach to deal with the trouble of the aluminium industry and sewage treatment plants.


Asunto(s)
Aguas del Alcantarillado , Suelo , Aguas del Alcantarillado/química , Suelo/química , Aluminio , Biodegradación Ambiental
15.
J Control Release ; 365: 369-383, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37972764

RESUMEN

Micro/Nano-scale particles are widely used as vaccine adjuvants to enhance immune response and improve antigen stability. While aluminum salt is one of the most common adjuvants approved for human use, its immunostimulatory capacity is suboptimal. In this study, we modified risedronate, an immunostimulant and anti-osteoporotic drug, to create zinc salt particle-based risedronate (Zn-RS), also termed particulate risedronate. Compared to soluble risedronate, micronanoparticled Zn-RS adjuvant demonstrated increased recruitment of innate cells, enhanced antigen uptake locally, and a similar antigen depot effect as aluminum salt. Furthermore, Zn-RS adjuvant directly and quickly stimulated immune cells, accelerated the formulation of germinal centers in lymph nodes, and facilitated the rapid production of antibodies. Importantly, Zn-RS adjuvant exhibited superior performance in both young and aged mice, effectively protecting against respiratory diseases such as SARS-CoV-2 challenge. Consequently, particulate risedronate showed great potential as an immune-enhancing vaccine adjuvant, particularly beneficial for vaccines targeting the susceptible elderly.


Asunto(s)
Adyuvantes de Vacunas , Vacunas , Animales , Ratones , Humanos , Anciano , Ácido Risedrónico/uso terapéutico , Aluminio , Adyuvantes Inmunológicos , Inmunización , Antígenos
16.
Chemosphere ; 349: 140842, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38048834

RESUMEN

Green and low carbon is an essential direction for the development of water treatment technology. Ozone catalysts prepared by the mixing method have advantages in terms of energy consumption and CO2 emissions, but are considered to be insufficient in catalytic efficiency and stability. In this paper, an Mn-Cu-Ce/Al2O3 (MCCA) catalyst was prepared by optimizing the preparation conditions of the mixing method and the types and ratios of active components. Taking petrochemical secondary effluent (PCSE) as the treatment object, the performance of the catalyst and the carbon emission in the preparation process were studied; and compared with the impregnation method. Results showed that compared with catalysts loaded with other components, the MCCA had a higher removal efficiency for TOC (43.04%) and COD (53.18%), which was basically equivalent to the impregnation method, and the treated effluent reached the expected concentration. MCCA promoted the decomposition rate of O3 by ten times, and the main active species generated were found to be •OH and 1O. Similar to the catalytic ozonation by the catalyst prepared by the impregnation method, the adsorption sites and surface hydroxyl groups on the MCCA surface play a significant role in the degradation of pollutants. However, the carbon emission in the catalyst preparation process of the mixing method was 418.68 kg/ton, which was only 44% of the impregnation method (949.67 kg/ton). Under the global low-carbon transition, this study shows that the mixing method aligns more with the concept of green, clean, and efficient ozone catalyst preparation.


Asunto(s)
Ozono , Contaminantes Químicos del Agua , Carbono , Aluminio , Ozono/química , Contaminantes Químicos del Agua/análisis , Óxido de Aluminio/química , Catálisis
17.
J Environ Manage ; 351: 119660, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38043310

RESUMEN

Meta-analysis of red mud-related literature in English published from 1976 to 2022 and in Chinese from 1990 to 2022 was performed to support critical analysis and evaluation of the available literature based on the following aspects of red mud research: (a) characterization, (b) treatment for harmfulness minimization, (c) recovery of valuable metals, (d) environmental applications, and (e) uses as construction materials. It was found that (a) sinter red mud tended to contain more silica and calcium, and less iron, sodium and aluminium compared to Bayer red mud; (b) gypsum was the most frequently used agent for harmfulness reduction treatment of red mud, followed by flue gas/CO2; (c) the mean optimal pH for adsorption of major anionic pollutants was 8.42 ± 1.13 (arsenite), 3.73 ± 0.68 (arsenate), 3.50 ± 2.38 (phosphate), 4.43 ± 1.04 (fluoride) and 3.80 ± 1.54 (chromate); (d) wastewater treatment has attracted more attention compared to contaminated soils and waste gases; (e) recovery of iron and scandium has attracted more attention compared to other metals; (f) cement making has been the focus in construction uses. Most of the research findings were based on laboratory-scale experiments that focused on efficacy rather than efficiency. There was a lack of integrated approaches for research in red mud valorization.


Asunto(s)
Óxido de Aluminio , Contaminación Ambiental , Óxido de Aluminio/química , Metales , Hierro , Aluminio
18.
Fish Shellfish Immunol ; 144: 109243, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37995892

RESUMEN

Large yellow croaker (Larimichthys crocea) farm industry in China suffered from huge economic loss caused by Pseudomonas plecoglossicida infection. Due to multi-antibiotic resistance, efficient vaccines are urgent to be developed to combat this pathogen. In this study, an inactivated vaccine was developed with an aluminium adjuvant (Alum) plus ginseng stem and leaf saponins (GSLS). As a result, the relative percentage survival (RPS) against P. plecoglossicida was up to 67.8 %. Comparatively, RPS of groups that vaccinated with only inactivated vaccine and vaccine containing Alum or Montanide™ 763A as adjuvant were 21.8 %, 32.2 % and 62.1 %, respectively. Assays for total serum protein and serum lysozyme activity in group vaccinated with inactivated vaccine plus Alum + GSLS adjuvant were significantly higher than that in control group. Moreover, specific antibody in serum elicited a rapid and persistent level. According to the expression of some immune related genes, inactivated vaccine plus Alum + GSLS adjuvant induced a stronger cellular immune response which was vital to defend against P. plecoglossicida. In conclusion, our study demonstrated that the compound Alum and GSLS adjuvant is a potential adjuvant system to develop LYC vaccine.


Asunto(s)
Panax , Perciformes , Infecciones por Pseudomonas , Saponinas , Animales , Aluminio , Vacunas de Productos Inactivados , Saponinas/farmacología , Adyuvantes Inmunológicos/farmacología , Infecciones por Pseudomonas/prevención & control , Infecciones por Pseudomonas/veterinaria , Hojas de la Planta
19.
Trends Plant Sci ; 29(4): 388-390, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38102047

RESUMEN

Aluminum (Al) toxicity is a crucial limiting factor for crop growth in acid soils. Recently, Liu et al. demonstrated that the root microbiota of rice modulates the responses to Al toxicity and phosphorus limitation, offering intriguing insights into microbiome function and opening new research opportunities.


Asunto(s)
Microbiota , Oryza , Suelo , Plantas , Fósforo , Aluminio , Concentración de Iones de Hidrógeno , Raíces de Plantas
20.
Sci Total Environ ; 913: 169641, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38159765

RESUMEN

This study investigated the fate of phosphorus (P) in 8 full-scale municipal wastewater treatment plants (WWTPs) in Shanghai, China, in which both biological nutrient removal and aluminum-based chemical phosphorus removal were used. The results showed that 83.8-98.9 % P was transferred to the sludge in the 8 WWTPs by both chemical and biological reactions. P speciation analysis indicated that chemical P precipitates accounted for 84.3 % in the activated sludge, of which crystalline AlPO4 and amorphous iron­phosphorus compounds (FePs) were the main components. Sludge with more water-soluble and weakly adsorbed P was generated in the anaerobic-anoxic-oxic (A/A/O) process than in other processes. Among the 8 WWTPs, the one with the largest flow rate and relatively short sludge retention time (SRT) had the best potential to release P from all types of sludge. The recovery potential of P from thickened sludge can be improved by separately thickening the sludge produced in the high-efficiency sedimentation tank or feeding it into the dewatering process directly. Different P removal chemicals and dosing points changed the amount of chemical precipitate formed but had little effect on the composition of P accumulating organisms (PAOs) at the genus level. Although aluminum-based coagulants were applied in the investigated WWTPs, Fe in wastewater had the most positive effect on the proliferation of PAOs. The synthesis of polyphosphate was also related to the metabolism of PAOs as it affected transmembrane inorganic phosphate (Pi) transport and polyhydroxybutyrate (PHB) synthesis. The in-depth understanding of the fate of P is beneficial to improve P recovery efficiency in WWTPs.


Asunto(s)
Aguas del Alcantarillado , Purificación del Agua , Aguas del Alcantarillado/química , Fósforo/análisis , Aluminio/análisis , Sales (Química) , China , Polifosfatos/análisis , Reactores Biológicos , Anticuerpos , Eliminación de Residuos Líquidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA