Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 411
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Prog Biophys Mol Biol ; 182: 15-25, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37187447

RESUMEN

DNA polymerases create complementary DNA strands in living cells and are crucial to genome transmission and maintenance. These enzymes possess similar human right-handed folds which contain thumb, fingers, and palm subdomains and contribute to polymerization activities. These enzymes are classified into seven evolutionary families, A, B, C, D, X, Y, and RT, based on amino acid sequence analysis and biochemical characteristics. Family A DNA polymerases exist in an extended range of organisms including mesophilic, thermophilic, and hyper-thermophilic bacteria, participate in DNA replication and repair, and have a broad application in molecular biology and biotechnology. In this study, we attempted to detect factors that play a role in the thermostability properties of this family member despite their remarkable similarities in structure and function. For this purpose, similarities and differences in amino acid sequences, structure, and dynamics of these enzymes have been inspected. Our results demonstrated that thermophilic and hyper-thermophilic enzymes have more charged, aromatic, and polar residues than mesophilic ones and consequently show further electrostatic and cation-pi interactions. In addition, in thermophilic enzymes, aliphatic residues tend to position in buried states more than mesophilic enzymes. These residues within their aliphatic parts increase hydrophobic core packing and therefore enhance the thermostability of these enzymes. Furthermore, a decrease in thermophilic cavities volumes assists in the protein compactness enhancement. Moreover, molecular dynamic simulation results revealed that increasing temperature impacts mesophilic enzymes further than thermophilic ones that reflect on polar and aliphatic residues surface area and hydrogen bonds changes.


Asunto(s)
ADN Polimerasa Dirigida por ADN , ADN Polimerasa I/química , Aminoácidos/análisis , Interacciones Hidrofóbicas e Hidrofílicas , Escherichia coli/enzimología , Bacteriófago T7/enzimología , Mycobacterium smegmatis/enzimología , Simulación de Dinámica Molecular , Análisis de Secuencia de Proteína , Estabilidad de Enzimas , ADN Polimerasa Dirigida por ADN/química
2.
Chem Biodivers ; 18(7): e2100342, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34148286

RESUMEN

Paris polyphylla Smith var. yunnanensis (Franch.) Hand. - Mazz. is a precious traditional Chinese medicine, and steroidal saponins are its major bioactive constituents possessing extensive biological activities. Squalene synthase (SQS) catalyzes the first dedicated step converting two molecular of farnesyl diphosphate (FDP) into squalene, a key intermediate in the biosynthetic pathway of steroidal saponins. In this study, a squalene synthase gene (PpSQS1) was cloned and functionally characterized from P. polyphylla var. yunnanensis, representing the first identified SQS from the genus Paris. The open reading frame of PpSQS1 is 1239 bp, which encodes a protein of 412 amino acids showing high similarity to those of other plant SQSs. Expression of PpSQS1 in Escherichia coli resulted in production of soluble recombinant proteins. Gas chromatography-mass spectrometry analysis showed that the purified recombinant PpSQS1 protein could produce squalene using FDP as a substrate in the in vitro enzymatic assay. qRT-PCR analysis indicated that PpSQS1 was highly expressed in rhizomes, consistent with the dominant accumulation of steroidal saponins there, suggesting that PpSQS1 is likely involved in the biosynthesis of steroidal saponins in the plant. The findings lay a foundation for further investigation on the biosynthesis and regulation of steroidal saponins, and also provide an alternative gene for manipulation of steroid production using synthetic biology.


Asunto(s)
Farnesil Difosfato Farnesil Transferasa/metabolismo , Melanthiaceae/enzimología , Clonación Molecular , Farnesil Difosfato Farnesil Transferasa/genética , Medicina Tradicional China , Alineación de Secuencia , Análisis de Secuencia de Proteína
3.
Rapid Commun Mass Spectrom ; 35(7): e9061, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33527491

RESUMEN

RATIONALE: Host defense peptides accumulated in the skin glands of the animals constitute the basis of the adaptive and immune system of amphibians. The peptidome of the Cuban frog Osteopilus septentrionalis was established using tandem mass spectrometry as the best analytical tool to elucidate the sequence of these peptides. METHODS: Manual interpretation of complementary collision-induced dissociation (CID), higher energy collision-induced dissociation (HCD), and electron transfer dissociation (ETD) tandem mass spectra recorded with an Orbitrap Elite mass spectrometer in liquid chromatography/mass spectrometry (LC/MS) mode was used to sequence the peptide components of the frog skin secretion, obtained by mild electrostimulation. RESULTS: Although the vast majority of amphibian peptides discovered so far are cationic, surprisingly only anionic peptides were identified in the skin secretion of the Cuban frog Osteopilus septentrionalis. Mass spectrometry allowed the sequences to be established of 16 representatives of new peptide families: septenins 1 and septenins 2. The highest sequence coverage when dealing with these anionic peptides was obtained with CID normalized collision energy 35 and HCD normalized collision energy 28. CONCLUSIONS: Mirror-symmetrical peptides are sequenced using N-terminal acetylation. Acetylated Ser is reliably distinguished from isomeric Glu by the loss of ketene from b-ions containing the corresponding residue. Calculations of the physicochemical and structural properties of the discovered anionic septenins 1 and 2 allowed the mechanism of their interaction with microbe cells to be postulated.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Anuros/metabolismo , Secuencia de Aminoácidos , Animales , Péptidos Catiónicos Antimicrobianos/metabolismo , Cromatografía Liquida , Análisis de Secuencia de Proteína , Piel/química , Piel/metabolismo , Espectrometría de Masas en Tándem
4.
Nucleic Acids Res ; 49(D1): D298-D308, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33119734

RESUMEN

We present DescribePROT, the database of predicted amino acid-level descriptors of structure and function of proteins. DescribePROT delivers a comprehensive collection of 13 complementary descriptors predicted using 10 popular and accurate algorithms for 83 complete proteomes that cover key model organisms. The current version includes 7.8 billion predictions for close to 600 million amino acids in 1.4 million proteins. The descriptors encompass sequence conservation, position specific scoring matrix, secondary structure, solvent accessibility, intrinsic disorder, disordered linkers, signal peptides, MoRFs and interactions with proteins, DNA and RNAs. Users can search DescribePROT by the amino acid sequence and the UniProt accession number and entry name. The pre-computed results are made available instantaneously. The predictions can be accesses via an interactive graphical interface that allows simultaneous analysis of multiple descriptors and can be also downloaded in structured formats at the protein, proteome and whole database scale. The putative annotations included by DescriPROT are useful for a broad range of studies, including: investigations of protein function, applied projects focusing on therapeutics and diseases, and in the development of predictors for other protein sequence descriptors. Future releases will expand the coverage of DescribePROT. DescribePROT can be accessed at http://biomine.cs.vcu.edu/servers/DESCRIBEPROT/.


Asunto(s)
Aminoácidos/química , Bases de Datos de Proteínas , Genoma , Proteínas/genética , Proteoma/genética , Programas Informáticos , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Animales , Archaea/genética , Archaea/metabolismo , Bacterias/genética , Bacterias/metabolismo , Sitios de Unión , Secuencia Conservada , Hongos/genética , Hongos/metabolismo , Humanos , Internet , Plantas/genética , Plantas/metabolismo , Células Procariotas/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Proteínas/química , Proteínas/clasificación , Proteínas/metabolismo , Proteoma/química , Proteoma/metabolismo , Análisis de Secuencia de Proteína , Virus/genética , Virus/metabolismo
5.
BMC Res Notes ; 13(1): 308, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32611449

RESUMEN

OBJECTIVE: High prevalence of chronic ulcers and the burden of disease necessitate the increasingly significant production of new recombinant proteins in the world. The angiopoietin-1 enzyme is a part of the growth factors group which is secreted by Lucilia sericata (Diptera: Calliphoridae) larvae when they meet lesions to ensure maggot therapy. It is one of the most potent proteins in wound healing. Given its essential role, the angiopoietin-1 gene of L. sericata was characterized, which provided some necessary information on its identity. RESULTS: The mid-part of the angiopoietin-1 mRNA sequence was thus characterized based on the design of different primers such as exon-exon junction, conserved regions, and specific region primers via conventional polymerase chain reaction (PCR). Its structural features were configured by in silico method. The sequence of mid-part (390 bp) of angiopoietin-1 was determined empirically, and BLAST analysis unraveled its high identity (85%) with the sequence of angiopoietin-1 mRNA of the larval housefly, Musca domestica. The homology of this enzyme also exhibited that its nucleic acid sequence was very similar to the domains of angiopoietin-1 in Lucilia cuprina. The current data are instructive and critical to evaluate the action of this enzyme in recombinant protein production in future molecular studies on wound healing.


Asunto(s)
Angiopoyetina 1/genética , Calliphoridae/genética , Genes de Insecto/genética , Genoma de los Insectos/genética , Cicatrización de Heridas , Animales , Irán , Larva , ARN Mensajero/genética , Análisis de Secuencia de Proteína
6.
J Med Microbiol ; 69(6): 864-873, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32469301

RESUMEN

Introduction. The emergence of SARS-CoV-2 has taken humanity off guard. Following an outbreak of SARS-CoV in 2002, and MERS-CoV about 10 years later, SARS-CoV-2 is the third coronavirus in less than 20 years to cross the species barrier and start spreading by human-to-human transmission. It is the most infectious of the three, currently causing the COVID-19 pandemic. No treatment has been approved for COVID-19. We previously proposed targets that can serve as binding sites for antiviral drugs for multiple coronaviruses, and here we set out to find current drugs that can be repurposed as COVID-19 therapeutics.Aim. To identify drugs against COVID-19, we performed an in silico virtual screen with the US Food and Drug Administration (FDA)-approved drugs targeting the RNA-dependent RNA polymerase (RdRP), a critical enzyme for coronavirus replication.Methodology. Initially, no RdRP structure of SARS-CoV-2 was available. We performed basic sequence and structural analysis to determine if RdRP from SARS-CoV was a suitable replacement. We performed molecular dynamics simulations to generate multiple starting conformations that were used for the in silico virtual screen. During this work, a structure of RdRP from SARS-CoV-2 became available and was also included in the in silico virtual screen.Results. The virtual screen identified several drugs predicted to bind in the conserved RNA tunnel of RdRP, where many of the proposed targets were located. Among these candidates, quinupristin is particularly interesting because it is expected to bind across the RNA tunnel, blocking access from both sides and suggesting that it has the potential to arrest viral replication by preventing viral RNA synthesis. Quinupristin is an antibiotic that has been in clinical use for two decades and is known to cause relatively minor side effects.Conclusion. Quinupristin represents a potential anti-SARS-CoV-2 therapeutic. At present, we have no evidence that this drug is effective against SARS-CoV-2 but expect that the biomedical community will expeditiously follow up on our in silico findings.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Neumonía Viral/tratamiento farmacológico , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Animales , Antivirales/uso terapéutico , Betacoronavirus/enzimología , Betacoronavirus/genética , Betacoronavirus/fisiología , COVID-19 , Infecciones por Coronavirus/virología , Evaluación Preclínica de Medicamentos/métodos , Sinergismo Farmacológico , Humanos , Conformación Molecular , Pandemias , Filogenia , Neumonía Viral/virología , ARN Polimerasa Dependiente del ARN/efectos de los fármacos , Rifampin/farmacología , SARS-CoV-2 , Alineación de Secuencia , Análisis de Secuencia de Proteína , Virginiamicina/análogos & derivados , Virginiamicina/farmacología , Replicación Viral/efectos de los fármacos
7.
Bioinformatics ; 36(11): 3385-3392, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32215567

RESUMEN

MOTIVATION: High-throughput sequencing discovers many naturally occurring disulfide-rich peptides or cystine-rich peptides (CRPs) with diversified bioactivities. However, their structure information, which is very important to peptide drug discovery, is still very limited. RESULTS: We have developed a CRP-specific structure prediction method called Cystine-Rich peptide Structure Prediction (CRiSP), based on a customized template database with cystine-specific sequence alignment and three machine-learning predictors. The modeling accuracy is significantly better than several popular general-purpose structure modeling methods, and our CRiSP can provide useful model quality estimations. AVAILABILITY AND IMPLEMENTATION: The CRiSP server is freely available on the website at http://wulab.com.cn/CRISP. CONTACT: wuyd@pkusz.edu.cn or jiangfan@pku.edu.cn. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Cistina , Análisis de Secuencia de Proteína , Algoritmos , Disulfuros , Aprendizaje Automático , Péptidos , Proteínas , Alineación de Secuencia
8.
Genomics ; 112(3): 2194-2202, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31870711

RESUMEN

SQUAMOSA promoter-binding protein (SBP)-box gene family is one kind of plant-specific transcription factor that plays important roles in the process of resisting abiotic stress. The SBP-box gene family has been studied in many species, but their functions are not yet clear in Camellia sinensis var. sinensis (CSS) (tea) plants. In our study, 25 SBP-box genes in the CSS were identified in the reference genome and classified into six groups based on a phylogenetic tree. The expression pattern of CsSBP genes under temperature stresses showed that CsSBPs were involved in the process of resisting temperature stresses. CsSBP8 had a positive effect on the anthocyanin accumulation during high temperature exposures, but CsSBP12 has a high correlation with anthocyanin accumulation during both high and low temperature. This study provides a foundation for the further study of CsSBP genes involved in the anthocyanin biosynthesis pathway during the temperature stress in tea.


Asunto(s)
Camellia sinensis/genética , Proteínas de Plantas/genética , Estrés Fisiológico/genética , Factores de Transcripción/genética , Antocianinas/metabolismo , Camellia sinensis/metabolismo , Genoma de Planta , MicroARNs/metabolismo , Familia de Multigenes , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Alineación de Secuencia , Análisis de Secuencia de Proteína , Temperatura , Factores de Transcripción/química , Factores de Transcripción/clasificación , Factores de Transcripción/metabolismo
9.
Rapid Commun Mass Spectrom ; 34(3): e8574, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31499586

RESUMEN

RATIONALE: Database-dependent identification of proteins by mass spectrometry is well established, but has limitations when there are novel proteins, mutations, splice variants, and post-translational modifications (PTMs) not available in the established reference database. De novo sequencing as a database-independent approach could address these limitations by deducing peptide sequences directly from experimental tandem mass spectrometry spectra, while concomitantly yielding residue-by-residue confidence metrics. METHODS: Equal amounts of bovine serum albumin (BSA) sample aliquots were digested separately with Lys-C and Lys-N complementary peptidases, separated by reversed-phase ultra-high-performance liquid chromatography (UPLC), and analyzed by collision-induced dissociation (CID)-based mass spectrometry on an Orbitrap mass spectrometer. In the Lys-Sequencer algorithm, matched tandem mass spectra with equal precursor ion mass from complementary digestions were paired, and fragment ion types were identified based on the unique mass relationship between fragment ions extracted from a spectrum pair followed by de novo sequencing of peptides with identification confidence assigned at the residue level. RESULTS: In all the matched spectrum pairs, 34 top-ranked BSA peptides were identified, from which 391 amino acid residues were identified correctly, covering ~67% of the full sequence of BSA (583 residues) with only ~6% (35 residues) exhibiting ambiguity in the sequence order (although amino acid compositions were still correctly assigned). Of note, this approach identified peptide sequences up to 17 amino acids in length without ambiguity, with the exception of the N-terminal or C-terminal peptides containing lysine (18-mer). CONCLUSIONS: The algorithm ("Lys-Sequencer") developed in this work achieves high precision for de novo sequencing of peptides. This method facilitates the identification of point mutation and new PTMs in the protein characterization and discovery of new peptides and proteins with varying levels of confidence.


Asunto(s)
Algoritmos , Lisina/análisis , Péptidos/análisis , Análisis de Secuencia de Proteína/métodos , Lisina/química , Lisina/metabolismo , Péptidos/química , Péptidos/metabolismo , Albúmina Sérica Bovina
10.
Int J Mol Sci ; 20(13)2019 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-31277248

RESUMEN

Plant growth and morphogenesis largely benefit from cell elongation and expansion and are normally regulated by environmental stimuli and endogenous hormones. Auxin, as one of the most significant plant growth regulators, controls various phases of plant growth and development. The PIN-FORMED (PIN) gene family of trans-membrane proteins considered as auxin efflux carriers plays a pivotal role in polar auxin transport and then mediates the growth of different plant tissues. In this study, the phylogenetic relationship and structural compositions of the PIN gene family in 19 plant species covering plant major lineages from algae to angiosperms were identified and analyzed by employing multiple bioinformatics methods. A total of 155 PIN genes were identified in these species and found that representative of the PIN gene family in algae came into existence and rapidly expanded in angiosperms (seed plants). The phylogenetic analysis indicated that the PIN proteins could be divided into 14 distinct clades, and the origin of PIN proteins could be traced back to the common ancestor of green algae. The structural analysis revealed that two putative types (canonical and noncanonical PINs) existed among the PIN proteins according to the length and the composition of the hydrophilic domain of the protein. The expression analysis of the PIN genes exhibited inordinate responsiveness to auxin (IAA) and ABA both in shoots and roots of Solanum tuberosum. While the majority of the StPINs were up-regulated in shoot and down-regulated in root by the two hormones. The majority of PIN genes had one or more putative auxin responses and ABA-inducible response elements in their promoter regions, respectively, implying that these phytohormones regulated the expression of StPIN genes. Our study emphasized the origin and expansion of the PIN gene family and aimed at providing useful insights for further structural and functional exploration of the PIN gene family in the future.


Asunto(s)
Evolución Biológica , Regulación de la Expresión Génica de las Plantas , Proteínas de Transporte de Membrana/metabolismo , Solanum tuberosum/metabolismo , Transporte Biológico , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Desarrollo de la Planta , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Conformación Proteica , Análisis de Secuencia de Proteína , Solanum tuberosum/fisiología
11.
Plant J ; 99(5): 844-861, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31021015

RESUMEN

Male reproductive development involves a complex series of biological events and precise transcriptional regulation is essential for this biological process in flowering plants. Several transcriptional factors have been reported to regulate tapetum and pollen development, however the transcriptional mechanism underlying Ubisch bodies and pollen wall formation remains less understood. Here, we characterized and isolated a male sterility mutant of TDR INTERACTING PROTEIN 3 (TIP3) in rice. The tip3 mutant displayed smaller and pale yellow anthers without mature pollen grains, abnormal Ubisch body morphology, no pollen wall formation, as well as delayed tapetum degeneration. Map-based cloning demonstrated that TIP3 encodes a conserved PHD-finger protein and further study confirmed that TIP3 functioned as a transcription factor with transcriptional activation activity. TIP3 is preferentially expressed in the tapetum and microspores during anther development. Moreover, TIP3 can physically interact with TDR, which is a key component of the transcriptional cascade in regulating tapetum development and pollen wall formation. Furthermore, disruption of TIP3 changed the expression of several genes involved in tapetum development and degradation, biosynthesis and transport of lipid monomers of sporopollenin in tip3 mutant. Taken together, our results revealed an unprecedented role for TIP3 in regulating Ubisch bodies and pollen exine formation, and presents a potential tool to manipulate male fertility for hybrid rice breeding.


Asunto(s)
Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Acuaporinas/genética , Acuaporinas/metabolismo , Biopolímeros , Carotenoides , Fragmentación del ADN , Regulación de la Expresión Génica de las Plantas , Infertilidad/genética , Fenotipo , Polen/citología , Alineación de Secuencia , Análisis de Secuencia de Proteína
12.
Proc Natl Acad Sci U S A ; 116(14): 6944-6953, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30877253

RESUMEN

Diversity of α-helical host defense peptides (αHDPs) contributes to immunity against a broad spectrum of pathogens via multiple functions. Thus, resolving common structure-function relationships among αHDPs is inherently difficult, even for artificial-intelligence-based methods that seek multifactorial trends rather than foundational principles. Here, bioinformatic and pattern recognition methods were applied to identify a unifying signature of eukaryotic αHDPs derived from amino acid sequence, biochemical, and three-dimensional properties of known αHDPs. The signature formula contains a helical domain of 12 residues with a mean hydrophobic moment of 0.50 and favoring aliphatic over aromatic hydrophobes in 18-aa windows of peptides or proteins matching its semantic definition. The holistic α-core signature subsumes existing physicochemical properties of αHDPs, and converged strongly with predictions of an independent machine-learning-based classifier recognizing sequences inducing negative Gaussian curvature in target membranes. Queries using the α-core formula identified 93% of all annotated αHDPs in proteomic databases and retrieved all major αHDP families. Synthesis and antimicrobial assays confirmed efficacies of predicted sequences having no previously known antimicrobial activity. The unifying α-core signature establishes a foundational framework for discovering and understanding αHDPs encompassing diverse structural and mechanistic variations, and affords possibilities for deterministic design of antiinfectives.


Asunto(s)
Células Eucariotas , Reconocimiento de Normas Patrones Automatizadas , Péptidos/genética , Análisis de Secuencia de Proteína , Péptidos/química , Estructura Secundaria de Proteína
13.
Artículo en Inglés | MEDLINE | ID: mdl-30348661

RESUMEN

Paracoccidioidomycosis (PCM), caused by Paracoccidioides, is a systemic mycosis with granulomatous character and a restricted therapeutic arsenal. The aim of this work was to search for new alternatives to treat largely neglected tropical mycosis, such as PCM. In this context, the enzymes of the shikimate pathway constitute excellent drug targets for conferring selective toxicity because this pathway is absent in humans but essential for the fungus. In this work, we have used a homology model of the chorismate synthase (EC 4.2.3.5) from Paracoccidioides brasiliensis (PbCS) and performed a combination of virtual screening and molecular dynamics testing to identify new potential inhibitors. The best hit, CP1, successfully adhered to pharmacological criteria (adsorption, distribution, metabolism, excretion, and toxicity) and was therefore used in in vitro experiments. Here we demonstrate that CP1 binds with a dissociation constant of 64 ± 1 µM to recombinant chorismate synthase from P. brasiliensis and inhibits enzymatic activity, with a 50% inhibitory concentration (IC50) of 47 ± 5 µM. As expected, CP1 showed no toxicity in three cell lines. On the other hand, CP1 reduced the fungal burden in lungs from treated mice, similar to itraconazole. In addition, histopathological analysis showed that animals treated with CP1 displayed less lung tissue infiltration, fewer yeast cells, and large areas with preserved architecture. Therefore, CP1 was able to control PCM in mice with a lower inflammatory response and is thus a promising candidate and lead structure for the development of drugs useful in PCM treatment.


Asunto(s)
Antifúngicos/farmacología , Descubrimiento de Drogas/métodos , Paracoccidioides/efectos de los fármacos , Paracoccidioidomicosis/tratamiento farmacológico , Liasas de Fósforo-Oxígeno/antagonistas & inhibidores , Quinolinas/farmacología , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Células HeLa , Células Endoteliales de la Vena Umbilical Humana , Humanos , Itraconazol/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Rastreo , Simulación de Dinámica Molecular , Paracoccidioides/clasificación , Paracoccidioides/aislamiento & purificación , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/microbiología , Análisis de Secuencia de Proteína
14.
Microb Cell Fact ; 17(1): 179, 2018 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-30445965

RESUMEN

BACKGROUND: N-acylhomoserine lactones (AHLs) are well-studied signalling molecules produced by some Gram-negative Proteobacteria for bacterial cell-to-cell communication or quorum sensing. We have previously demonstrated the degradation of AHLs by an Antarctic bacterium, Planococcus versutus L10.15T, at low temperature through the production of an AHL lactonase. In this study, we cloned the AHL lactonase gene and characterized the purified novel enzyme. RESULTS: Rapid resolution liquid chromatography analysis indicated that purified AidP possesses high AHL-degrading activity on unsubstituted, and 3-oxo substituted homoserine lactones. Liquid chromatography-mass spectrometry analysis confirmed that AidP functions as an AHL lactonase that hydrolyzes the ester bond of the homoserine lactone ring of AHLs. Multiple sequence alignment analysis and phylogenetic analysis suggested that the aidP gene encodes a novel AHL lactonase enzyme. The amino acid composition analysis of aidP and the homologous genes suggested that it might be a cold-adapted enzyme, however, the optimum temperature is 28 °C, even though the thermal stability is low (reduced drastically above 32 °C). Branch-site analysis of several aidP genes of Planococcus sp. branch on the phylogenetic trees also showed evidence of episodic positive selection of the gene in cold environments. Furthermore, we demonstrated the effects of covalent and ionic bonding, showing that Zn2+ is important for activity of AidP in vivo. The pectinolytic inhibition assay confirmed that this enzyme attenuated the pathogenicity of the plant pathogen Pectobacterium carotovorum in Chinese cabbage. CONCLUSION: We demonstrated that AidP is effective in attenuating the pathogenicity of P. carotovorum, a plant pathogen that causes soft-rot disease. This anti-quorum sensing agent is an enzyme with low thermal stability that degrades the bacterial signalling molecules (AHLs) that are produced by many pathogens. Since the enzyme is most active below human body temperature (below 28 °C), and lose its activity drastically above 32 °C, the results of a pectinolytic inhibition assay using Chinese cabbage indicated the potential of this anti-quorum sensing agent to be safely applied in the field trials.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Planococcus (Bacteria)/enzimología , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Secuencia de Aminoácidos , Regiones Antárticas , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/aislamiento & purificación , Modelos Moleculares , Pectinas/metabolismo , Pectobacterium carotovorum/metabolismo , Percepción de Quorum , Análisis de Secuencia de Proteína , Especificidad por Sustrato
15.
Food Chem ; 266: 183-191, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30381175

RESUMEN

Cysteine proteases in pineapple (Ananas comosus) plants are phytotherapeutical agents that demonstrate anti-edematous, anti-inflammatory, anti-thrombotic and fibrinolytic activities. Bromelain has been identified as an active component and as a major protease of A. comosus. Bromelain has gained wide acceptance and compliance as a phytotherapeutical drug. The proteolytic fraction of pineapple stem is termed stem bromelain, while the one presents in the fruit is known as fruit bromelain. The amino acid sequence and domain analysis of the fruit and stem bromelains demonstrated several differences and similarities of these cysteine protease family members. In addition, analysis of the modelled fruit (BAA21848) and stem (CAA08861) bromelains revealed the presence of unique properties of the predicted structures. Sequence analysis and structural prediction of stem and fruit bromelains of A. comosus along with the comparison of both structures provides a new insight on their distinct properties for industrial application.


Asunto(s)
Ananas/enzimología , Bromelaínas/química , Modelos Moleculares , Secuencia de Aminoácidos , Bromelaínas/metabolismo , Conformación Proteica , Análisis de Secuencia de Proteína
16.
Regul Toxicol Pharmacol ; 99: 233-237, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30266240

RESUMEN

The European Food Safety Authority (EFSA) recently published guidelines for assessment of potential celiac disease risk for newly expressed proteins in genetically modified (GM) crops. This novel step-wise approach prescribes, in part, how to conduct sequence identity searches between a newly expressed protein and known celiac disease peptides including a Q/E-X1-P-X2 amino acid motif. To evaluate the specificity of the recommended sequence identity searches in the context of risk assessment, protein sequences from celiac disease causing crops, as well as from crops not associated with celiac disease, were compared with known HLA-DQ restricted epitopes and searched for the presence of motifs followed by peptide analysis. Searches for the presence of the Q/E-X1-P-X2-motif were found to generate a high proportion of false-positive hits irrelevant to celiac disease risk. Identification of a 9mer exact match between a newly expressed protein and the known celiac disease peptides (recommended by the guideline) along with a supplementary sequence comparisons (suggested by FARRP/AllergenOnline) is considered better suited to more specifically capture the potential risk of a newly expressed protein for celiac disease.


Asunto(s)
Enfermedad Celíaca/etiología , Enfermedad Celíaca/metabolismo , Secuencias de Aminoácidos , Aminoácidos/metabolismo , Animales , Alimentos , Péptidos/metabolismo , Proteínas de Plantas/metabolismo , Riesgo , Análisis de Secuencia de Proteína
17.
IEEE Trans Nanobioscience ; 17(4): 394-401, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29994125

RESUMEN

As one of the new posttranslational modification, lysine glutarylation has been identified in both prokaryotic and eukaryotic cells. These glutarylated proteins are involved in various cellular functions, such as translation, metabolism, and exhibited diverse subcellular localizations. Experimental identification of lysine glutarylation sites was founded in 2014 and also identified its deglutarylase sirturn 5(SIRT 5). Computational prediction of lysine glutarylation could be a complementary way to the experimental technique. In this work, the lysine glutarylation predictor iGlu-Lys has been developed based on the machine learning scheme. We have selected the best feature scheme which took the amino acid pair order and special-position information into account from four constructions. The machine learning algorithm support vector machine has been adopted and its performance has been measured for different window length of peptides. In the 10-fold cross-validation with window length 19, the AUC and MCC were 0.8944 and 0.5098, respectively. Different ROC curves in 6-, 8-, and 10-fold cross-validations were very close which illustrated the robustness of our predictor. The results of iGLu-Lys were better than the existing method GlutPred. Meanwhile, a free webserver for iGlu-Lys is accessible at http://app.aporc.org/iGlu-Lys/.


Asunto(s)
Biología Computacional/métodos , Lisina , Procesamiento Proteico-Postraduccional/fisiología , Algoritmos , Bases de Datos de Proteínas , Glutaratos , Lisina/química , Lisina/metabolismo , Proteínas/química , Proteínas/metabolismo , Curva ROC , Análisis de Secuencia de Proteína , Programas Informáticos
18.
Food Chem ; 256: 228-234, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29606442

RESUMEN

A protease from tamarillo fruit (Cyphomandra betacea Cav.) was purified by ammonium sulphate precipitation and diethylaminoethyl-Sepharose chromatography. Protease activity was determined on selected peak fractions using a casein substrate. Sodium dodecyl sulphate polyacrylamide gel electrophoresis analysis showed that the peak with the highest protease activity consisted of one protein of molecular mass ca. 70 kDa. The protease showed optimal activity at pH 11 and 60 °C. It was sensitive to phenylmethylsulphonyl fluoride while ethylenediaminetetraacetic acid and p-chloromercuribenzoic acid had little effect on its activity, indicating that this enzyme was a serine protease. Hg2+ strongly inhibited enzyme activity, possibly due to formation of mercaptide bonds with the thiol groups of the protease, suggesting that some cysteine residues may be located close to the active site. De novo sequencing strongly indicated that the protease was a subtilisin-like alkaline serine protease. The protease from tamarillo has been named 'tamarillin'.


Asunto(s)
Frutas/enzimología , Serina Proteasas/aislamiento & purificación , Solanum/enzimología , Electroforesis en Gel de Poliacrilamida , Estabilidad de Enzimas , Frutas/genética , Concentración de Iones de Hidrógeno , Peso Molecular , Proteolisis , Análisis de Secuencia de Proteína , Serina Proteasas/genética , Serina Proteasas/metabolismo , Solanum/genética , Subtilisina , Temperatura
19.
World J Microbiol Biotechnol ; 34(2): 21, 2018 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-29302801

RESUMEN

Public concern for food safety and environmental issues and the increase in fungicide-resistant pathogen have enhanced the interest in developing alternative methods to fungicides to control postharvest fruit decay. In this study, a bacterial strain isolated from stale potato vermicelli was identified as Bacillus pumilus HN-10 based on morphological characteristics and 16S rRNA gene sequence analysis. Furthermore, two novel cationic antifungal peptides named P-1 and P-2 were purified from B. pumilus HN-10 using macroporous adsorbent resin AB-8, Sephadex G-100 chromatography, and reversed-phase high-performance liquid chromatography. The primary structure of P-1 and P-2, which were proved to be novel antifungal peptides by BLAST search in NCBI database, was PLSSPATLNSR and GGSGGGSSGGSIGGR with a molecular weight of 1142.28 and 1149.14 Da, respectively, as indicated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Both P-1 and P-2 exhibited strong antifungal activity against Trichothecium roseum with minimum inhibitory concentrations starting from 1 µg/mL. The two novel antifungal peptides were stable below 80 °C for 2 h, but lost their activity in 15 min at 121 °C. In addition, they were resistant to the proteolytic action of pepsin, trypsin, and papain, and stable within a wide range of pH (2.0-12.0). These results showed that P-1 and P-2 are novel cationic antifungal peptides with specific activity against T. roseum.


Asunto(s)
Antifúngicos/aislamiento & purificación , Antifúngicos/farmacología , Péptidos Catiónicos Antimicrobianos/aislamiento & purificación , Péptidos Catiónicos Antimicrobianos/farmacología , Ascomicetos/efectos de los fármacos , Bacillus pumilus/metabolismo , Secuencia de Aminoácidos , Antifúngicos/química , Antifúngicos/metabolismo , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/metabolismo , Bacillus pumilus/clasificación , Bacillus pumilus/genética , Bacillus pumilus/aislamiento & purificación , ADN Bacteriano/genética , Concentración de Iones de Hidrógeno , Pruebas de Sensibilidad Microbiana , Peso Molecular , Papaína , Pepsina A/metabolismo , Filogenia , Estabilidad Proteica , ARN Ribosómico 16S/genética , Análisis de Secuencia de Proteína , Solanum tuberosum/microbiología , Temperatura , Tripsina/metabolismo
20.
Microb Pathog ; 113: 269-275, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29101059

RESUMEN

Latent tuberculosis is caused by dormant Mycobacterium tuberculosis (Mtb) that is phenotypically tolerant to antibiotics. Dormant Mtb accumulates triacylglycerol (TAG) utilizing fatty acids obtained from macrophage lipid droplets. The Rv1551 (PlsB1) gene is annotated as a putative glycerol-3-phosphate acyltransferase (GPAT) in the Mtb genome. GPAT catalyzes the first step of the glycerophospholipid biosynthetic pathway that synthesizes the lipid precursors for triacylglycerol biosynthesis. Although triacylglycerol biosynthesis is associated with Mtb dormancy, the functionality of the Rv1551 acyltransferase has not been investigated. We cloned the open reading frame of the Rv1551 acyltransferase and expressed it in Escherichia coli to study its function. We observed that E. coli cell lysates expressing Rv1551 displayed increased synthesis of phosphatidylglycerol, phosphatidylethanolamine and cardiolipin from radiolabeled glycerol-3-phosphate and fatty acyl-coenzyme A precursors. When cultured in medium supplemented with long-chain fatty acids, E. coli expressing Rv1551 exhibited significantly higher viable cell counts during the exponential and stationary phases. These results suggest that Rv1551 displays function as a GPAT by enhancing the synthesis of phospholipids from exogenously provided fatty acids in E. coli cell lysates. This is the first report showing that Rv1551 is a functional GPAT that catalyzes the initial step of glycerophospholipid biosynthesis in the mycobacterial cell.


Asunto(s)
Escherichia coli/metabolismo , Glicerol-3-Fosfato O-Aciltransferasa/fisiología , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Fosfolípidos/biosíntesis , Aciltransferasas/genética , Secuencia de Aminoácidos , Cardiolipinas/metabolismo , Clonación Molecular , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Ácidos Grasos/metabolismo , Regulación Bacteriana de la Expresión Génica , Genoma Microbiano , Glicerol-3-Fosfato O-Aciltransferasa/genética , Viabilidad Microbiana , Sistemas de Lectura Abierta , Fosfatidiletanolaminas/metabolismo , Fosfatidilgliceroles/metabolismo , Proteínas Recombinantes , Análisis de Secuencia de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA