Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 461
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Int J Biol Macromol ; 262(Pt 2): 130172, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38360230

RESUMEN

Plant essential oils possess broad-spectral antimicrobial property, but the applications are impeded by their insolubility in water, extreme volatility, and strong irritation. Nanoparticle-stabilized emulsion (Pickering emulsion) gels are colloidal systems with ability to accommodate two immiscible phases in one system. The thick adsorption nanoparticle layers and the cross-linked networks in continuous phase could provide protective barriers for antibacterial oil and achieve on-demand controlled release. An emulsion hydrogel templated from gelatin nanoparticle-stabilized emulsion is one-pot constructed by conducting a tunable cross-linking process between oxidized dextran (Odex) and amikacin in the continuous phase and concomitantly trapping tea tree essential oil (TO) droplets in the three-dimensional network. The resulted emulsion hydrogel presents tunable gelation time, adequate mechanical strength, fascinating injectability, and self-healing capability. It is pH-responsiveness and presents controlled release of amikacin and TO, exhibiting a long-term bacteriostasis of 144 h. The emulsion hydrogel facilitates the outstanding wound healing efficiency in 14 days (95.2 ± 0.8 % of wound closure), accompanied with enhanced collagen deposition and angiogenic activities. The incorporation of TO into emulsion hydrogel system reduced its irritation and improved its biosafety, showing potential application in bacteria inhibition even as implants in vivo.


Asunto(s)
Amicacina , Nanopartículas , Amicacina/farmacología , Gelatina , Dextranos , Hidrogeles , Emulsiones , Preparaciones de Acción Retardada/farmacología , Liberación de Fármacos , Antibacterianos/farmacología , Cicatrización de Heridas
2.
BMC Res Notes ; 17(1): 38, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273327

RESUMEN

OBJECTIVES: Urinary tract infections (UTIs) are very common infections in humans, and Escherichia coli (E. coli) is the commonest pathogen leading to UTIs. The generation of beta-lactamase enzymes in this bacterium results in its resistance against many antibiotics. This study compares three doses of amikacin on alternate days with a daily dose of meropenem in the same period for the treatment of UTIs with E. coli in a double-blind clinical trial. METHODS: The current double-blind clinical trial compares three doses of amikacin on alternate days with a daily dose of meropenem in the same period for the treatment of UTIs with E. coli. The patients were assigned to two groups: Intervention (receiving a single dose of amikacin once a day at 48-h intervals for a week, three doses) and control (receiving meropenem for 1/TDS for a week). RESULTS: The E. coli infection frequency was 61 (21 cases of non-ESBL and 40 cases of ESBL-positive infections) and the frequency of the other infections was 52 (46%). In the patients with ESBL E. coli infection, ciprofloxacin (21; 70%) showed the highest antibiotic resistance, and nitrofurantoin (33; 91.7%) showed the highest sensitivity. The baseline variables between the control and intervention groups indicated no significant difference (p > 0.05). The frequency of signs and symptoms showed no significant difference between the amikacin and meropenem groups in the first 24 h and the first week. In the second week of follow-up, no clinical signs or symptoms were observed in the two groups. CONCLUSION: The results of this study showed that treatment with amikacin, 1 g q48h, for one week (three doses) has the same result as meropenem, 1 g q8h, for one week (21 doses). The results are the same for the treatment of UTIs with ESBL positive and ESBL negative. Amikacin can be used once every 48 h to treat UTIs, is less expensive and can be administered on an outpatient basis. TRIAL REGISTRATION: This study was registered in the Iranian Registry of Clinical Trials (IRCT) with ID number: IRCT20170417033483N2 on the date 2018-02-13.


Asunto(s)
Infecciones por Escherichia coli , Infecciones Urinarias , Humanos , Amicacina/administración & dosificación , Antibacterianos/administración & dosificación , beta-Lactamasas , Método Doble Ciego , Escherichia coli , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Irán , Meropenem/administración & dosificación , Pruebas de Sensibilidad Microbiana , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/microbiología
3.
Chest ; 165(2): 288-302, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37661004

RESUMEN

BACKGROUND: No studies have reported therapies for the treatment of patients with refractory Mycobacterium abscessus pulmonary disease (MAB-PD). We implemented intermittent multidrug IV therapy (IMIT) through repeated hospitalizations for patients with MAB-PD who were refractory to antibiotics for more than 12 months. RESEARCH QUESTION: What are the effects of IMIT on patients with refractory MAB-PD? STUDY DESIGN AND METHODS: The IV antibiotics administered for IMIT included amikacin, imipenem, and tigecycline, and the outcomes for 36 patients who underwent IMIT for refractory MAB-PD were evaluated. Patients were repeatedly hospitalized and administered IMIT on recurrent symptoms or radiographic evidence of deterioration, while maintaining oral/inhaled antibiotics. RESULTS: Of the 36 patients, 26 (72%) had M abscessus subspecies abscessus (herein, M abscessus)-PD, and 10 (28%) had M abscessus subspecies massiliense (herein, M massiliense)-PD. The median number of hospitalizations for IMIT was two (interquartile range, 1-3) for patients with M abscessus-PD and one (interquartile range, 1-2) for patients with M massiliense-PD. At least one negative culture result and culture conversion were observed in 62% and 12% of patients with M abscessus-PD, and in 80% and 60% of patients with M massiliense-PD, respectively. Symptomatic improvement was observed in all patients, and radiologic improvement, including cavity amelioration or no deterioration, was observed in 42% and 70% of patients with M abscessus-PD and with M massiliense-PD, respectively. No resistance to clarithromycin or amikacin was acquired. INTERPRETATION: IMIT with intermittent hospitalization can be a beneficial palliative treatment for patients with refractory MAB-PD. This therapy alleviated symptoms, slowed radiologic progression, and reduced the bacterial burden in some patients. However, radiologic and microbiological responses to IMIT were more apparent in M massiliense-PD than in M abscessus-PD.


Asunto(s)
Enfermedades Pulmonares , Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Humanos , Amicacina/uso terapéutico , Infecciones por Mycobacterium no Tuberculosas/diagnóstico , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Antibacterianos , Claritromicina/farmacología , Claritromicina/uso terapéutico , Enfermedades Pulmonares/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
4.
J Ethnopharmacol ; 319(Pt 3): 117326, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37879504

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Atractylodis Rhizoma is extensively employed in Traditional Chinese Medicine for the treatment of skin and gastrointestinal ailments. Its active components have been proven to demonstrate numerous beneficial properties, including antibacterial, antiviral, anti-inflammatory, anti-tumor, and anti-ulcer activities. Furthermore, the volatile oil from Atractylodis Rhizoma (VOAR) has been reported to effectively inhibit and eradicate pathogens such as Staphylococcus aureus, Escherichia coli and Candida albicans. Of particular concern is Staphylococcus pseudintermedius, the predominant pathogen responsible for canine pyoderma, whose increasing antimicrobial resistance poses a serious public health threat. VOAR merits further investigation regarding its antibacterial potential against Staphylococcus pseudintermedius. AIM OF THE STUDY: The study aims to verify the in vitro antibacterial activity of VOAR against Staphylococcus pseudintermedius. And a superficial skin infection model in mice was established to assess the in vivo therapeutic effect of VOAR. MATERIALS AND METHODS: Thirty strains of S. pseudintermedius were isolated from dogs with pyoderma, and the drug resistance was analyzed by disc diffusion method. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of VOAR were determined through the broth dilution method. The growth curve of bacteria in a culture medium containing VOAR was monitored using a UV spectrophotometer. Scanning electron microscopy was employed to observe the effects of VOAR on the microstructure of S. pseudintermedius. The impact of VOAR on the antibiotic resistance of S. pseudintermedius was assessed using the disc diffusion method. Twenty mice were randomly divided into four groups: the control group, the physiological saline group, the VOAR group, and the amikacin group. With the exception of the control group, the skin barrier of mice was disrupted by tap stripping, and the mice were subsequently inoculated with S. pseudintermedius to establish a superficial skin infection model. The modeled mice were treated with normal saline, VOAR, and amikacin for 5 days. Following the treatment period, the therapeutic effect of each group was evaluated based on the measures of body weight, skin symptoms, tissue bacterial load, tissue IL-6 content, and histopathological changes. RESULTS: The MIC and MBC of VOAR against 30 clinical isolates of S. pseudintermedius were found to be 0.005425% and 0.016875%, respectively. VOAR could exhibit the ability to delay the entry of bacteria into the logarithmic growth phase, disrupt the bacterial structure, and enhance the antibacterial zone in conjunction with antibiotic drugs. In the superficial skin infection model mice, VOAR significantly reduced the scores for skin redness (P < 0.0001), scab formation (P < 0.0001), and wrinkles (P < 0.0001). Moreover, VOAR markedly reduced the bacterial load (P < 0.001) and IL-6 content (P < 0.0001) in the skin tissues of mice. Histopathological observations revealed that the full-layer skin structure in the VOAR group was more complete, with clearer skin layers, and showed significant improvement in inflammatory cell infiltration and fibroblast proliferation compared to other groups. CONCLUSION: The results demonstrate that VOAR effectively inhibits and eradicates Staphylococcus pseudintermedius in vitro while also enhancing the pathogen's sensitivity to antibiotics. Moreover, VOAR exhibits a pronounced therapeutic effect in the superficial skin infection model mice.


Asunto(s)
Atractylodes , Staphylococcus aureus Resistente a Meticilina , Piodermia , Perros , Animales , Ratones , Amicacina , Interleucina-6 , Piodermia/tratamiento farmacológico , Piodermia/veterinaria , Antibacterianos/farmacología
5.
Front Cell Infect Microbiol ; 13: 1327452, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38116135

RESUMEN

The treatment of Pseudomonas aeruginosa infection often involves the combined use of ß-lactam and aminoglycoside antibiotics. In this study, we employed metabolomic analysis to investigate the mechanism responsible for the synergistic activities of meropenem/amikacin combination therapy against multidrug-resistant P. aeruginosa strains harboring OXA-50 and PAO genes. Antibiotic concentrations for meropenem (2 mg/L) monotherapy, amikacin (16 mg/L) monotherapy, and meropenem/amikacin (2/16 mg/L) combination therapy were selected based on clinical breakpoint considerations. Metabolomic analysis revealed significant alterations in relevant metabolites involved in bacterial cell membrane and cell wall synthesis within 15 min of combined drug administration. These alterations encompassed various metabolic pathways, including fatty acid metabolism, peptidoglycan synthesis, and lipopolysaccharide metabolism. Furthermore, at 1 h and 4 h, the combination therapy exhibited significant interference with amino acid metabolism, nucleotide metabolism, and central carbon metabolism pathways, including the tricarboxylic acid cycle and pentose phosphate pathway. In contrast, the substances affected by single drug administration at 1 h and 4 h demonstrated a noticeable reduction. Meropenem/amikacin combination resulted in notable perturbations of metabolic pathways essential for survival of P. aeruginosa, whereas monotherapies had comparatively diminished impacts.


Asunto(s)
Amicacina , Infecciones por Pseudomonas , Humanos , Meropenem/farmacología , Meropenem/uso terapéutico , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa , Antibacterianos/uso terapéutico , Pruebas de Sensibilidad Microbiana
6.
PLoS One ; 18(10): e0293194, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37883448

RESUMEN

Tuberculosis stands as a prominent cause of mortality in developing countries. The treatment of tuberculosis involves a complex procedure requiring the administration of a panel of at least four antimicrobial drugs for the duration of six months. The occurrence of treatment failure after the completion of a standard treatment course presents a serious medical problem. The purpose of this study was to evaluate antimicrobial drug resistant features of Mycobacterium tuberculosis associated with treatment failure. Additionally, it aimed to evaluate the effectiveness of second line drugs such as amikacin, linezolid, moxifloxacin, and the efflux pump inhibitor verapamil against M. tuberculosis isolates associated with treatment failure. We monitored 1200 tuberculosis patients who visited TB centres in Lahore and found that 64 of them were not cured after six months of treatment. Among the M. tuberculosis isolates recovered from the sputum of these 64 patients, 46 (71.9%) isolates were simultaneously resistant to rifampicin and isoniazid (MDR), and 30 (46.9%) isolates were resistant to pyrazinamide, Resistance to amikacin was detected in 17 (26,5%) isolates whereas resistance to moxifloxacin and linezolid was detected in 1 (1.5%) and 2 (3.1%) isolates respectively. Among MDR isolates, the additional resistance to pyrazinamide, amikacin, and linezolid was detected in 15(23.4%), 4(2.6%) and 1(1.56%) isolates respectively. One isolate simultaneously resistant to rifampicin, isoniazid, amikacin, pyrazinamide, and linezolid was also identified. In our investigations, the most frequently mutated amino acid in the treatment failure group was Serine 315 in katG. Three novel mutations were detected at codons 99, 149 and 154 in pncA which were associated with pyrazinamide resistance. The effect of verapamil on the minimum inhibitory concentration of isoniazid and rifampicin was observed in drug susceptible isolates but not in drug resistant isolates. Rifampicin and isoniazid enhanced the transcription of the efflux pump gene rv1258 in drug susceptible isolates collected from the treatment failure patients. Our findings emphasize a high prevalence of MDR isolates linked primarily to drug exposure. Moreover, the use of amikacin as a second line drug may not be the most suitable choice in such cases.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Isoniazida/farmacología , Isoniazida/uso terapéutico , Pirazinamida/uso terapéutico , Rifampin/uso terapéutico , Linezolid/farmacología , Linezolid/uso terapéutico , Amicacina/farmacología , Amicacina/uso terapéutico , Moxifloxacino/uso terapéutico , Moxifloxacino/farmacología , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Pruebas de Sensibilidad Microbiana , Verapamilo/farmacología , Mutación
7.
Ann Clin Microbiol Antimicrob ; 22(1): 61, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37475017

RESUMEN

BACKGROUND: Biofilms play a role in recalcitrance and treatability of bacterial infections, but majority of known antibiotic resistance mechanisms are biofilm-independent. Biofilms of Pseudomonas aeruginosa, especially in cystic fibrosis patients infected with the alginate producing strains in their lungs, are hard to treat. Changes in growth-related bacterial metabolism in biofilm affect their antibiotic recalcitrance which could be considered for new therapies designed based on these changes. In this study, effects of nitrate, arginine, and ferrous were investigated on antibiotic recalcitrance in alginate-encapsulated P. aeruginosa strains isolated from cystic fibrosis patients in the presence of amikacin, tobramycin, and ciprofloxacin. Also, expression of an efflux pump gene, mexY, was analyzed in selected strains in the presence of amikacin and ferrous. METHODS: Clinical P. aeruginosa strains were isolated from cystic fibrosis patients and minimum inhibitory concentration of amikacin, tobramycin, and ciprofloxacin was determined against all the strains. For each antibiotic, a susceptible and a resistant or an intermediate-resistant strain were selected, encapsulated into alginate beads, and subjected to minimal biofilm eradication concentration (MBEC) test. After determining MBECs, sub-MBEC concentrations (antibiotics at concentrations one level below the determined MBEC) for each antibiotic were selected and used to study the effects of nitrate, arginine, and ferrous on antibiotic recalcitrance of encapsulated strains. Effects of ferrous and amikacin on expression of the efflux pump gene, mexY, was studied on amikacin sensitive and intermediate-resistant strains. One-way ANOVA and t test were used as the statistical tests. RESULTS: According to the results, the supplements had a dose-related effect on decreasing the number of viable cells; maximal effect was noted with ferrous, as ferrous supplementation significantly increased biofilm susceptibility to both ciprofloxacin and amikacin in all strains, and to tobramycin in a resistant strain. Also, treating an amikacin-intermediate strain with amikacin increased the expression of mexY gene, which has a role in P. aeruginosa antibiotic recalcitrance, while treating the same strain with ferrous and amikacin significantly decreased the expression of mexY gene, which was a promising result. CONCLUSIONS: Our results support the possibility of using ferrous and arginine as an adjuvant to enhance the efficacy of conventional antimicrobial therapy of P. aeruginosa infections.


Asunto(s)
Fibrosis Quística , Infecciones por Pseudomonas , Humanos , Antibacterianos/uso terapéutico , Pseudomonas aeruginosa , Amicacina/farmacología , Nitratos/farmacología , Nitratos/uso terapéutico , Alginatos/metabolismo , Alginatos/farmacología , Alginatos/uso terapéutico , Arginina/farmacología , Arginina/uso terapéutico , Fibrosis Quística/microbiología , Infecciones por Pseudomonas/microbiología , Tobramicina/farmacología , Ciprofloxacina/farmacología , Biopelículas , Pruebas de Sensibilidad Microbiana
8.
Microbiol Spectr ; 11(3): e0028023, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37078875

RESUMEN

In view of the current increase and spread of antimicrobial resistance (AMR), there is an urgent need to find new strategies to combat it. This study had two aims. First, we synthesized highly monodispersed silver nanoparticles (AgNPs) of approximately 17 nm, and we functionalized them with mercaptopoly(ethylene glycol) carboxylic acid (mPEG-COOH) and amikacin (AK). Second, we evaluated the antibacterial activity of this treatment (AgNPs_mPEG_AK) alone and in combination with hyperthermia against planktonic and biofilm-growing strains. AgNPs, AgNPs_mPEG, and AgNPs_mPEG_AK were characterized using a suite of spectroscopy and microscopy methods. Susceptibility to these treatments and AK was determined after 24 h and over time against 12 clinical multidrug-resistant (MDR)/extensively drug-resistant (XDR) isolates of Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The efficacy of the treatments alone and in combination with hyperthermia (1, 2, and 3 pulses at 41°C to 42°C for 15 min) was tested against the same planktonic strains using quantitative culture and against one P. aeruginosa strain growing on silicone disks using confocal laser scanning microscopy. The susceptibility studies showed that AgNPs_mPEG_AK was 10-fold more effective than AK alone, and bactericidal efficacy after 4, 8, 24, or 48 h was observed against 100% of the tested strains. The combination of AgNPs_mPEG_AK and hyperthermia eradicated 75% of the planktonic strains and exhibited significant reductions in biofilm formation by P. aeruginosa in comparison with the other treatments tested, except for AgNPs_mPEG_AK without hyperthermia. In conclusion, the combination of AgNPs_mPEG_AK and hyperthermia may be a promising therapy against MDR/XDR and biofilm-producing strains. IMPORTANCE Antimicrobial resistance (AMR) is one of the greatest public health challenges, accounting for 1.27 million deaths worldwide in 2019. Biofilms, a complex microbial community, directly contribute to increased AMR. Therefore, new strategies are urgently required to combat infections caused by AMR and biofilm-producing strains. Silver nanoparticles (AgNPs) exhibit antimicrobial activity and can be functionalized with antibiotics. Although AgNPs are very promising, their effectiveness in complex biological environments still falls below the concentrations at which AgNPs are stable in terms of aggregation. Thus, improving the antibacterial effectiveness of AgNPs by functionalizing them with antibiotics may be a significant change to consolidate AgNPs as an alternative to antibiotics. It has been reported that hyperthermia has a large effect on the growth of planktonic and biofilm-producing strains. Therefore, we propose a new strategy based on AgNPs functionalized with amikacin and combined with hyperthermia (41°C to 42°C) to treat AMR and biofilm-related infections.


Asunto(s)
Hipertermia Inducida , Nanopartículas del Metal , Amicacina/farmacología , Plata/farmacología , Plata/química , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/química , Biopelículas
9.
Crit Care ; 27(1): 60, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36788582

RESUMEN

BACKGROUND: Pseudomonas aeruginosa pneumonia is commonly treated with systemic antibiotics to ensure adequate treatment of multidrug resistant (MDR) bacteria. However, intravenous (IV) antibiotics often achieve suboptimal pulmonary concentrations. We therefore aimed to evaluate the effect of inhaled amikacin (AMK) plus IV meropenem (MEM) on bactericidal efficacy in a swine model of monolateral MDR P. aeruginosa pneumonia. METHODS: We ventilated 18 pigs with monolateral MDR P. aeruginosa pneumonia for up to 102 h. At 24 h after the bacterial challenge, the animals were randomized to receive 72 h of treatment with either inhaled saline (control), IV MEM only, or IV-MEM plus inhaled AMK (MEM + AMK). We dosed IV MEM at 25 mg/kg every 8 h and inhaled AMK at 400 mg every 12 h. The primary outcomes were the P. aeruginosa burden and histopathological injury in lung tissue. Secondary outcomes included the P. aeruginosa burden in tracheal secretions and bronchoalveolar lavage fluid, the development of antibiotic resistance, the antibiotic distribution, and the levels of inflammatory markers. RESULTS: The median (25-75th percentile) P. aeruginosa lung burden for animals in the control, MEM only, and MEM + AMK groups was 2.91 (1.75-5.69), 0.72 (0.12-3.35), and 0.90 (0-4.55) log10 CFU/g (p = 0.009). Inhaled therapy had no effect on preventing dissemination compared to systemic monotherapy, but it did have significantly higher bactericidal efficacy in tracheal secretions only. Remarkably, the minimum inhibitory concentration of MEM increased to > 32 mg/L after 72-h exposure to monotherapy in 83% of animals, while the addition of AMK prevented this increase (p = 0.037). Adjunctive therapy also slightly affected interleukin-1ß downregulation. Despite finding high AMK concentrations in pulmonary samples, we found no paired differences in the epithelial lining fluid concentration between infected and non-infected lungs. Finally, a non-significant trend was observed for higher amikacin penetration in low-affected lung areas. CONCLUSIONS: In a swine model of monolateral MDR P. aeruginosa pneumonia, resistant to the inhaled AMK and susceptible to the IV antibiotic, the use of AMK as an adjuvant treatment offered no benefits for either the colonization of pulmonary tissue or the prevention of pathogen dissemination. However, inhaled AMK improved bacterial eradication in the proximal airways and hindered antibiotic resistance.


Asunto(s)
Neumonía , Infecciones por Pseudomonas , Animales , Amicacina/farmacología , Amicacina/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Meropenem/uso terapéutico , Pruebas de Sensibilidad Microbiana , Modelos Teóricos , Neumonía/tratamiento farmacológico , Pseudomonas aeruginosa , Infecciones por Pseudomonas/tratamiento farmacológico , Porcinos
10.
PLoS One ; 18(2): e0281097, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36780443

RESUMEN

BACKGROUND: Updated World Health Organization (WHO) treatment guidelines prioritize all-oral drug-resistant tuberculosis (DR-TB) regimens. Several poorly tolerated drugs, such as amikacin and para-aminosalicylic acid (PAS), remain treatment options for DR-TB in WHO-recommended longer regimens as Group C drugs. Incomplete treatment with anti-TB drugs increases the risk of treatment failure, relapse, and death. We determined whether missed doses of individual anti-TB drugs, and reasons for their discontinuation, varied in closely monitored hospital settings prior to the 2020 WHO DR-TB treatment guideline updates. METHODS: We collected retrospective data on adult patients with microbiologically confirmed DR-TB between 2008 and 2015 who were selected for a study of acquired drug resistance in the Western Cape Province of South Africa. Medical records through mid-2017 were reviewed. Patients received directly observed treatment during hospitalization at specialized DR-TB hospitals. Incomplete treatment with individual anti-TB drugs, defined as the failure to take medication as prescribed, regardless of reason, was determined by comparing percent missed doses, stratified by HIV status and DR-TB regimen. We applied a generalized mixed effects model. RESULTS: Among 242 patients, 131 (54%) were male, 97 (40%) were living with HIV, 175 (72%) received second-line treatment prior to first hospitalization, and 191 (79%) died during the study period. At initial hospitalization, 134 (55%) patients had Mycobacterium tuberculosis with resistance to rifampicin and isoniazid (multidrug-resistant TB [MDR-TB]) without resistance to ofloxacin or amikacin, and 102 (42%) had resistance to ofloxacin and/or amikacin. Most patients (129 [53%]) had multiple hospitalizations and DST changes occurred in 146 (60%) by the end of their last hospital discharge. Incomplete treatment was significantly higher for amikacin (18%), capreomycin (18%), PAS (17%) and kanamycin (16%) than other DR-TB drugs (P<0.001), including ethionamide (8%), moxifloxacin (7%), terizidone (7%), ethambutol (7%), and pyrazinamide (6%). Among the most frequently prescribed drugs, second-line injectables had the highest rates of discontinuation for adverse events (range 0.56-1.02 events per year follow-up), while amikacin, PAS and ethionamide had the highest rates of discontinuation for patient refusal (range 0.51-0.68 events per year follow-up). Missed doses did not differ according to HIV status or anti-TB drug combinations. CONCLUSION: We found that incomplete treatment for second-line injectables and PAS during hospitalization was higher than for other anti-TB drugs. To maximize treatment success, interventions to improve person-centered care and mitigate adverse events may be necessary in cases when PAS or amikacin (2020 WHO recommended Group C drugs) are needed.


Asunto(s)
Ácido Aminosalicílico , Infecciones por VIH , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Adulto , Humanos , Masculino , Femenino , Antituberculosos/farmacología , Estudios Retrospectivos , Etionamida/uso terapéutico , Sudáfrica/epidemiología , Amicacina/uso terapéutico , Amicacina/farmacología , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Ácido Aminosalicílico/uso terapéutico , Ofloxacino/farmacología , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/epidemiología , Hospitales , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA