Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2426, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499548

RESUMEN

The hypothalamus is part of the hypothalamic-pituitary-adrenal axis which activates stress responses through release of cortisol. It is a small but heterogeneous structure comprising multiple nuclei. In vivo human neuroimaging has rarely succeeded in recording signals from individual hypothalamus nuclei. Here we use human resting-state fMRI (n = 498) with high spatial resolution to examine relationships between the functional connectivity of specific hypothalamic nuclei and a dimensional marker of prolonged stress. First, we demonstrate that we can parcellate the human hypothalamus into seven nuclei in vivo. Using the functional connectivity between these nuclei and other subcortical structures including the amygdala, we significantly predict stress scores out-of-sample. Predictions use 0.0015% of all possible brain edges, are specific to stress, and improve when using nucleus-specific compared to whole-hypothalamus connectivity. Thus, stress relates to connectivity changes in precise and functionally meaningful subcortical networks, which may be exploited in future studies using interventions in stress disorders.


Asunto(s)
Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal , Humanos , Hipotálamo/diagnóstico por imagen , Encéfalo/fisiología , Amígdala del Cerebelo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
2.
Neuropsychopharmacology ; 49(6): 1024-1032, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38431758

RESUMEN

The 22q11.2 locus contains genes critical for brain development. Reciprocal Copy Number Variations (CNVs) at this locus impact risk for neurodevelopmental and psychiatric disorders. Both 22q11.2 deletions (22qDel) and duplications (22qDup) are associated with autism, but 22qDel uniquely elevates schizophrenia risk. Understanding brain phenotypes associated with these highly penetrant CNVs can provide insights into genetic pathways underlying neuropsychiatric disorders. Human neuroimaging and animal models indicate subcortical brain alterations in 22qDel, yet little is known about developmental differences across specific nuclei between reciprocal 22q11.2 CNV carriers and typically developing (TD) controls. We conducted a longitudinal MRI study in a total of 385 scans from 22qDel (n = 96, scans = 191, 53.1% female), 22qDup (n = 37, scans = 64, 45.9% female), and TD controls (n = 80, scans = 130, 51.2% female), across a wide age range (5.5-49.5 years). Volumes of the thalamus, hippocampus, amygdala, and anatomical subregions were estimated using FreeSurfer, and the linear effects of 22q11.2 gene dosage and non-linear effects of age were characterized with generalized additive mixed models (GAMMs). Positive gene dosage effects (volume increasing with copy number) were observed for total intracranial and whole hippocampus volumes, but not whole thalamus or amygdala volumes. Several amygdala subregions exhibited similar positive effects, with bi-directional effects found across thalamic nuclei. Distinct age-related trajectories were observed across the three groups. Notably, both 22qDel and 22qDup carriers exhibited flattened development of hippocampal CA2/3 subfields relative to TD controls. This study provides novel insights into the impact of 22q11.2 CNVs on subcortical brain structures and their developmental trajectories.


Asunto(s)
Variaciones en el Número de Copia de ADN , Síndrome de DiGeorge , Dosificación de Gen , Imagen por Resonancia Magnética , Humanos , Femenino , Masculino , Variaciones en el Número de Copia de ADN/genética , Adulto , Adolescente , Niño , Adulto Joven , Persona de Mediana Edad , Preescolar , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/patología , Síndrome de DiGeorge/diagnóstico por imagen , Estudios Longitudinales , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Hipocampo/crecimiento & desarrollo , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Encéfalo/crecimiento & desarrollo , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/patología , Tálamo/diagnóstico por imagen , Tálamo/crecimiento & desarrollo , Tálamo/patología , Tamaño de los Órganos
3.
PLoS One ; 19(3): e0301283, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38547155

RESUMEN

OBJECTIVE: To study the white matter connections between anterior cingulate cortex, anterior insula and amygdala as key regions of the frontal-limbic network that have been related to meditation. DESIGN: Twenty experienced practitioners of Sahaja Yoga Meditation and twenty nonmeditators matched on age, gender and education level, were scanned using Diffusion Weighted Imaging, using a 3T scanner, and their white matter connectivity was compared using diffusion tensor imaging analyses. RESULTS: There were five white matter fiber paths in which meditators showed a larger number of tracts, two of them connecting the same area in both hemispheres: the left and right amygdalae and the left and right anterior insula; and the other three connecting left anterior cingulate with the right anterior insula, the right amygdala and the left amygdala. On the other hand, non-meditators showed larger number of tracts in two paths connecting the left anterior insula with the left amygdala, and the left anterior insula with the left anterior cingulate. CONCLUSIONS: The study shows that long-term practice of Sahaja Yoga Meditation is associated with larger white matter tracts strengthening interhemispheric connections between limbic regions and connections between cingulo-amygdalar and cingulo-insular brain regions related to top-down attentional and emotional processes as well as between top-down control functions that could potentially be related to the witness state perceived through the state of mental silence promoted with this meditation. On the other hand, reduced connectivity strength in left anterior insula in the meditation group could be associated to reduced emotional processing affecting top-down processes.


Asunto(s)
Meditación , Sustancia Blanca , Yoga , Humanos , Meditación/psicología , Yoga/psicología , Giro del Cíngulo/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Imagen de Difusión Tensora , Amígdala del Cerebelo/diagnóstico por imagen , Encéfalo , Imagen por Resonancia Magnética/métodos
4.
Psychiatry Res ; 333: 115711, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38325159

RESUMEN

We conducted a prospective, single arm, multisite, multinational, open label trial assessing the safety and efficacy of a novel amygdala derived neurofeedback treatment, designated Amygdala-Derived-EFP, for chronic PTSD. Participants, including veterans and civilians, underwent screening, training, 15 neurofeedback sessions over 8 weeks and; baseline, termination (8 weeks) and 3 month post treatment assessments with validated measures. The primary endpoint was more than 50 % of the participants demonstrating a Minimally Clinically Important Difference (MCID) defined as a 6-point reduction, on the Clinician Administered PTSD Scale (CAPS-5) total score at 3 months. Secondary measures included the PCL-5, ERQ, PHQ-9, and CGI. Statistical analyses were performed using SAS®V9.4. The primary endpoint was met, with a CAPS-5 MCID response rate of 66.7 %. The average reduction in CAPS-5 total scores at 3 month follow up was 13.5 points, more than twice the MCID. Changes from baseline in CAPS-5, PCL-5, PHQ-9 scores at 8 weeks and the 3 month follow-up demonstrated statistically significant improvements in response and; demonstrated effect sizes ranging from 0.46 to 1.07. Adverse events were mild and resolved after treatment. This study builds on prior research demonstrating similar outcomes using amygdala-derived neurofeedback. Positive attributes of this therapy include monitoring by non-physician personnel, affordability, accessibility, and tolerability.


Asunto(s)
Neurorretroalimentación , Trastornos por Estrés Postraumático , Veteranos , Humanos , Trastornos por Estrés Postraumático/diagnóstico , Imagen por Resonancia Magnética , Estudios Prospectivos , Resultado del Tratamiento , Amígdala del Cerebelo/diagnóstico por imagen , Electroencefalografía
5.
Sci Data ; 10(1): 773, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37935738

RESUMEN

Face perception is a fundamental aspect of human social interaction, yet most research on this topic has focused on single modalities and specific aspects of face perception. Here, we present a comprehensive multimodal dataset for examining facial emotion perception and judgment. This dataset includes EEG data from 97 unique neurotypical participants across 8 experiments, fMRI data from 19 neurotypical participants, single-neuron data from 16 neurosurgical patients (22 sessions), eye tracking data from 24 neurotypical participants, behavioral and eye tracking data from 18 participants with ASD and 15 matched controls, and behavioral data from 3 rare patients with focal bilateral amygdala lesions. Notably, participants from all modalities performed the same task. Overall, this multimodal dataset provides a comprehensive exploration of facial emotion perception, emphasizing the importance of integrating multiple modalities to gain a holistic understanding of this complex cognitive process. This dataset serves as a key missing link between human neuroimaging and neurophysiology literature, and facilitates the study of neuropsychiatric populations.


Asunto(s)
Reconocimiento Facial , Humanos , Amígdala del Cerebelo/diagnóstico por imagen , Emociones/fisiología , Reconocimiento Facial/fisiología , Juicio , Imagen por Resonancia Magnética
6.
J Affect Disord ; 339: 495-501, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37459978

RESUMEN

BACKGROUND: Despite cognitive behavioral therapy (CBT) being a standard treatment in major depressive disorder (MDD), nearly half of patients do not respond. As one of the predictors of CBT's efficacy is amygdala reactivity to positive information, which is often decreased in MDD, we explored whether real-time fMRI neurofeedback (rtfMRI-nf) training to increase amygdala responses during positive memory recall prior CBT would enhance its efficacy. METHODS: In a double-blind, placebo controlled, randomized clinical trial, 35 adults with MDD received two sessions of rtfMRI-nf training to increase their amygdala (experimental group, n = 16) or parietal (control group, n = 19) responses during positive memory neurofeedback prior to receiving 10 CBT sessions. Depressive symptomatology was monitored between the rtfMRI sessions, the first three, 9th and 10th sessions of CBT and at 6 months and 1 year follow-up. RESULTS: Participants in the experimental group showed decreased depressive symptomatology and higher remission rates at 6 months and 1 year follow-up than the control group. Analysis of CBT content highlighted that participants in the experimental group focused more on positive thinking and behaviors than the control group. LIMITATIONS: The study was relatively small and not sufficiently powered to detect small effects. CONCLUSIONS: CBT, when combined with amygdala neurofeedback, results in sustained clinical changes and leads to long-lasting clinical improvement, potentially by increasing focus on positive memories and cognitions.


Asunto(s)
Trastorno Depresivo Mayor , Neurorretroalimentación , Adulto , Humanos , Neurorretroalimentación/métodos , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/terapia , Depresión , Procesamiento de Imagen Asistido por Computador , Amígdala del Cerebelo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
7.
Transl Psychiatry ; 13(1): 177, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37230984

RESUMEN

Hyperactivation of amygdala is a neural marker for post-traumatic stress disorder (PTSD) and improvement in control over amygdala activity has been associated with treatment success in PTSD. In this randomized, double-blind clinical trial we evaluated the efficacy of a real-time fMRI neurofeedback intervention designed to train control over amygdala activity following trauma recall. Twenty-five patients with PTSD completed three sessions of neurofeedback training in which they attempted to downregulate the feedback signal after exposure to personalized trauma scripts. For subjects in the active experimental group (N = 14), the feedback signal was from a functionally localized region of their amygdala associated with trauma recall. For subjects in the control group (N = 11), yoked-sham feedback was provided. Changes in control over the amygdala and PTSD symptoms served as the primary and secondary outcome measurements, respectively. We found significantly greater improvements in control over amygdala activity in the active group than in the control group 30-days following the intervention. Both groups showed improvements in symptom scores, however the symptom reduction in the active group was not significantly greater than in the control group. Our finding of greater improvement in amygdala control suggests potential clinical application of neurofeedback in PTSD treatment. Thus, further development of amygdala neurofeedback training in PTSD treatment, including evaluation in larger samples, is warranted.


Asunto(s)
Neurorretroalimentación , Trastornos por Estrés Postraumático , Humanos , Trastornos por Estrés Postraumático/diagnóstico por imagen , Trastornos por Estrés Postraumático/terapia , Imagen por Resonancia Magnética , Neurorretroalimentación/fisiología , Regulación hacia Abajo , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/fisiología
8.
Eur Rev Med Pharmacol Sci ; 27(7): 3201-3207, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37070924

RESUMEN

OBJECTIVE: The aim of this study was to investigate central smell centers with cranial magnetic resonance imaging (MRI) diffusion-weighted imaging (DWI) in COVID-19. PATIENTS AND METHODS: This retrospective study evaluated cranial MRI images of 54 adults. The experimental group (Group 1), consisting of 27 patients with positive COVID-19 real-time polymerase chain reaction (RT-PCR) assays, was compared to the control group (Group 2), comprising 27  healthy controls without COVID-19. The apparent diffusion coefficient (ADC) values were measured in the corpus amygdala, thalamus, and insular gyrus in both groups. RESULTS: Thalamus ADC values of the COVID-19 group were significantly lower compared to the control group bilaterally. However, no differences were found in the insular gyrus and corpus amygdala ADC values between the two groups. Positive correlations were observed between the insular gyrus and corpus amygdala ADC values and the thalamus ADC values. Insular gyrus ADC values (right) were higher in females. Left insular gyrus and corpus amygdala ADC values were higher in COVID-19 patients with smell loss. Right insular gyrus and left corpus amygdala ADC values were lower in COVID-19 patients with lymphopenia. CONCLUSIONS: Diffusion restriction in olfactory areas can be considered an obvious indicator that the COVID-19 virus affects and damages the immune system at the neuronal level. Given the urgency and lethality of the current pandemic, acute onset odor loss should be considered a high suspicion-adhesive index for patients with SARS-CoV-2 infection. Therefore, the sense of smell should be considered and evaluated simultaneously with other neurological symptoms. DWI should be widely used as an early imaging method for central nervous system (CNS) infections, especially in relation to COVID-19.


Asunto(s)
COVID-19 , Olfato , Adulto , Femenino , Humanos , Corteza Insular , Estudios Retrospectivos , COVID-19/diagnóstico por imagen , COVID-19/patología , SARS-CoV-2 , Imagen de Difusión por Resonancia Magnética/métodos , Tálamo/diagnóstico por imagen , Amígdala del Cerebelo/diagnóstico por imagen
9.
J Adolesc ; 95(1): 181-189, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36281743

RESUMEN

INTRODUCTION: Adolescence is a time of increased emotional reactivity and improving cognitive control. Mindfulness meditation training may foster adolescents' cognitive control and emotional regulation skills; however little is known about the impact of mindfulness training in adolescents compared to adults. We examined the effect of mindfulness meditation versus a closely matched active control condition (relaxation training) on behavioral and neural measures of cognitive control and emotional reactivity in a small group of adolescents and adults. METHODS: Structural and functional magnetic resonance imaging data were collected before and after 8 weeks of training in 26 adolescent (12-14 years) and 17 adult (23-33 years) female participants in the United Kingdom while they completed an n-back task with emotional face distractors and an attentional control task. Participants of each group chose a class date/time and the classes were then randomly allocated to mindfulness or relaxation conditions. RESULTS: Compared to relaxation training, mindfulness training led to an increase in the speed of reorienting attention across age groups. In addition, there was preliminary evidence for reduced amygdala response to emotional face distractors in adolescents after mindfulness training. CONCLUSIONS: An 8-week mindfulness program showed similar facilitative effects in adolescent and adult females on the reorienting of attention, a skill that is repeatedly practiced during mindfulness meditation. Mindfulness also reduced left amygdala reactivity to emotional face distractors in adolescents only. Mindfulness meditation practice can therefore have a facilitative effect on female adolescents' attentional control, and possibly attenuate their emotional reactivity.


Asunto(s)
Meditación , Atención Plena , Adolescente , Adulto , Femenino , Humanos , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/fisiología , Atención , Meditación/métodos , Meditación/psicología , Atención Plena/métodos , Neuroimagen
10.
BMC Neurosci ; 23(1): 68, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36434512

RESUMEN

BACKGROUND: The multicomponent drug Neurexan (Nx4) was shown to reduce the neural stress network activation. We now investigated its effects on stress-induced resting state functional connectivity (RSFC) in dependence of trait anxiety (TA), an acknowledged vulnerability factor for stress-induced psychopathologies. METHODS: Nx4 was tested in a randomized placebo-controlled crossover trial. Resting state fMRI scans were performed before and after a psychosocial stress task and exploratively analyzed for amygdala centered RSFC. Effects of Nx4 on stress-induced RSFC changes were evaluated and correlated to TA levels. A subgroup analysis based on TA scores was performed. RESULTS: Multiple linear regression analysis revealed a significant correlation between TA and Nx4 effect on stress-induced RSFC changes between right amygdala and pregenual anterior cingulate cortex (pgACC) and ventro-medial prefrontal cortex (vmPFC). For participants with above average TA, a significant amelioration of the stress-induced RSFC changes was observed. CONCLUSIONS: The data add evidence to the hypothesis that Nx4's clinical efficacy is based on a dampened activation of the neural stress network, with a greater neural response in subjects with anxious personality traits. Further studies assessing clinically relevant outcome measures in parallel to fMRI are encouraged to evaluate the real-world benefit of Nx4. Trial registration NCT02602275.


Asunto(s)
Amígdala del Cerebelo , Ansiedad , Humanos , Estudios Cruzados , Voluntarios Sanos , Vías Nerviosas/fisiología , Amígdala del Cerebelo/diagnóstico por imagen
11.
PLoS One ; 17(6): e0269502, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35675275

RESUMEN

BACKGROUND: Exposure to trauma can result in various mental health disorders including anxiety, depression, and posttraumatic stress disorder (PTSD). Although psychotherapies and pharmacotherapies exist for the treatment of these disorders, many individuals fail to receive treatment and among those who do, many remain symptomatic. Therefore, it is critical to continue developing new interventions for traumatic stress that target underlying mechanisms of pathology and offer a safe and acceptable alternative to current treatments. Morning light treatment has good potential as a novel non-invasive, low risk treatment for traumatic stress. Evidence suggests that morning light may improve traumatic stress by reducing reactivity in the amygdala, a brain region implicated in the pathophysiology of PTSD and anatomically linked to circadian photoreceptors in the eye. METHODS: In this study, we aim to establish a significant dose-response relationship between duration of morning light treatment and reduction in amygdala reactivity among individuals with traumatic stress symptoms (NCT# 04117347). Using a transdiagnostic approach, sixty-six individuals with a history of a DSM-5 criterion A trauma and traumatic stress symptoms will be recruited to participate in a 5-week study. Participants will be randomized across three treatment arms based on morning light treatment duration: 15-minutes, 30-minutes, or 60-minutes of light treatment per day for four weeks. To evaluate amygdala activity, participants will undergo fMRI at pre-treatment, mid-treatment, and post-treatment. Participants will also complete clinical assessments and self-report measures of PTSD, depression, and anxiety at pre-treatment, mid-treatment, and post-treatment. DISCUSSION: Morning light therapy may be an acceptable, feasible, and effective treatment for individuals suffering from traumatic stress. Identifying mechanistically relevant targets, and the doses needed to impact them, are critical steps in developing this new treatment approach for the sequelae of traumatic stress.


Asunto(s)
Trastornos por Estrés Postraumático , Amígdala del Cerebelo/diagnóstico por imagen , Ansiedad/diagnóstico , Ansiedad/terapia , Trastornos de Ansiedad/psicología , Trastornos de Ansiedad/terapia , Humanos , Psicoterapia/métodos , Trastornos por Estrés Postraumático/psicología
12.
Neuroimage ; 259: 119408, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35752415

RESUMEN

Over the past two decades, magnetic resonance imaging (MRI) studies have explored brain activation patterns during acute noxious stimuli. Whilst these human investigations have detailed changes in primarily cortical regions, they have generally not explored discrete changes within small brain areas that are critical in driving behavioural, autonomic, and endocrine responses to pain, such as within subregions of the hypothalamus, amygdala, and midbrain periaqueductal gray matter (PAG). Ultra-high field (7-Tesla) MRI provides enough signal-to-noise at high spatial resolutions to investigate activation patterns within these small brain regions during acute noxious stimulation in awake humans. In this study we used 7T functional MRI to concentrate on hypothalamic, amygdala, and PAG signal changes during acute noxious orofacial stimuli. Noxious heat stimuli were applied in three separate fMRI scans to three adjacent sites on the face in 16 healthy control participants (7 females). Images were processed using SPM12 and custom software, and blood oxygen level dependent signal changes within the hypothalamus, amygdala, and PAG assessed. We identified altered activity within eight unique subregions of the hypothalamus, four unique subregions of the amygdala, and a single region in the lateral PAG. Specifically, within the hypothalamus and amygdala, signal intensity largely decreased during noxious stimulation, and increased in the lateral PAG. Furthermore, we found sex-related differences in discrete regions of the hypothalamus and amygdala. This study reveals that the activity of discrete nuclei during acute noxious thermal stimulation in awake humans.


Asunto(s)
Dolor Agudo , Sustancia Gris Periacueductal , Amígdala del Cerebelo/diagnóstico por imagen , Femenino , Humanos , Hipotálamo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Sustancia Gris Periacueductal/diagnóstico por imagen , Sustancia Gris Periacueductal/fisiología , Vigilia
13.
Neurosci Biobehav Rev ; 138: 104694, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35623447

RESUMEN

Amygdala NeuroFeedback (NF) have the potential of being a valuable non-invasive intervention tool in many psychiatric disporders. However, the feasibility and best practices of this method have not been systematically examined. The current article presents a review of amygdala-NF studies, an analytic summary of study design parameters, and examination of brain mechanisms related to successful amygdala-NF performance. A meta-analysis of 33 publications showed that real amygdala-NF facilitates learned modulation compared to control conditions. In addition, while variability in study dsign parameters is high, these design choices are implicitly organized by the targeted valence domain (positive or negative). However, in most cases the neuro-behavioral effects of targeting such domains were not directly assessed. Lastly, re-analyzing six data sets of amygdala-fMRI-NF revealed that successful amygdala down-modulation is coupled with deactivation of the posterior insula and nodes in the Default-Mode-Network. Our findings suggest that amygdala self-modulation can be acquired using NF. Yet, additional controlled studies, relevant behavioral tasks before and after NF intervention, and neural 'target engagement' measures are critically needed to establish efficacy and specificity. In addition, the fMRI analysis presented here suggest that common accounts regarding the brain network involved in amygdala NF might reflect unsuccessful modulation attempts rather than successful modulation.


Asunto(s)
Neurorretroalimentación , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/fisiología , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Estudios de Factibilidad , Humanos , Imagen por Resonancia Magnética/métodos , Neurorretroalimentación/métodos
14.
Brain Connect ; 12(9): 812-822, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35438535

RESUMEN

Background: The basic functional organization of the resting brain, assessed as resting-state functional connectivity (rsFC), can be affected by previous stress experience and it represents the basis on which subsequent stress experience develops. Notably, the rsFC between the amygdala and the cortical regions associated with emotion regulation and anxiety are affected during stress. The multicomponent drug Neurexan® (Nx4) has previously demonstrated a reduction in amygdala activation in an emotional face matching task and it ameliorated stress-related symptoms. We, thus, investigated the effect of Nx4 on rsFC of the amygdala before stress induction compared with baseline in mildly to moderately stressed participants. Methods: In a randomized, placebo-controlled, double-blind, crossover trial 39 participants received a single dose of placebo or Nx4. Resting-state functional magnetic resonance imaging scans were performed pre-dose and 40 to 60 min post-dose, before any stress induction. First, highly connected functional hubs were identified by global functional connectivity density (gFCD) analysis. Second, by using a seed-based approach, rsFC maps of the left centromedial amygdala (CeMA) were created. The effect of Nx4 on both was evaluated. Results: The medial prefrontal cortex was identified as a relevant functional hub affected by Nx4 in an explorative whole brain gFCD analysis. Using the seed-based approach, we then demonstrated that Nx4 significantly enhanced the negative connectivity between the left CeMA and two cortical regions: the dorsolateral and medial prefrontal cortices. Conclusions: In a resting-state condition, Nx4 reduced the prefrontal cortex gFCD and strengthened the functional coupling between the amygdala and the prefrontal cortex that is relevant for emotion regulation and the stress response. Further studies should elaborate whether this mechanism represents enhanced regulatory control of the amygdala at rest and, consequently, to a diminished susceptibility to stress. ClinicalTrials.gov ID: NCT02602275.


Asunto(s)
Amígdala del Cerebelo , Encéfalo , Humanos , Estudios Cruzados , Vías Nerviosas/fisiología , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/fisiología , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/fisiología , Imagen por Resonancia Magnética
15.
Hum Brain Mapp ; 43(1): 341-351, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-32198905

RESUMEN

Alterations in regional subcortical brain volumes have been investigated as part of the efforts of an international consortium, ENIGMA, to identify reliable neural correlates of major depressive disorder (MDD). Given that subcortical structures are comprised of distinct subfields, we sought to build significantly from prior work by precisely mapping localized MDD-related differences in subcortical regions using shape analysis. In this meta-analysis of subcortical shape from the ENIGMA-MDD working group, we compared 1,781 patients with MDD and 2,953 healthy controls (CTL) on individual measures of shape metrics (thickness and surface area) on the surface of seven bilateral subcortical structures: nucleus accumbens, amygdala, caudate, hippocampus, pallidum, putamen, and thalamus. Harmonized data processing and statistical analyses were conducted locally at each site, and findings were aggregated by meta-analysis. Relative to CTL, patients with adolescent-onset MDD (≤ 21 years) had lower thickness and surface area of the subiculum, cornu ammonis (CA) 1 of the hippocampus and basolateral amygdala (Cohen's d = -0.164 to -0.180). Relative to first-episode MDD, recurrent MDD patients had lower thickness and surface area in the CA1 of the hippocampus and the basolateral amygdala (Cohen's d = -0.173 to -0.184). Our results suggest that previously reported MDD-associated volumetric differences may be localized to specific subfields of these structures that have been shown to be sensitive to the effects of stress, with important implications for mapping treatments to patients based on specific neural targets and key clinical features.


Asunto(s)
Amígdala del Cerebelo/patología , Cuerpo Estriado/patología , Trastorno Depresivo Mayor/patología , Hipocampo/patología , Neuroimagen , Tálamo/patología , Amígdala del Cerebelo/diagnóstico por imagen , Cuerpo Estriado/diagnóstico por imagen , Trastorno Depresivo Mayor/diagnóstico por imagen , Hipocampo/diagnóstico por imagen , Humanos , Estudios Multicéntricos como Asunto , Tálamo/diagnóstico por imagen
16.
Hum Brain Mapp ; 43(1): 452-469, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33570244

RESUMEN

Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to examine age-related trajectories inferred from cross-sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3-90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter-individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age-related morphometric patterns.


Asunto(s)
Amígdala del Cerebelo/anatomía & histología , Cuerpo Estriado/anatomía & histología , Hipocampo/anatomía & histología , Desarrollo Humano/fisiología , Neuroimagen , Tálamo/anatomía & histología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Amígdala del Cerebelo/diagnóstico por imagen , Niño , Preescolar , Cuerpo Estriado/diagnóstico por imagen , Femenino , Hipocampo/diagnóstico por imagen , Humanos , Masculino , Persona de Mediana Edad , Tálamo/diagnóstico por imagen , Adulto Joven
17.
Hum Brain Mapp ; 43(2): 647-664, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34738276

RESUMEN

Music is known to induce emotions and activate associated memories, including musical memories. In adults, it is well known that music activates both working memory and limbic networks. We have recently discovered that as early as during the newborn period, familiar music is processed differently from unfamiliar music. The present study evaluates music listening effects at the brain level in newborns, by exploring the impact of familiar or first-time music listening on the subsequent resting-state functional connectivity in the brain. Using a connectome-based framework, we describe resting-state functional connectivity (RS-FC) modulation after music listening in three groups of newborn infants, in preterm infants exposed to music during their neonatal-intensive-care-unit (NICU) stay, in control preterm, and full-term infants. We observed modulation of the RS-FC between brain regions known to be implicated in music and emotions processing, immediately following music listening in all newborn infants. In the music exposed group, we found increased RS-FC between brain regions known to be implicated in familiar and emotionally arousing music and multisensory processing, and therefore implying memory retrieval and associative memory. We demonstrate a positive correlation between the occurrence of the prior music exposure and increased RS-FC in brain regions implicated in multisensory and emotional processing, indicating strong engagement of musical memories; and a negative correlation with the Default Mode Network, indicating disengagement due to the aforementioned cognitive processing. Our results describe the modulatory effect of music listening on brain RS-FC that can be linked to brain correlates of musical memory engrams in preterm infants.


Asunto(s)
Amígdala del Cerebelo/fisiología , Percepción Auditiva/fisiología , Corteza Cerebral/fisiología , Conectoma , Red en Modo Predeterminado/fisiología , Emociones/fisiología , Recien Nacido Prematuro/fisiología , Música , Reconocimiento en Psicología/fisiología , Tálamo/fisiología , Amígdala del Cerebelo/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Red en Modo Predeterminado/diagnóstico por imagen , Femenino , Humanos , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Tálamo/diagnóstico por imagen
18.
Hum Brain Mapp ; 43(1): 352-372, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34498337

RESUMEN

Schizophrenia is associated with widespread alterations in subcortical brain structure. While analytic methods have enabled more detailed morphometric characterization, findings are often equivocal. In this meta-analysis, we employed the harmonized ENIGMA shape analysis protocols to collaboratively investigate subcortical brain structure shape differences between individuals with schizophrenia and healthy control participants. The study analyzed data from 2,833 individuals with schizophrenia and 3,929 healthy control participants contributed by 21 worldwide research groups participating in the ENIGMA Schizophrenia Working Group. Harmonized shape analysis protocols were applied to each site's data independently for bilateral hippocampus, amygdala, caudate, accumbens, putamen, pallidum, and thalamus obtained from T1-weighted structural MRI scans. Mass univariate meta-analyses revealed more-concave-than-convex shape differences in the hippocampus, amygdala, accumbens, and thalamus in individuals with schizophrenia compared with control participants, more-convex-than-concave shape differences in the putamen and pallidum, and both concave and convex shape differences in the caudate. Patterns of exaggerated asymmetry were observed across the hippocampus, amygdala, and thalamus in individuals with schizophrenia compared to control participants, while diminished asymmetry encompassed ventral striatum and ventral and dorsal thalamus. Our analyses also revealed that higher chlorpromazine dose equivalents and increased positive symptom levels were associated with patterns of contiguous convex shape differences across multiple subcortical structures. Findings from our shape meta-analysis suggest that common neurobiological mechanisms may contribute to gray matter reduction across multiple subcortical regions, thus enhancing our understanding of the nature of network disorganization in schizophrenia.


Asunto(s)
Amígdala del Cerebelo/patología , Cuerpo Estriado/patología , Hipocampo/patología , Neuroimagen , Esquizofrenia/patología , Tálamo/patología , Amígdala del Cerebelo/diagnóstico por imagen , Cuerpo Estriado/diagnóstico por imagen , Hipocampo/diagnóstico por imagen , Humanos , Estudios Multicéntricos como Asunto , Esquizofrenia/diagnóstico por imagen , Tálamo/diagnóstico por imagen
19.
Neuroimage ; 245: 118759, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34838750

RESUMEN

Subcortical nuclei and other deep brain structures are known to play an important role in the regulation of the central and peripheral nervous systems. It can be difficult to identify and delineate many of these nuclei and their finer subdivisions in conventional MRI due to their small size, buried location, and often subtle contrast compared to neighboring tissue. To address this problem, we applied a multi-modal approach in ex vivo non-human primate (NHP) brain that includes high-resolution mean apparent propagator (MAP)-MRI and five different histological stains imaged with high-resolution microscopy in the brain of the same subject. By registering these high-dimensional MRI data to high-resolution histology data, we can map the location, boundaries, subdivisions, and micro-architectural features of subcortical gray matter regions in the macaque monkey brain. At high spatial resolution, diffusion MRI in general, and MAP-MRI in particular, can distinguish a large number of deep brain structures, including the larger and smaller white matter fiber tracts as well as architectonic features within various nuclei. Correlation with histology from the same brain enables a thorough validation of the structures identified with MAP-MRI. Moreover, anatomical details that are evident in images of MAP-MRI parameters are not visible in conventional T1-weighted images. We also derived subcortical template "SC21" from segmented MRI slices in three-dimensions and registered this volume to a previously published anatomical template with cortical parcellation (Reveley et al., 2017; Saleem and Logothetis, 2012), thereby integrating the 3D segmentation of both cortical and subcortical regions into the same volume. This newly updated three-dimensional D99 digital brain atlas (V2.0) is intended for use as a reference standard for macaque neuroanatomical, functional, and connectional imaging studies, involving both cortical and subcortical targets. The SC21 and D99 digital templates are available as volumes and surfaces in standard NIFTI and GIFTI formats.


Asunto(s)
Amígdala del Cerebelo/anatomía & histología , Ganglios Basales/anatomía & histología , Tronco Encefálico/anatomía & histología , Imagen de Difusión Tensora/métodos , Hipotálamo/anatomía & histología , Tálamo/anatomía & histología , Amígdala del Cerebelo/diagnóstico por imagen , Animales , Atlas como Asunto , Ganglios Basales/diagnóstico por imagen , Tronco Encefálico/diagnóstico por imagen , Técnicas Histológicas , Hipotálamo/diagnóstico por imagen , Macaca mulatta , Imagen por Resonancia Magnética , Masculino , Tálamo/diagnóstico por imagen
20.
PLoS One ; 16(8): e0254597, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34358242

RESUMEN

OBJECTIVE: T1-weighted MRI images are commonly used for volumetric assessment of brain structures. Magnetization prepared 2 rapid gradient echo (MP2RAGE) sequence offers superior gray (GM) and white matter (WM) contrast. This study aimed to quantitatively assess the agreement of whole brain tissue and deep GM (DGM) volumes obtained from MP2RAGE compared to the widely used MP-RAGE sequence. METHODS: Twenty-nine healthy participants were included in this study. All subjects underwent a 3T MRI scan acquiring high-resolution 3D MP-RAGE and MP2RAGE images. Twelve participants were re-scanned after one year. The whole brain, as well as DGM segmentation, was performed using CAT12, volBrain, and FSL-FAST automatic segmentation tools based on the acquired images. Finally, contrast-to-noise ratio between WM and GM (CNRWG), the agreement between the obtained tissue volumes, as well as scan-rescan variability of both sequences were explored. RESULTS: Significantly higher CNRWG was detected in MP2RAGE vs. MP-RAGE (Mean ± SD = 0.97 ± 0.04 vs. 0.8 ± 0.1 respectively; p<0.0001). Significantly higher total brain GM, and lower cerebrospinal fluid volumes were obtained from MP2RAGE vs. MP-RAGE based on all segmentation methods (p<0.05 in all cases). Whole-brain voxel-wise comparisons revealed higher GM tissue probability in the thalamus, putamen, caudate, lingual gyrus, and precentral gyrus based on MP2RAGE compared with MP-RAGE. Moreover, significantly higher WM probability was observed in the cerebellum, corpus callosum, and frontal-and-temporal regions in MP2RAGE vs. MP-RAGE. Finally, MP2RAGE showed a higher mean percentage of change in total brain GM compared to MP-RAGE. On the other hand, MP-RAGE demonstrated a higher overtime percentage of change in WM and DGM volumes compared to MP2RAGE. CONCLUSIONS: Due to its higher CNR, MP2RAGE resulted in reproducible brain tissue segmentation, and thus is a recommended method for volumetric imaging biomarkers for the monitoring of neurological diseases.


Asunto(s)
Encéfalo/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Imagen por Resonancia Magnética , Sustancia Blanca/diagnóstico por imagen , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/ultraestructura , Encéfalo/ultraestructura , Mapeo Encefálico , Sistema Nervioso Central/diagnóstico por imagen , Sistema Nervioso Central/ultraestructura , Líquido Cefalorraquídeo/metabolismo , Femenino , Sustancia Gris/ultraestructura , Voluntarios Sanos , Hipocampo/diagnóstico por imagen , Hipocampo/ultraestructura , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Persona de Mediana Edad , Manejo de Especímenes , Tálamo/diagnóstico por imagen , Tálamo/ultraestructura , Sustancia Blanca/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA