Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 343
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Food Chem ; 448: 139104, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38547711

RESUMEN

Legume proteins can be induced to form amyloid-like fibrils upon heating at low pH, with the exact conditions greatly impacting the fibril characteristics. The protein extraction method may also impact the resulting fibrils, although this effect has not been carefully examined. Here, the fibrillization of lentil protein prepared using various extraction methods and the corresponding fibril morphology were characterized. It was found that an acidic, rather than alkaline, protein extraction method was better suited for producing homogeneous, long, and straight fibrils from lentil proteins. During alkaline extraction, co-extracted phenolic compounds bound proteins through covalent and non-covalent interactions, contributing to the formation of heterogeneous, curly, and tangled fibrils. Recombination of isolated phenolics and proteins (from acidic extracts) at alkaline pH resulted in a distinct morphology, implicating a role for polyphenol oxidase also in modifying proteins during alkaline extraction. These results help disentangle the complex factors affecting legume protein fibrillization.


Asunto(s)
Lens (Planta) , Fenoles , Proteínas de Plantas , Lens (Planta)/química , Fenoles/química , Fenoles/aislamiento & purificación , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Concentración de Iones de Hidrógeno , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Amiloide/química , Fraccionamiento Químico/métodos
2.
Sci Rep ; 14(1): 3907, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365968

RESUMEN

Green tea polyphenols (GTPs), particularly epigallocatechin-3-gallate, stand out among natural small molecules screened for their ability to target protein aggregates due to their potent anti-amyloidogenic and neuroprotective activities against various disease-related peptides and proteins. However, the clinical applications of GTPs in amyloid-related diseases have been greatly limited by drawbacks such as poor chemical stability and low bioavailability. To address these limitations, this study utilized an Iranian green tea polyphenolic extract as a reducing agent to neutralize silver ions and facilitate the formation of silver nanoparticle capped by GTPs (GTPs-capped AgNPs). The results obtained from this study demonstrate that GTPs-capped AgNPs are more effective than free GTPs at inhibiting amyloid fibrillation and reducing cytotoxicity induced by amyloid fibrils of human insulin and α-synuclein (α-syn). This improved efficacy is attributed to the increased surface/volume ratio of GTPs-capped AgNPs, which can enhance their binding affinity to amyloidogenic species and boosts their antioxidant activity. The mechanism by which GTPs-capped AgNPs inhibit amyloid fibrillation appears to vary depending on the target protein. For structured protein human insulin, GTPs-capped AgNPs hinder fibrillation by constraining the protein in its native-like state. In contrast, GTPs-capped AgNPs modulate fibrillation of intrinsically disordered proteins like α-syn by redirecting the aggregation pathway towards the formation of non-toxic off-pathway oligomers or amorphous aggregates. These findings highlight polyphenol-functionalized nanoparticles as a promising strategy for targeting protein aggregates associated with neurodegenerative diseases.


Asunto(s)
Nanopartículas del Metal , alfa-Sinucleína , Humanos , Plata/farmacología , Plata/química , Agregado de Proteínas , Antioxidantes , Irán , Amiloide/metabolismo , Polifenoles/farmacología , Proteínas Amiloidogénicas , Insulina , Té/química
3.
Chemistry ; 30(7): e202303194, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37967312

RESUMEN

Developing peptide-based materials with controlled morphology is a critical theme of soft matter research. Herein, we report the formation of a novel, patterned cross-ß structure formed by self-assembled C3 -symmetric peptide amphiphiles based on diphenylalanine and benzene-1,3,5-tricarboxamide (BTA). The cross-ß motif is an abundant structural element in amyloid fibrils and aggregates of fibril-forming peptides, including diphenylalanine. The incorporation of topological constraints on one edge of the diphenylalanine fragment limits the number of ß-strands in ß-sheets and leads to the creation of an unconventional offset-patterned cross-ß structure consisting of short 3×2 parallel ß-sheets stabilized by phenylalanine zippers. In the reported assembly, two patterned cross-ß structures bind parallel arrays of BTA stacks in a superstructure within a single-molecule-thick nanoribbon. In addition to a threefold network of hydrogen bonds in the BTA stack, each molecule becomes simultaneously bound by hydrogen bonds from three ß-sheets and four phenylalanine zippers. The diffuse layer of alkyl chains with terminal polar groups prevents the nanoribbons from merging and stabilizes cross-ß-structure in water. Our results provide a simple approach to the incorporation of novel patterned cross-ß motifs into supramolecular superstructures and shed light on the general mechanism of ß-sheet formation in C3 -symmetric peptide amphiphiles.


Asunto(s)
Amiloide , Péptidos , Estructura Secundaria de Proteína , Péptidos/química , Amiloide/química , Conformación Proteica en Lámina beta , Fenilalanina
4.
ACS Chem Neurosci ; 15(2): 278-289, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38154144

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disorder characterized by ataxia and other neurological manifestations, with a poor prognosis and a lack of effective therapies. The amyloid aggregation of the ataxin-3 protein is a hallmark of SCA3 and one of the main biochemical events prompting its onset, making it a prominent target for the development of preventive and therapeutic interventions. Here, we tested the efficacy of an aqueous Lavado cocoa extract and its polyphenolic components against ataxin-3 aggregation and neurotoxicity. The combination of biochemical assays and atomic force microscopy morphological analysis provided clear evidence of cocoa flavanols' ability to hinder ATX3 amyloid aggregation through direct physical interaction, as assessed by NMR spectroscopy. The chemical identity of the flavanols was investigated by ultraperformance liquid chromatography-high-resolution mass spectrometry. The use of the preclinical model Caenorhabditis elegans allowed us to demonstrate cocoa flavanols' ability to ameliorate ataxic phenotypes in vivo. To the best of our knowledge, Lavado cocoa is the first natural source whose extract is able to directly interfere with ATX3 aggregation, leading to the formation of off-pathway species.


Asunto(s)
Enfermedad de Machado-Joseph , Animales , Ataxina-3/genética , Ataxina-3/metabolismo , Enfermedad de Machado-Joseph/tratamiento farmacológico , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/metabolismo , Proteínas Amiloidogénicas/metabolismo , Amiloide/metabolismo , Caenorhabditis elegans , Polifenoles/uso terapéutico , Extractos Vegetales/farmacología
5.
Food Chem ; 440: 138245, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38159320

RESUMEN

This study aimed to prepare a novel emulsion film with high stability, using soy protein-derived amyloid fibrils (SAFs) as an emulsifier incorporating clove essential oil (CEO) as the active component, and the polyvinyl alcohol (PVA) matrix to stabilize the system. The results demonstrated that SAFs can successfully stabilize CEO. Emulsion prepared by SAFS and CEO (SAC) exhibited a small droplet size and better dispersibility compared with SPI and CEO (SC) emulsion. According to FT-IR results, PVA addition increased the hydrogen bond interactions among emulsion film components, thus further reinforcing the protein matrix, increasing the tensile strength (TS) (41.18 MPa) and elongation at break (E) (121.62 %) of the films. The uniform appearance of SAC-PVA (SACP) emulsion films was confirmed by SEM images. Furthermore, SACP emulsion films show distinctive barrier properties, optical properties, and outstanding antioxidant properties. Finally, emulsion films exhibited excellent preservation of strawberries, resulting in an effective decline of the decay rate.


Asunto(s)
Aceites Volátiles , Syzygium , Aceite de Clavo/química , Aceites Volátiles/química , Proteínas de Soja/química , Alcohol Polivinílico/química , Syzygium/química , Emulsiones/química , Amiloide , Espectroscopía Infrarroja por Transformada de Fourier , Embalaje de Alimentos/métodos
6.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38069333

RESUMEN

This work aims to clarify the effect of dietary polyunsaturated fatty acid (PUFA) intake on the adult brain affected by amyloid pathology. McGill-R-Thy1-APP transgenic (Tg) rat and 5xFAD Tg mouse models that represent earlier or later disease stages were employed. The animals were exposed to a control diet (CD) or an HFD based on corn oil, from young (rats) or adult (mice) ages for 24 or 10 weeks, respectively. In rats and mice, the HFD impaired reference memory in wild-type (WT) animals but did not worsen it in Tg, did not cause obesity, and did not increase triglycerides or glucose levels. Conversely, the HFD promoted stronger microglial activation in Tg vs. WT rats but had no effect on cerebral amyloid deposition. IFN-γ, IL-1ß, and IL-6 plasma levels were increased in Tg rats, regardless of diet, while CXCL1 chemokine levels were increased in HFD-fed mice, regardless of genotype. Hippocampal 3-nitrotyrosine levels tended to increase in HFD-fed Tg rats but not in mice. Overall, an HFD with an elevated omega-6-to-omega-3 ratio as compared to the CD (25:1 vs. 8.4:1) did not aggravate the outcome of AD regardless of the stage of amyloid pathology, suggesting that many neurobiological processes relevant to AD are not directly dependent on PUFA intake.


Asunto(s)
Enfermedad de Alzheimer , Ácidos Grasos Omega-3 , Ratones , Ratas , Animales , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Encéfalo/patología , Ratones Transgénicos , Amiloide , Modelos Animales de Enfermedad , Ratas Transgénicas , Dieta Alta en Grasa
7.
Int J Mol Sci ; 24(21)2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37958982

RESUMEN

Inborn error of metabolism disorders (IEMs) are a family of diseases resulting from single-gene mutations that lead to the accumulation of metabolites that are usually toxic or interfere with normal cell function. The etiological link between metabolic alteration and the symptoms of IEMs is still elusive. Several metabolites, which accumulate in IEMs, were shown to self-assemble to form ordered structures. These structures display the same biophysical, biochemical, and biological characteristics as proteinaceous amyloid fibrils. Here, we have demonstrated, for the first time, the ability of each of the branched-chain amino acids (BCAAs) that accumulate in maple syrup urine disease (MSUD) to self-assemble into amyloid-like fibrils depicted by characteristic morphology, binding to indicative amyloid-specific dyes and dose-dependent cytotoxicity by a late apoptosis mechanism. We could also detect the presence of the assemblies in living cells. In addition, by employing several in vitro techniques, we demonstrated the ability of known polyphenols to inhibit the formation of the BCAA fibrils. Our study implies that BCAAs possess a pathological role in MSUD, extends the paradigm-shifting concept regarding the toxicity of metabolite amyloid-like structures, and suggests new pathological targets that may lead to highly needed novel therapeutic opportunities for this orphan disease.


Asunto(s)
Enfermedad de la Orina de Jarabe de Arce , Enfermedades Metabólicas , Humanos , Enfermedad de la Orina de Jarabe de Arce/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Amiloide/genética , Mutación , Proteínas Amiloidogénicas/genética
8.
Molecules ; 28(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37959682

RESUMEN

Microcin E492 (MccE492) is an antimicrobial peptide and proposed virulence factor produced by some Klebsiella pneumoniae strains, which, under certain conditions, form amyloid fibers, leading to the loss of its antibacterial activity. Although this protein has been characterized as a model functional amyloid, the secondary structure transitions behind its formation, and the possible effect of molecules that inhibit this process, have not been investigated. In this study, we examined the ability of the green tea flavonoid epigallocatechin gallate (EGCG) to interfere with MccE492 amyloid formation. Aggregation kinetics followed by thioflavin T binding were used to monitor amyloid formation in the presence or absence of EGCG. Additionally, synchrotron radiation circular dichroism (SRCD) and transmission electron microscopy (TEM) were used to study the secondary structure, thermal stability, and morphology of microcin E492 fibers. Our results showed that EGCG significantly inhibited the formation of the MccE492 amyloid, resulting in mainly amorphous aggregates and small oligomers. However, these aggregates retained part of the ß-sheet SRCD signal and a high resistance to heat denaturation, suggesting that the aggregation process is sequestered or deviated at some stage but not completely prevented. Thus, EGCG is an interesting inhibitor of the amyloid formation of MccE492 and other bacterial amyloids.


Asunto(s)
Catequina , Polifenoles , Polifenoles/farmacología , , Amiloide/química , Proteínas Amiloidogénicas , Catequina/farmacología , Catequina/química
9.
Am J Case Rep ; 24: e940789, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37779307

RESUMEN

BACKGROUND AL amyloidomas are solitary, localized, tumor-like deposits of immunoglobulin light-chain-derived amyloid fibrils in the absence of systemic amyloidosis. A rare entity, they have been described in various anatomical sites, typically in spatial association with a sparse lymphoplasmacytic infiltrate, ultimately corresponding to a clonal, malignant, lymphomatous disorder accounting for the amyloidogenic activity. Most frequently, the amyloidoma-associated hematological disorder corresponds to either a solitary plasmacytoma or an extranodal marginal zone lymphoma of MALT. Much rarer is the association with lymphoplasmacytic lymphoma, which by itself is usually a bone marrow-bound disorder with systemic burden. The almost anecdotic combination of an amyloidoma and a localized lymphoplasmacytic lymphoma deserves attention, as it entails a thorough diagnostic workup to exclude systemic involvement and a proportionate therapeutic approach to avoid overtreatment. A review of the literature provides an insight on pathogenesis and prognosis, and can assist both pathologists and clinicians in establishing optimal patient management strategies. CASE REPORT We herein report the incidental finding of a subcutaneous amyloidoma caused by a spatially related, similarly localized lymphoplasmacytic lymphoma diagnosed in a 54-year-old female patient with no other disease localizations and a complete remission following 2 subsequent surgical excisions. CONCLUSIONS Whatever the specific combination of an amyloidoma and the related hematological neoplasm, a multidisciplinary collaboration and a comprehensive clinical-pathological staging are warranted to exclude systemic involvement and identify patients with localized diseases who would benefit from local active treatment and close follow-up.


Asunto(s)
Amiloidosis , Linfoma de Células B de la Zona Marginal , Plasmacitoma , Neoplasias de los Tejidos Blandos , Macroglobulinemia de Waldenström , Femenino , Humanos , Persona de Mediana Edad , Amiloidosis/diagnóstico , Amiloidosis/terapia , Amiloide , Linfoma de Células B de la Zona Marginal/diagnóstico , Linfoma de Células B de la Zona Marginal/terapia , Macroglobulinemia de Waldenström/complicaciones , Macroglobulinemia de Waldenström/diagnóstico , Macroglobulinemia de Waldenström/terapia , Plasmacitoma/diagnóstico , Plasmacitoma/terapia
10.
Alzheimers Res Ther ; 15(1): 183, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872582

RESUMEN

BACKGROUND: In MAPT (Multidomain Alzheimer Preventive Trial), a cognitive effect of multidomain intervention (MI) was showed in non-demented subjects with positive amyloid PET. However, screening eligible patients for multidomain intervention by PET is difficult to generalize in real-world settings. METHODS: MAPT study was a 3-year, randomized, placebo-controlled trial followed by a 2-year observational and optional extension. All participants were non-demented and randomly assigned (1:1:1:1) to the MI plus omega 3, MI plus placebo, omega 3 alone, or placebo alone group. The objectives were to assess the cognitive effect of MAPT interventions (omega 3 supplementation, MI, combined intervention) in non-demented subjects according to amyloid blood status at 12, 36, and 60 months. In this subgroup analysis (n = 483), amyloid status was defined by plasma Aß42/40 ratio (cutoff ≤ 0.0107). The primary outcome measure was the change in cognitive composite score after a 1, 3, and 5-year clinical follow-up. RESULTS: The intention-to-treat (ITT) population included 483 subjects (161 positive and 322 negative amyloid participants based on plasma Aß42/40 ratio). In the positive amyloid ITT population, we showed a positive effect of MI plus omega 3 on the change in composite cognitive score in 12 (raw p = .0350, 0.01917, 95% CI = [0.0136 to 0.3699]) and 36 months (raw p = .0357, 0.2818, 95% CI = [0.0190 to 0.5446]). After correction of multiple comparisons and adjustments, these differences were not significant (adjusted p = .1144 and .0690). In the per-protocol positive amyloid group (n = 154), we observed a significant difference between the combined intervention and placebo groups at 12 (p = .0313, 0.2424, 0.0571 to 0.4276) and 36 months (p = .0195, 0.3747, 0.1055 to 0.6439) persisting after adjustment. In the ITT and per-protocol analyses, no cognitive effect was observed in the positive and negative amyloid group at 60-month visit. CONCLUSIONS: These findings suggest a benefit of MI plus omega 3 in positive blood amyloid subjects. This promising trend needs to be confirmed before using blood biomarkers for screening in preventive trials. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01513252 .


Asunto(s)
Enfermedad de Alzheimer , Ácidos Grasos Omega-3 , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/uso terapéutico , Proyectos de Investigación , Amiloide , Cognición
11.
Life Sci ; 332: 122100, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37722588

RESUMEN

In the present study, the main objective was to reveal whether treatment by Omega-3 fatty acids could prevent the adverse effects of adolescent nicotine withdrawal on spatial and avoidance memory in male rats. For this purpose, Morris water maze and passive avoidance tests were performed on male Wistar rats and the hippocampal levels of oxidative stress markers, inflammatory indices, brain-derived neurotrophic factor, nitrite, amyloid-B and acetylcholinesterase (AChE) were measured. Moreover, density of dark neurons were assessed in CA1 and CA3 regions. Results showed that adolescent nicotine exposure followed by a period of drug cessation exacerbates the behavioral indices of learning and memory through affecting a variety of biochemical markers within the hippocampal tissues. These changes lead to elevation of oxidative and inflammatory markers, reduction of neurotrophic capacity and increased AChE activity in hippocampal tissues. In addition, it was observed that co-administration of nicotine with Omega-3 fatty acids significantly prevents nicotine withdrawal-induced adverse effects through restoration of the mentioned biochemical disturbances. Therefore, we suggest administration of Omega-3 fatty acids as a safe, inexpensive and effective therapeutic strategy for prevention of memory dysfunctions associated with nicotine abstinence during adolescence.


Asunto(s)
Ácidos Grasos Omega-3 , Síndrome de Abstinencia a Sustancias , Ratas , Masculino , Animales , Nicotina/farmacología , Ratas Wistar , Acetilcolinesterasa/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipocampo/metabolismo , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico , Estrés Oxidativo , Amiloide , Colinérgicos/farmacología , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/uso terapéutico , Aprendizaje por Laberinto , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/prevención & control , Trastornos de la Memoria/tratamiento farmacológico
12.
Chembiochem ; 24(20): e202300395, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37485551

RESUMEN

ß-Carboline alkaloids have a variety of pharmacological activities, such as antitumor, antibiosis and antidiabetes. Harmine and harmol are two structurally similar ß-carbolines that occur in many medicinal plants. In this work, we chose harmine and harmol to impede the amyloid fibril formation of human islet amyloid polypeptide (hIAPP) associated with type 2 diabetes mellitus (T2DM), by a series of physicochemical and biochemical methods. The results indicate that harmine and harmol effectively prevent peptide fibril formation and alleviate toxic oligomer species. In addition, both small molecules exhibit strong binding affinities with hIAPP mainly through hydrophobic and hydrogen bonding interactions, thus reducing the cytotoxicity induced by hIAPP. Their distinct binding pattern with hIAPP is closely linked to the molecular configuration of the two small molecules, affecting their ability to impede peptide aggregation. The study is of great significance for the application and development of ß-carboline alkaloids against T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Polipéptido Amiloide de los Islotes Pancreáticos/química , Harmina , Amiloide/química
13.
ACS Chem Neurosci ; 14(15): 2618-2633, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37487115

RESUMEN

Uranium (U) is naturally present in ambient air, water, and soil, and depleted uranium (DU) is released into the environment via industrial and military activities. While the radiological damage from U is rather well understood, less is known about the chemical damage mechanisms, which dominate in DU. Heavy metal exposure is associated with numerous health conditions, including Alzheimer's disease (AD), the most prevalent age-related cause of dementia. The pathological hallmark of AD is the deposition of amyloid plaques, consisting mainly of amyloid-ß (Aß) peptides aggregated into amyloid fibrils in the brain. However, the toxic species in AD are likely oligomeric Aß aggregates. Exposure to heavy metals such as Cd, Hg, Mn, and Pb is known to increase Aß production, and these metals bind to Aß peptides and modulate their aggregation. The possible effects of U in AD pathology have been sparsely studied. Here, we use biophysical techniques to study in vitro interactions between Aß peptides and uranyl ions, UO22+, of DU. We show for the first time that uranyl ions bind to Aß peptides with affinities in the micromolar range, induce structural changes in Aß monomers and oligomers, and inhibit Aß fibrillization. This suggests a possible link between AD and U exposure, which could be further explored by cell, animal, and epidemiological studies. General toxic mechanisms of uranyl ions could be modulation of protein folding, misfolding, and aggregation.


Asunto(s)
Enfermedad de Alzheimer , Uranio , Animales , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Iones/química , Amiloide
14.
J Phys Chem Lett ; 14(30): 6935-6939, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37498215

RESUMEN

Long-chain unsaturated and polyunsaturated fatty acids (LCUFAs and LCPUFAs, respectively) are the essential components of phospholipids and sphingolipids, major building blocks of plasma and organelle membranes. These molecules are also involved in cell signaling and energy metabolism. Hence, both LCUFAs and LCPUFAs are broadly used as food supplements. However, the role of these fatty acids (FAs) in the self-assembly of misfolded proteins remains unclear. In this study, we investigated the effect of LCUFAs and LCPUFAs, as well as their saturated analogue, on insulin aggregation. Using vibrational circular dichroism, we found that all analyzed FAs reversed the supramolecular chirality of insulin fibrils. Molecular dynamics simulations showed that strong hydrophobic interactions were formed between the long aliphatic tails of FAs and hydrophobic amino acid residues of insulin. We infer that such insulin:FA complexes had different self-assembly mechanisms compared to that of insulin alone, which resulted in the observed reversal of the supramolecular chirality of the amyloid fibrils.


Asunto(s)
Ácidos Grasos , Insulina , Insulina/química , Fosfolípidos/química , Amiloide/química , Concentración de Iones de Hidrógeno
15.
Bioorg Chem ; 137: 106636, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37290376

RESUMEN

Herein we report the synthesis of new furanoid sugar amino acids and thioureas, prepared by coupling aromatic amino acids and dipeptides with isothiocyanato- functionalized ribofuranose ring. Since carbohydrate-derived structures possess many biological activities, synthesized compounds were evaluated as anti-amyloid and antioxidant agents. The anti-amyloid activity of the studied compounds was evaluated based on their potential to destroy amyloid fibrils of intrinsically disordered Aß40 peptide and globular hen egg-white (HEW) lysozyme. The destructive efficiency of the compounds differed between the studied peptides. While the destruction activity of the compounds on the HEW lysozyme amyloid fibrils was negligible, the effect on Aß40 amyloid fibrils was significantly higher. Furanoid sugar α-amino acid 1 and its dipeptide derivatives 8 (Trp-Trp) and 11 (Trp-Tyr) were the most potent anti-Aß fibrils compounds. The antioxidant properties of synthesized compounds were estimated by three complementary in vitro assays (DPPH, ABTS, and FRAP). The ABTS assay was the most sensitive for assessing the radical scavenging activity of all tested compounds compared to the DPPH test. Significant antioxidant activity was detected for compounds in the group of aromatic amino acids depending on the present amino acid, with the highest activity in the case of dipeptides 11 and 12 containing the Tyr and Trp moiety. Regarding the FRAP assay, the best reducing antioxidant potential revealed Trp-containing compounds 5, 10, and 12.


Asunto(s)
Péptidos beta-Amiloides , Antioxidantes , Aminoácidos/farmacología , Aminoácidos/química , Aminoácidos Aromáticos , Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Antioxidantes/farmacología , Antioxidantes/química , Carbohidratos , Dipéptidos/farmacología , Dipéptidos/química , Muramidasa/química , Azúcares
16.
FASEB J ; 37(7): e22972, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37302013

RESUMEN

Docosahexaenoic (DHA) and arachidonic acids (ARA) are omega-3 and omega-6 long-chain polyunsaturated fatty acids (LCPUFAs). These molecules constitute a substantial portion of phospholipids in plasma membranes. Therefore, both DHA and ARA are essential diet components. Once consumed, DHA and ARA can interact with a large variety of biomolecules, including proteins such as insulin and α-synuclein (α-Syn). Under pathological conditions known as injection amyloidosis and Parkinson's disease, these proteins aggregate forming amyloid oligomers and fibrils, toxic species that exert high cell toxicity. In this study, we investigate the role of DHA and ARA in the aggregation properties of α-Syn and insulin. We found that the presence of both DHA and ARA at the equimolar concentrations strongly accelerated aggregation rates of α-Syn and insulin. Furthermore, LCPUFAs substantially altered the secondary structure of protein aggregates, whereas no noticeable changes in the fibril morphology were observed. Nanoscale Infrared analysis of α-Syn and insulin fibrils grown in the presence of both DHA and ARA revealed the presence of LCPUFAs in these aggregates. We also found that such LCPUFAs-rich α-Syn and insulin fibrils exerted significantly greater toxicities compared to the aggregates grown in the LCPUFAs-free environment. These findings show that interactions between amyloid-associated proteins and LCPUFAs can be the underlying molecular cause of neurodegenerative diseases.


Asunto(s)
Ácidos Grasos Omega-3 , Enfermedad de Parkinson , Humanos , alfa-Sinucleína/metabolismo , Insulina , Amiloide/toxicidad , Amiloide/química , Ácidos Grasos Insaturados , Proteínas Amiloidogénicas , Ácidos Araquidónicos
17.
Curr Protein Pept Sci ; 24(6): 518-532, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37259218

RESUMEN

BACKGROUND: A hallmark pathology of Alzheimer's disease (AD) is the construction of neurofibrillary tangles, which are made of hyperphosphorylated Tau. The cis-proline isomer of the pThr/Ser-Pro sequence has been suggested to act as an aggregation precursor according to the 'Cistauosis' hypothesis; however, this aggregation scheme is not yet completely approved. Various peptidyl-prolyl isomerases (PPIases) may specifically isomerize cis/trans-proline bonds and restitute Tau's ability to attach microtubules and may control Tau amyloid aggregation in AD. METHODS: In this study, we provided experimental evidence for indicating the effects of the plant Cyclophilin (P-Cyp) from Platanus orientalis pollens on the Tau aggregation by various spectroscopic techniques. RESULTS: Our findings disclosed that the rate/extent of amyloid formation in the Tau sample which is incubated with P-Cyp decreased and these observations do not seem to be due to the macromolecular crowding effect. Also, as proven that 80% of the prolines in the unfolded protein are in the trans conformation, urea-induced unfolding analyses confirmed this conclusion and showed that the aggregation rate/extent of urea-treated Tau samples decreased compared with those of the native protein. Also, XRD analysis indicated the reduction of scattering intensities and beta structures of amyloid fibrils in the presence of P-Cyp. Therefore, the ability of P-Cyp to suppress Tau aggregation probably depends on cis to trans isomerization of proline peptide bonds (X-Pro) and decreasing cis isomers in vitro. CONCLUSION: The findings of the current study may inspire possible protective/detrimental effects of various types of cyclophilins on AD onset/progression through direct regulation of intracellular Tau molecules and provides evidence that a protein from a plant source is able to enter the cell cytoplasm and may affect the behavior of cytoplasmic proteins.


Asunto(s)
Enfermedad de Alzheimer , Ciclofilinas , Ciclofilinas/metabolismo , Amiloide/metabolismo , Alérgenos , Proteínas tau/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Polen/metabolismo , Prolina/farmacología , Prolina/química , Prolina/metabolismo , Urea , Péptidos beta-Amiloides
18.
Int J Biol Macromol ; 242(Pt 2): 124856, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37178892

RESUMEN

Amyloidoses represent a group of pathological conditions characterized by amyloid fibrils accumulating in the form of deposits in intra- or extracellular space, leading to tissue damage. The lysozyme from hen egg-white (HEWL) is often used as a universal model protein to study the anti-amyloid effects of small molecules. The in vitro anti-amyloid activity and mutual interactions of green tea leaf constituents: (-)-epigallocatechin gallate (EGCG), (-)-epicatechin (EC), gallic acid (GA), caffeine (CF) and their equimolar mixtures were studied. The inhibition of HEWL amyloid aggregation was monitored by a Thioflavin T fluorescence assay and atomic force microscopy (AFM). The interactions of the analyzed molecules with HEWL were interpreted by ATR-FTIR and protein-small ligand docking studies. EGCG was the only substance efficiently inhibiting amyloid formation (IC50 âˆ¼193 µM), slowing the aggregation process, reducing the number of fibrils and partially stabilizing the secondary structure of HEWL. Compared to EGCG alone, EGCG-containing mixtures displayed lower overall anti-amyloid efficacy. The decrease in efficiency results from (a) the spatial interference of GA, CF and EC with EGCG while binding to HEWL, (b) the propensity of CF to form a less active adduct with EGCG, which participates in interactions with HEWL in parallel with pure EGCG. This study confirms the importance of interaction studies, revealing the possible antagonistic behavior of molecules when combined.


Asunto(s)
Amiloide , Muramidasa , Amiloide/química , Muramidasa/química , Proteínas Amiloidogénicas , Cafeína/farmacología , , Hojas de la Planta/metabolismo , Agregado de Proteínas
19.
Mol Pharmacol ; 103(5): 266-273, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36868792

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease that is accompanied by memory decline and cognitive dysfunction. Aggregated amyloid ß formation and accumulation may be one of the underlying mechanisms of the pathophysiology of AD. Therefore, compounds that can inhibit amyloid ß aggregation may be useful for treatment. Based on this hypothesis, we screened plant compounds used in Kampo medicine for chemical chaperone activity and identified that alkannin had this property. Further analysis indicated that alkannin could inhibit amyloid ß aggregation. Importantly, we also found that alkannin inhibited amyloid ß aggregation after aggregates had already formed. Through the analysis of circular dichroism spectra, alkannin was found to inhibit ß-sheet structure formation, which is an aggregation-prone toxic structure. Furthermore, alkannin attenuated amyloid ß-induced neuronal cell death in PC12 cells, ameliorated amyloid ß aggregation in the AD model of Caenorhabditis elegans (C. elegans), and inhibited chemotaxis observed in AD C. elegans, suggesting that alkannin could potentially inhibit neurodegeneration in vivo. Overall, these results suggest that alkannin may have novel pharmacological properties for inhibiting amyloid ß aggregation and neuronal cell death in AD. SIGNIFICANCE STATEMENT: Aggregated amyloid ß formation and accumulation is one of the underlying mechanisms of the pathophysiology of Alzheimer's disease. We found that alkannin had chemical chaperone activity, which can inhibit ß-sheet structure formation of amyloid ß and its aggregation, neuronal cell death, and Alzheimer's disease phenotype in C. elegans. Overall, alkannin may have novel pharmacological properties for inhibiting amyloid ß aggregation and neuronal cell death in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Animales , Ratas , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Caenorhabditis elegans/metabolismo , Amiloide/uso terapéutico
20.
Curr Opin Struct Biol ; 80: 102573, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36966690

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disease with no cure where the underlying causes remain elusive. Mitochondrial dysfunction has become a prime suspect in AD pathogenesis since bioenergetic deficits precede the pathology. With advancing structural biology techniques at synchrotrons and cryo-electron microscopes, it is becoming possible to determine the structures of key proteins suspected to contribute to the initiation and propagation of AD, and investigate their interactions. In this review, we provide an overview of the recent developments concerning the structural aspects of mitochondrial protein complexes and their assembly factors involved the production of energy, in pursuit of therapies to halt or even reverse this disease in the early stages when mitochondria are most sensitive to amyloid toxicity.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Mitocondrias/metabolismo , Metabolismo Energético , Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA