Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Bioinformatics ; 25(1): 138, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553675

RESUMEN

Even though high-throughput transcriptome sequencing is routinely performed in many laboratories, computational analysis of such data remains a cumbersome process often executed manually, hence error-prone and lacking reproducibility. For corresponding data processing, we introduce Curare, an easy-to-use yet versatile workflow builder for analyzing high-throughput RNA-Seq data focusing on differential gene expression experiments. Data analysis with Curare is customizable and subdivided into preprocessing, quality control, mapping, and downstream analysis stages, providing multiple options for each step while ensuring the reproducibility of the workflow. For a fast and straightforward exploration and visualization of differential gene expression results, we provide the gene expression visualizer software GenExVis. GenExVis can create various charts and tables from simple gene expression tables and DESeq2 results without the requirement to upload data or install software packages. In combination, Curare and GenExVis provide a comprehensive software environment that supports the entire data analysis process, from the initial handling of raw RNA-Seq data to the final DGE analyses and result visualizations, thereby significantly easing data processing and subsequent interpretation.


Asunto(s)
Curare , RNA-Seq , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN/métodos , Transcriptoma , Programas Informáticos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Perfilación de la Expresión Génica/métodos
2.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36769267

RESUMEN

As an emerging sequencing technology, single-cell RNA sequencing (scRNA-Seq) has become a powerful tool for describing cell subpopulation classification and cell heterogeneity by achieving high-throughput and multidimensional analysis of individual cells and circumventing the shortcomings of traditional sequencing for detecting the average transcript level of cell populations. It has been applied to life science and medicine research fields such as tracking dynamic cell differentiation, revealing sensitive effector cells, and key molecular events of diseases. This review focuses on the recent technological innovations in scRNA-Seq, highlighting the latest research results with scRNA-Seq as the core technology in frontier research areas such as embryology, histology, oncology, and immunology. In addition, this review outlines the prospects for its innovative application in traditional Chinese medicine (TCM) research and discusses the key issues currently being addressed by scRNA-Seq and its great potential for exploring disease diagnostic targets and uncovering drug therapeutic targets in combination with multiomics technologies.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Análisis de Secuencia de ARN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Multiómica , Tecnología , Perfilación de la Expresión Génica/métodos
3.
Am J Physiol Lung Cell Mol Physiol ; 324(4): L536-L549, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36852927

RESUMEN

Interstitial macrophages (IMs) reside in the lung tissue surrounding key structures including airways, vessels, and alveoli. Recent work has described IM heterogeneity during homeostasis, however, there are limited data on IMs during inflammation. We sought to characterize IM origin, subsets, and transcriptomic profiles during homeostasis and lipopolysaccharide (LPS) induced acute lung inflammation. During homeostasis, we used three complementary methods, spectral flow cytometry, single-cell RNA-sequencing, and gene regulatory network enrichment, to demonstrate that IMs can be divided into two core subsets distinguished by surface and transcriptional expression of folate receptor ß (Folr2/FRß). These subsets inhabited distinct niches within the lung interstitium. Within FRß+ IMs we identified a subpopulation marked by coexpression of LYVE1. During acute LPS-induced inflammation, lung IM numbers expand. Lineage tracing revealed IM expansion was due to recruitment of monocyte-derived IMs. At the peak of inflammation, recruited IMs were comprised two unique subsets defined by expression of genes associated with interferon signaling and glycolytic pathways. As recruited IMs matured, they adopted the overall transcriptional state of FRß- resident IMs but retained expression in several origin-specific genes, such as IL-1ß. FRß+ IMs were of near-pure resident origin. Taken together our data show that during LPS-induced inflammation, there are distinct populations of IMs that likely have unique functions. FRΒ+ IMs comprise a stable, resident population, whereas FRß- ΙΜs represent a mixed population of resident and recruited IMs.


Asunto(s)
Receptor 2 de Folato , Neumonía , Humanos , Monocitos/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Macrófagos/metabolismo , Neumonía/inducido químicamente , Neumonía/genética , Neumonía/metabolismo , Inflamación/genética , Inflamación/metabolismo , Análisis de Secuencia de ARN/métodos , Receptor 2 de Folato/metabolismo
4.
Commun Biol ; 5(1): 602, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35760847

RESUMEN

Single-cell RNA-sequencing (scRNA-seq) is valuable for analyzing cellular heterogeneity. Cell composition accuracy is critical for analyzing cell-cell interaction networks from scRNA-seq data. However, droplet- and plate-based scRNA-seq techniques have cell sampling bias that could affect the cell composition of scRNA-seq datasets. Here we developed terminator-assisted solid-phase cDNA amplification and sequencing (TAS-Seq) for scRNA-seq based on a terminator, terminal transferase, and nanowell/bead-based scRNA-seq platform. TAS-Seq showed high tolerance to variations in the terminal transferase reaction, which complicate the handling of existing terminal transferase-based scRNA-seq methods. In murine and human lung samples, TAS-Seq yielded scRNA-seq data that were highly correlated with flow-cytometric data, showing higher gene-detection sensitivity and more robust detection of important cell-cell interactions and expression of growth factors/interleukins in cell subsets than 10X Chromium v2 and Smart-seq2. Expanding TAS-Seq application will improve understanding and atlas construction of lung biology at the single-cell level.


Asunto(s)
Perfilación de la Expresión Génica , Análisis de la Célula Individual , Animales , ADN Complementario/genética , Perfilación de la Expresión Génica/métodos , Humanos , Ratones , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Transferasas
5.
Bioinformatics ; 38(5): 1287-1294, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-34864849

RESUMEN

MOTIVATION: RNA expression at isoform level is biologically more informative than at gene level and can potentially reveal cellular subsets and corresponding biomarkers that are not visible at gene level. However, due to the strong 3' bias sequencing protocol, mRNA quantification for high-throughput single-cell RNA sequencing such as Chromium Single Cell 3' 10× Genomics is currently performed at the gene level. RESULTS: We have developed an isoform-level quantification method for high-throughput single-cell RNA sequencing by exploiting the concepts of transcription clusters and isoform paralogs. The method, called Scasa, compares well in simulations against competing approaches including Alevin, Cellranger, Kallisto, Salmon, Terminus and STARsolo at both isoform- and gene-level expression. The reanalysis of a CITE-Seq dataset with isoform-based Scasa reveals a subgroup of CD14 monocytes missed by gene-based methods. AVAILABILITY AND IMPLEMENTATION: Implementation of Scasa including source code, documentation, tutorials and test data supporting this study is available at Github: https://github.com/eudoraleer/scasa and Zenodo: https://doi.org/10.5281/zenodo.5712503. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Perfilación de la Expresión Génica , Programas Informáticos , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , ARN
6.
J Ethnopharmacol ; 285: 114786, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34763043

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Diabetes is a common, complex, chronic metabolic disease. A randomized, double-blind, placebo-parallel controlled clinical study has shown that Gegen Qinlian Decoction (GQD) can reduce glycosylated hemoglobin in type 2 diabetes mellitus (T2DM) intestinal damp-heat syndrome patients in a dose-dependent manner. AIM: To explore the pathogenesis of T2DM intestinal damp-heat syndrome and the therapeutic effect of GQD from the perspective of exosomal microRNA (miRNA). METHODS: Eligible patients were selected and treated with GQD for 3 months to evaluate their clinical efficacy. Effective cases were matched with healthy volunteers, and saliva samples were collected. Exosomal miRNA was extracted from saliva and analyzed by chip sequencing. Subsequently, the function of the differential gene and the signal transduction pathway were analyzed using bioinformatics technology. Finally, three target miRNAs were randomly selected from the T2DM group/healthy group, and two target miRNAs in the T2DM before treatment/after treatment group were randomly selected for qPCR verification. Finally, we conducted a correlation analysis of the miRNAs and clinical indicators. The registration number for this research is ChiCTR-IOR-15006626. RESULTS: (1) The expression of exosomal miRNA chips showed that there were 14 differentially expressed miRNAs in the T2DM group/healthy group, and 26 differentially expressed miRNAs in the T2DM before treatment/after treatment group. (2) Enrichment results showed that in the T2DM group/healthy group, it was primarily related to cell development, body metabolism, TGF-ß, and ErbB signaling pathways. In the T2DM before treatment/after treatment group, it was mainly related to cellular metabolic regulation processes, and insulin, Wnt, and AMPK signaling pathways. (3) The qPCR verification showed that the expressions of hsa-miR-9-5p, hsa-miR-150-5p, and hsa-miR-216b-5p in the T2DM group was higher (P<0.05). Following GQD treatment, hsa-miR-342-3p and hsa-miR-221-3p were significantly downregulated (P<0.05). (4) hsa-miR-9-5p was positively correlated with BMI (P<0.05), and hsa-miR-150-5p was positively correlated with total cholesterol and triglycerides (P<0.05). The GQD efficacy-related gene hsa-miR-342-3p was positively correlated with the patient's initial blood glucose level (P<0.05), and hsa-miR-221-3p was positively correlated with total cholesterol and triglycerides (P<0.05). CONCLUSION: The exosomal miRNA expression profile and signaling pathways related to T2DM intestinal damp-heat syndrome and the efficacy of GQD were established, which provides an alternative strategy for precision traditional Chinese medicine treatment.


Asunto(s)
Diabetes Mellitus Tipo 2 , Medicamentos Herbarios Chinos , Exosomas/genética , Insulina , Intestinos , MicroARNs/análisis , Análisis de Secuencia de ARN/métodos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/efectos adversos , Femenino , Hemoglobina Glucada/análisis , Humanos , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/efectos adversos , Insulina/deficiencia , Insulina/metabolismo , Intestinos/metabolismo , Intestinos/microbiología , Intestinos/fisiopatología , Masculino , Medicina Tradicional China/métodos , Persona de Mediana Edad , Gravedad del Paciente , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo , Resultado del Tratamiento
7.
J Ethnopharmacol ; 282: 114608, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34517059

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Nelumbo nucifera (N. nucifera), a kind of edible Chinese herbal, has been studied in treating hyperlipidemia. However, the hypolipidemic mechanism of N. nucifera remains unknown. Aims of this review: We aimed to screen the effective constituent of N. nucifera alkaloids and elucidated the potential mechanism for treating hyperlipidemia. A triple combination strategy of UHPLC-MSn, hypolipidemic activity and transcriptome sequencing was built to unveil the hypolipidemic mechanism of Nelumbo nucifera alkaloid. MATERIALS AND METHODS: We comprehensively investigated the characterization of N. nucifera alkaloids by using UHPLC-LTQ-Orbitrap MSn. And the hypolipidemic activity of candidate active ingredients were evaluated on sodium oleate-induced HepG2 cell. Finally, O-nornuciferine and N. nucifera alkaloid extraction were analyzed by RNA sequence (RNA-seq) to decipher the underlying hypolipidemic mechanism and were verified by qRT-PCR. RESULTS: 35 compounds were identified from N. nucifera alkaloid extraction by UHPLC-LTQ-Orbitrap MSn. Among them, O-nornuciferine and N. nucifera alkaloid extraction which showed significant hypolipidemic activity were analyzed by transcriptome sequencing. After the intervention of O-nornuciferine and N. nucifera alkaloid extraction, 1 and 158 differentially expressed genes (DEGs) were identified, severally. The enrichment analysis indicated that the hypolipidemic effect was adjusted by the expression of numerous key DEGs involved in bile secretion, glycerolipid and sphingolipid metabolism, PPAR signaling pathway. CONCLUSIONS: O-nornuciferine and N. nucifera alkaloids had exibited significant effects in hyperlipidemia. The candidate genes were LDLR, LPL and ANGPTL4, etc. It was most likely that they adjusted lipid metabolism by modulating expression levels of various key factors which were involved in bile secretion, glycerolipid metabolism, sphingolipid metabolism and PPAR signaling pathway, and so on. This study clarified the hypolipidemic mechanism of the alkaloids in N. nucifera, and laid a foundation for the subsequent development of clinical application and better quality of N. nucifera.


Asunto(s)
Alcaloides/farmacología , Aporfinas/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Hiperlipidemias , Nelumbo , Proteína 4 Similar a la Angiopoyetina/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Células Hep G2 , Humanos , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/metabolismo , Hipolipemiantes/farmacología , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Receptores de LDL/metabolismo , Análisis de Secuencia de ARN/métodos , Transducción de Señal/efectos de los fármacos
8.
PLoS One ; 16(8): e0256148, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34407144

RESUMEN

In females, estrogens have two main modes of action relating to gonadotropin secretion: positive feedback and negative feedback. Estrogen positive and negative feedback are controlled by different regions of the hypothalamus: the preoptic area/anterior portion (mainly the anteroventral periventricular nucleus, AVPV) of the hypothalamus is associated with estrogen positive feedback while the mediobasal hypothalamus (mainly the arcuate nucleus of the hypothalamus, ARH), is associated with estrogen negative feedback. In this study, we examined the temporal pattern of gene transcription in these two regions following estrogen treatment. Adult, ovariectomized, Long Evans rats received doses of estradiol benzoate (EB) or oil every 4 days for 3 cycles. On the last EB priming cycle, hypothalamic tissues were dissected into the AVPV+ and ARH+ at 0 hrs (baseline/oil control), 6 hrs, or 24 hrs after EB treatment. RNA was extracted and sequenced using bulk RNA sequencing. Differential gene analysis, gene ontology, and weighted correlation network analysis (WGCNA) was performed. Overall, we found that the AVPV+ and ARH+ respond differently to estradiol stimulation. In both regions, estradiol treatment resulted in more gene up-regulation than down-regulation. S100g was very strongly up-regulated by estradiol in both regions at 6 and 24 hrs after EB treatment. In the AVPV+ the highest number of differentially expressed genes occurred 24 hrs after EB. In the ARH+, the highest number of genes differentially expressed by EB occurred between 6 and 24 hrs after EB, while in the AVPV+, the fewest genes changed their expression between these time points, demonstrating a temporal difference in the way that EB regulates transcription these two areas. Several genes strongly implicated in gonadotropin release were differentially affected by estradiol including Esr1, encoding estrogen receptor-α and Kiss1, encoding kisspeptin. As an internal validation, Kiss1 was up-regulated in the AVPV+ and down-regulated in the ARH+. Gene network analysis revealed the vastly different clustering of genes modulated by estradiol in the AVPV+ compared with the ARH+. These results indicate that gene expression in these two hypothalamic regions have specific responses to estradiol in timing and direction.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Estradiol/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo Anterior/metabolismo , Hipotálamo/metabolismo , Análisis de Secuencia de ARN/métodos , Animales , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Receptor alfa de Estrógeno/metabolismo , Estrógenos/farmacología , Femenino , Hipotálamo/efectos de los fármacos , Hipotálamo Anterior/efectos de los fármacos , Kisspeptinas/metabolismo , Modelos Animales , Ovariectomía/métodos , Ratas , Ratas Long-Evans
9.
BMC Plant Biol ; 21(1): 354, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34315414

RESUMEN

BACKGROUND: Atractylodes chinensis (DC.) Koidz is a well-known medicinal plant containing the major bioactive compound, atractylodin, a sesquiterpenoid. High-performance liquid chromatography (HPLC) analysis demonstrated that atractylodin was most abundant in 3-year old A. chinensis rhizome, compared with those from 1- and 2-year old rhizomes, however, the molecular mechanisms underlying accumulation of atractylodin in rhizomes are poorly understood. RESULTS: In this study, we characterized the transcriptomes from rhizomes of 1-, 2- and 3-year old (Y1, Y2 and Y3, respectively) A. chinensis, to identify differentially expressed genes (DEGs). We identified 240, 169 and 131 unigenes encoding the enzyme genes in the mevalonate (MVA), methylerythritol phosphate (MEP), sesquiterpenoid and triterpenoid biosynthetic pathways, respectively. To confirm the reliability of the RNA sequencing analysis, eleven key gene encoding factors involved in the sesquiterpenoid and triterpenoid biosynthetic pathway, as well as in pigment, amino acid, hormone and transcription factor functions, were selected for quantitative real time PCR (qRT-PCR) analysis. The results demonstrated similar expression patterns to those determined by RNA sequencing, with a Pearson's correlation coefficient of 0.9 between qRT-PCR and RNA-seq data. Differential gene expression analysis of rhizomes from different ages revealed 52 genes related to sesquiterpenoid and triterpenoid biosynthesis. Among these, seven DEGs were identified in Y1 vs Y2, Y1 vs Y3 and Y2 vs Y3, of which five encoded four key enzymes, squalene/phytoene synthase (SS), squalene-hopene cyclase (SHC), squalene epoxidase (SE) and dammarenediol II synthase (DS). These four enzymes directly related to squalene biosynthesis and subsequent catalytic action. To validate the result of these seven DEGs, qRT-PCR was performed and indicated most of them displayed lower relative expression in 3-year old rhizome, similar to transcriptomic analysis. CONCLUSION: The enzymes SS, SHC, SE and DS down-regulated expression in 3-year old rhizome. This data corresponded to the higher content of sesquiterpenoid in 3-year old rhizome, and confirmed by qRT-PCR. The results of comparative transcriptome analysis and identified key enzyme genes laid a solid foundation for investigation of production sesquiterpenoid in A. chinensis.


Asunto(s)
Atractylodes/metabolismo , Perfilación de la Expresión Génica/métodos , Transcriptoma/genética , Transferasas Alquil y Aril/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Geranilgeranil-Difosfato Geranilgeraniltransferasa/metabolismo , Transferasas Intramoleculares/metabolismo , Análisis de Secuencia de ARN/métodos , Sesquiterpenos/metabolismo , Escualeno-Monooxigenasa/metabolismo
10.
Biomolecules ; 11(7)2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201466

RESUMEN

Nitric oxide (NO) as a momentous signal molecule participates in plant reproductive development and responds to various abiotic stresses. Here, the inhibitory effects of the NO-dominated signal network on the pollen tube growth of Camellia sinensis under low temperature (LT) were studied by microRNA (miRNA) omics analysis. The results showed that 77 and 71 differentially expressed miRNAs (DEMs) were induced by LT and NO treatment, respectively. Gene ontology (GO) analysis showed that DEM target genes related to microtubules and actin were enriched uniquely under LT treatment, while DEM target genes related to redox process were enriched uniquely under NO treatment. In addition, the target genes of miRNA co-regulated by LT and NO are only located on the cell membrane and cell wall, and most of them are enriched in metal ion binding and/or transport and cell wall organization. Furthermore, DEM and its target genes related to metal ion binding/transport, redox process, actin, cell wall organization and carbohydrate metabolism were identified and quantified by functional analysis and qRT-PCR. In conclusion, miRNA omics analysis provides a complex signal network regulated by NO-mediated miRNA, which changes cell structure and component distribution by adjusting Ca2+ gradient, thus affecting the polar growth of the C. sinensis pollen tube tip under LT.


Asunto(s)
Camellia sinensis/genética , Frío , MicroARNs/genética , Óxido Nítrico/farmacología , Tubo Polínico/genética , Análisis de Secuencia de ARN/métodos , Camellia sinensis/metabolismo , Redes Reguladoras de Genes/efectos de los fármacos , Redes Reguladoras de Genes/fisiología , MicroARNs/metabolismo , Tubo Polínico/efectos de los fármacos , Tubo Polínico/metabolismo
11.
Bioprocess Biosyst Eng ; 44(11): 2303-2313, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34296328

RESUMEN

Agaricus bitorquis (Quél.) Sacc. Chaidam (ABSC) is a wild edible fungus uniquely found in the Tibet Plateau. ABSC is rich in polysaccharides that are considered biologically active. This study aimed to determine the feasibility of enhancing exopolysaccharide (EPS) production by ABSC in shake flask culture by supplementing the fermentation medium with anthocyanin extract. Different concentrations of Lycium ruthenicum Murr. (LRM) anthocyanin crude extract were tested on ABSC fermentation. The activity of phosphoglucose isomerase (PGI), phosphoglucose mutase (PGM), and phosphomannose isomerase (PMI), enzymes presumably involved in EPS synthesis by ABSC, was determined. ABSC transcriptomic profile in response to the presence of anthocyanins during fermentation was also investigated. LRM anthocyanin crude extract (0.06 mg/mL) was most effective in increasing EPS content and mycelial biomass (by 208.10% and 105.30%, respectively, P < 0.01). The activity of PGI, PGM, and PMI was increased in a medium where LRM anthocyanin extract and its main components (proanthocyanidins and petunia anthocyanin) were added. RNA-Seq analysis showed that 349 genes of ABSC were differentially expressed during fermentation in the medium containing anthocyanin extract of LRM; 93 genes were up-regulated and 256 genes down-regulated. From gene ontology enrichment analysis, differentially expressed genes were mostly assigned to carbohydrate metabolism and signal transduction categories. Collectively, LRM anthocyanins extract positively affected EPS production and mycelial biomass during ABSC fermentation. Our study provides a novel strategy for improving EPS production and mycelial growth during ABSC liquid submerged fermentation.


Asunto(s)
Agaricus/metabolismo , Fermentación , Polisacáridos Fúngicos/biosíntesis , Lycium/metabolismo , Extractos Vegetales/metabolismo , Agaricus/genética , Agaricus/crecimiento & desarrollo , Medios de Cultivo , Microscopía Electrónica de Rastreo , ARN de Hongos/genética , Análisis de Secuencia de ARN/métodos , Transcriptoma
12.
Respir Res ; 22(1): 188, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34183011

RESUMEN

Xuan-bai-cheng-qi decoction (XCD), a traditional Chinese medicine (TCM) prescription, has been widely used to treat a variety of respiratory diseases in China, especially to seriously infectious diseases such as acute lung injury (ALI). Due to the complexity of the chemical constituent, however, the underlying pharmacological mechanism of action of XCD is still unclear. To explore its protective mechanism on ALI, firstly, a network pharmacology experiment was conducted to construct a component-target network of XCD, which identified 46 active components and 280 predicted target genes. Then, RNA sequencing (RNA-seq) was used to screen differentially expressed genes (DEGs) between ALI model rats treated with and without XCD and 753 DEGs were found. By overlapping the target genes identified using network pharmacology and DEGs using RNA-seq, and subsequent protein-protein interaction (PPI) network analysis, 6 kernel targets such as vascular epidermal growth factor (VEGF), mammalian target of rapamycin (mTOR), AKT1, hypoxia-inducible factor-1α (HIF-1α), and phosphoinositide 3-kinase (PI3K) and gene of phosphate and tension homology deleted on chromsome ten (PTEN) were screened out to be closely relevant to ALI treatment. Verification experiments in the LPS-induced ALI model rats showed that XCD could alleviate lung tissue pathological injury through attenuating proinflammatory cytokines release such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1ß. Meanwhile, both the mRNA and protein expression levels of PI3K, mTOR, HIF-1α, and VEGF in the lung tissues were down-regulated with XCD treatment. Therefore, the regulations of XCD on PI3K/mTOR/HIF-1α/VEGF signaling pathway was probably a crucial mechanism involved in the protective mechanism of XCD on ALI treatment.


Asunto(s)
Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/prevención & control , Medicamentos Herbarios Chinos/uso terapéutico , Lipopolisacáridos/toxicidad , Farmacología en Red/métodos , Análisis de Secuencia de ARN/métodos , Lesión Pulmonar Aguda/inducido químicamente , Animales , Medicamentos Herbarios Chinos/farmacología , Masculino , Ratas , Ratas Wistar
13.
Sci Rep ; 11(1): 4580, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33633259

RESUMEN

Daikenchuto (DKT) is a Japanese traditional herbal (Kampo) medicine containing ginseng, processed ginger, and Japanese or Chinese pepper. We aimed to determine how DKT affects human colonic microbiota. An in vitro microbiota model was established using fecal inocula collected from nine healthy volunteers, and each model was found to retain operational taxonomic units similar to the ones in the original human fecal samples. DKT was added to the in vitro microbiota model culture at a concentration of 0.5% by weight. Next-generation sequencing of bacterial 16S rRNA gene revealed a significant increase in the relative abundance of bacteria related to the Bifidobacterium genus in the model after incubation with DKT. In pure cultures, DKT significantly promoted the growth of Bifidobacterium adolescentis, but not that of Fusobacterium nucleatum or Escherichia coli. Additionally, in pure cultures, B. adolescentis transformed ginsenoside Rc to Rd, which was then probably utilized for its growth. Our study reveals the in vitro bifidogenic effect of DKT that likely contributes to its beneficial effects on the human colon.


Asunto(s)
Bifidobacterium/efectos de los fármacos , Colon/microbiología , Microbioma Gastrointestinal , Extractos Vegetales/farmacología , Bifidobacterium/crecimiento & desarrollo , Bifidobacterium/aislamiento & purificación , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal/genética , Humanos , Técnicas In Vitro , Panax , ARN Ribosómico 16S/genética , Análisis de Secuencia de ARN/métodos , Zanthoxylum , Zingiberaceae
14.
J Ethnopharmacol ; 270: 113807, 2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-33450290

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: There is substantial experimental evidence to support the view that Ginkgo biloba L. (Ginkgoaceae), a traditional Chinese medicine known to treating stroke, has a protective effect on the central nervous system and significantly improves the cognitive dysfunction caused by disease, including alzheimer disease (AD), vascular dementia, and diabetic encephalopathy. Although a number of studies have reported that ginkgolide B (GB), a diterpenoid lactone compound extracted from Ginkgo biloba leaves, has neuroprotective effects, very little research has been performed to explore its potential pharmacological mechanism on astrocytes under abnormal glutamate (Glu) metabolism in the pathological environment of AD. AIM OF THE STUDY: We investigated the protective effect and mechanism of GB on Glu-induced astrocytes injury. METHODS: Astrocytes were randomly divided into the control group, Glu group, GB group, and GB + IWP-4 group.The CCK-8 assay was used to determine relative cell viability in vitro. Furthermore, RNA sequencing (RNA-seq) was performed to assess the preventive effects of GB in the Glu-induced astrocyte model and reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used to validate the possible molecular mechanisms. The effects of GB on the Glu transporter and Glu-induced apoptosis of astrocytes were studied by RT-qPCR and western blot. RESULTS: GB attenuated Glu-induced apoptosis in a concentration-dependent manner, while the Wnt inhibitor IWP-4 reversed the protective effect of GB on astrocytes. The RNA-seq results revealed 4,032 differential gene expression profiles; 3,491 genes were up-regulated, and 543 genes were down-regulated in the GB group compared with the Glu group. Differentially expressed genes involved in a variety of signaling pathways, including the Hippo and Wnt pathways have been associated with the development and progression of AD. RT-qPCR was used to validate 14 key genes, and the results were consistent with the RNA-seq data. IWP-4 inhibited the regulation of GB, disturbed the apoptosis protective effect on astrocytes, and promoted Glu transporter gene and protein expression caused by Glu. CONCLUSION: Our findings demonstrate that GB may play a protective role in Glu-induced astrocyte injury by regulating the Hippo and Wnt pathways. GB was closely associated with the Wnt pathway by promoting expression of the Glu transporter and inhibiting Glu-induced injury in astrocytes.


Asunto(s)
Astrocitos/efectos de los fármacos , Ginkgólidos/farmacología , Lactonas/farmacología , Fármacos Neuroprotectores/farmacología , Animales , Apoptosis/efectos de los fármacos , Astrocitos/citología , Supervivencia Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Ácido Glutámico/toxicidad , Cultivo Primario de Células , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Análisis de Secuencia de ARN/métodos , Serina-Treonina Quinasa 3 , Transducción de Señal/efectos de los fármacos , Proteínas Wnt/antagonistas & inhibidores , Proteínas Wnt/metabolismo
15.
RNA Biol ; 18(7): 1063-1084, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33499699

RESUMEN

Single-cell RNA-sequencing (scRNA-seq) has emerged in recent years as a breakthrough technology to understand RNA metabolism at cellular resolution. In addition to allowing new cell types and states to be identified, scRNA-seq can permit cell-type specific differential gene expression changes, pre-mRNA processing events, gene regulatory networks and single-cell developmental trajectories to be uncovered. More recently, a new wave of multi-omic adaptations and complementary spatial transcriptomics workflows have been developed that facilitate the collection of even more holistic information from individual cells. These developments have unprecedented potential to provide penetrating new insights into the basic neural cell dynamics and molecular mechanisms relevant to the nervous system in both health and disease. In this review we discuss this maturation of single-cell RNA-sequencing over the past decade, and review the different adaptations of the technology that can now be applied both at different scales and for different purposes. We conclude by highlighting how these methods have already led to many exciting discoveries across neuroscience that have furthered our cellular understanding of the neurological disease.


Asunto(s)
Encéfalo/metabolismo , Proteínas del Tejido Nervioso/genética , Enfermedades Neurodegenerativas/genética , Trastornos del Neurodesarrollo/genética , Neuronas/metabolismo , ARN Mensajero/genética , Análisis de la Célula Individual/métodos , Animales , Encéfalo/patología , Biología Computacional/métodos , Código de Barras del ADN Taxonómico , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Trastornos del Neurodesarrollo/metabolismo , Trastornos del Neurodesarrollo/patología , Neuronas/patología , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN/métodos , Transcriptoma
16.
Gene ; 769: 145247, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33096183

RESUMEN

Transcriptome profiles have been widely captured using short-read sequencing technology, but there are still limitations partially due to the read length. Here, we generated long reads using Oxford Nanopore PromethION™ technology and short reads using the Illumina sequencing platform to study the transcriptome of root, stem, and leaf of Camellia sinensis cv. Fudingdabai. We mapped the Nanopore reads to the Shuchazao of C. sinensis genome sequence, and the mapping rates ranged from 82.63% to 90.59% (average 86.44%); this is lower than that of the Illumina reads which was 87.83% to 91.14% (average 90.12%). Gene expression level was quantified using the Nanopore and Illumina data and we observed a good agreement. The same tea leaf flavor synthesis pathways were highlighted using both sequencing technologies when analyzing the differentially expressed genes between leaf and root. Alternative splicing was then analyzed, and the intron-retention was observed as the most common alternative splicing. Moreover Nanopore long reads could correct transcript isoform annotation for differential expression investigation purposes. Nanopore sequencing techniques can provide a novel reference basis for molecular analysis of tea plants.


Asunto(s)
Camellia sinensis/genética , Perfilación de la Expresión Génica , Análisis de Secuencia de ARN/métodos , Empalme Alternativo
17.
J Ethnopharmacol ; 268: 113551, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33152434

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Psoriasis is a complex recurrent inflammatory skin disease with different pathological changes in different stages. Psoriasis in its active stage, which is comparable to the blood-heat type in traditional Chinese medicine (TCM), has been treated by Liangxue Jiedu Decoction (LJD) in TCM for decades, with proven efficacy. According to TCM theories, LJD has the function of removing heat and pathogenic factors from the blood. AIM OF THE STUDY: We aimed to investigate the molecular features associated with the active stage psoriasis and identify genes responding to LJD treatment accompanied by lesion remission. MATERIALS AND METHODS: Healthy volunteers and psoriasis patients who met specific diagnostic criteria were recruited. Twenty-six transcriptomes were profiled from the peripheral blood mononuclear cells (PBMCs) of 10 psoriasis patients (pre- and post-treatment) and 6 healthy volunteers. RNA sequencing data were analyzed using an integrated approach combining differential gene expression analysis (DGEA) and weighted gene co-expression network analysis (WGCNA), by which gene expression was linked to multiple clinical traits, including psoriasis area and severity index (PASI), as well as the improvement rate of skin lesions (ΔPASI). The actions of LJD were then verified using an in vitro cell assay coupled to flow cytometric analysis and RT-PCR. RESULTS: We identified four network modules with statistical significance (P < 0.05), two of which connected to the PASI score, while the other two connected to 8-week treatment and ΔPASI, respectively. In psoriasis patients, activated inflammatory pathways and inhibited G-protein signaling genes (GTPase IMAP family member and G protein-coupled receptor) co-occurred, with high expression of CD83 and CD69, and low expression of CD160 and CD180, compared with the health. Accompanying LJD treatment and lesion remission, the expression of CD69 and cell cycle-related genes, including CCNA2, CCNB2, CDK1, and TOP2A, was down-regulated. The inhibitory role of LJD on CD69 expression was confirmed by the decline of activating naïve CD4+ T lymphocytes. CONCLUSION: Our study suggests that active psoriasis is characterized by unbalanced immune status with dendrite cell and lymphocyte-associated inflammatory activation as well as NK cell- and B cell-associated defense response aberrance. LJD played an inhibitory role in T cell activation, a process located downstream pathological cascade of psoriasis.


Asunto(s)
Medicamentos Herbarios Chinos/uso terapéutico , Redes Reguladoras de Genes/efectos de los fármacos , Leucocitos Mononucleares/efectos de los fármacos , Medicina Tradicional China/métodos , Psoriasis/tratamiento farmacológico , Psoriasis/genética , Adolescente , Adulto , Biomarcadores/metabolismo , Niño , Medicamentos Herbarios Chinos/farmacología , Femenino , Redes Reguladoras de Genes/fisiología , Humanos , Leucocitos Mononucleares/metabolismo , Masculino , Persona de Mediana Edad , Psoriasis/metabolismo , Análisis de Secuencia de ARN/métodos , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Transcriptoma/efectos de los fármacos , Transcriptoma/fisiología , Adulto Joven
18.
Nat Protoc ; 15(9): 2813-2836, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32747820

RESUMEN

Several noncanonical initial nucleotides (NCINs) have been found to cap RNAs and possibly regulate RNA stability, transcription and translation. NAD+ is one of the NCINs that has recently been discovered to cap RNAs in a wide range of species. Identification of the NAD+-capped RNAs (NAD-RNAs) could help to unveil the cap-mediated regulation mechanisms. We previously reported a method termed NAD tagSeq for genome-wide analysis of NAD-RNAs. NAD tagSeq is based on the previously published NAD captureSeq protocol, which applies an enzymatic reaction and a click chemistry reaction to label NAD-RNAs with biotin followed by enrichment with streptavidin resin and identification by RNA sequencing. In the current NAD tagSeq method, NAD-RNAs are labeled with a synthetic RNA tag and identified by direct RNA sequencing based on Oxford Nanopore technology. Compared to NAD captureSeq, NAD tagSeq provides a simpler procedure for direct sequencing of NAD-RNAs and noncapped RNAs and affords information on the whole sequence organization of NAD-RNAs and the ratio of NAD-RNAs to total transcripts. Furthermore, NAD-RNAs can be enriched by hybridizing a complementary DNA probe to the RNA tag, thus increasing the sequencing coverage of NAD-RNAs. The strategy of tagging RNAs with a synthetic RNA tag and identifying them by direct RNA sequencing might be employed in analyzing other NCIN-capped RNAs. The experimental procedure of NAD tagSeq, including RNA extraction, RNA tagging and direct RNA sequencing, takes ~5 d, and initial data analysis can be completed within 2 d.


Asunto(s)
Perfilación de la Expresión Génica , NAD/metabolismo , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , Análisis de Secuencia de ARN/métodos , Coloración y Etiquetado
19.
Anal Chem ; 92(15): 10433-10441, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32643364

RESUMEN

Single-cell analysis has become a state-of-art approach to heterogeneity profiling in tumor cells. Herein, we realize a kind of single-cell multimodal analytical approach by combining single-cell RNA sequencing (scRNA-seq) with Raman optical tweezers (ROT), a label-free single-cell identification and isolation technique, and apply it to investigate drug sensitivity. The drug sensitivity of human BGC823 gastric cancer cells toward different drugs, paclitaxel and sodium dichloroacetate, was distinguished in the conjoint analytical way including morphology monitoring, Raman identification, and transcriptomic profiling. Each individual BGC823 cancer cell was measured by Raman spectroscopy, then nondestructively isolated out by ROT, and finally RNA-sequenced. Our results demonstrate each analytical mode can reflect cell response to the drugs from different perspectives and is consistent and complementary with each other. Therefore, we believe the multimodal analytical approach offers an access to comprehensive characterizations of the unicellular complexity, which especially makes sense for studying tumor heterogeneity or a desired special cell from a mixture cell sample such as whole blood.


Asunto(s)
Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Antineoplásicos/farmacología , Línea Celular Tumoral , Ácido Dicloroacético/farmacología , Humanos , Paclitaxel/farmacología , Espectrometría Raman , Neoplasias Gástricas
20.
Exp Mol Med ; 52(5): 804-814, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32404928

RESUMEN

Recently developed single-cell RNA sequencing methods allow the simultaneous profiling of the transcriptomes of thousands of individual cells. However, current methods still require advanced equipment or entail substantial waste of reagents. Here, we introduce magnetic bead-assisted parallel single-cell gene expression sequencing (MAPS-seq), a microwell-based method that pools samples before the reverse transcription step, increasing the ease of sample preparation and reducing reagent waste. Moreover, because this method uses universal reagents and standard molecular biology lab instruments, it is easy to implement, even in labs that have not previously conducted single-cell RNA sequencing. We validated our method by demonstrating that it can generate gene expression data at the single-cell level. We then applied the MAPS-seq method to analyze 237 human myelogenous leukemia cells treated with one of three different drugs or dimethyl sulfoxide. We observed transcriptional changes and identified marker genes that indicate a drug response. Furthermore, the MAPS-seq method produced data of comparable quality to those of existing single-cell RNA sequencing methods. Consequently, we expect that our method will provide researchers with a more accessible, less wasteful, and less burdensome method for investigating the transcriptomes of individual cells.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Nanopartículas Magnéticas de Óxido de Hierro , Análisis de la Célula Individual/métodos , Transcriptoma , Línea Celular , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA