Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.011
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Curr Microbiol ; 81(6): 149, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642138

RESUMEN

In recent years, green synthesis methods of metallic nanoparticles (MNPs) have been attractive because of the more facile, cheaper, and appropriate features associated with biomolecules in MNPs biosynthesis. This research represented an easy, fast, and environmentally friendly method to biosynthesis of superparamagnetic iron oxide nanoparticles (SPIONPs) and silver nanoparticles (AgNPs) by the Satureja hortensis leaf extract as stabilizer and reducer. The SPIONPs synthesized in co-precipitation method. The biosynthesized SPIONPs and AgNPs were studied their antifungal effects against three Botryosphaeriaceae plant pathogens, Botryosphaeria dothidea, Diplodia seriata, and Neofusicoccum parvum. UV-visible spectra (UV-Vis), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), field emission scanning electron microscopy (Fe-SEM), energy-dispersive X-ray spectroscopy (EDX), and vibrating-sample magnetometer (VSM) analyses were used to evaluate the physicochemical properties and verify the formation of green synthesized SPIONPs and AgNPs. UV-Vis spectra revealed absorption peaks at 243 and 448 nm for SPIONs and 436 nm for AgNPs, respectively. Microscopic and XRD analysis showed that SPIONPs and AgNPs was found spherical in shape with an average particle size of SPIONPs and AgNPs 10 and 12 nm, respectively. The antifungal test against Botryosphaeriaceae species showed that SPIONPs and AgNPs possess antifungal properties against B. dothidea, D. seriata, and N. parvum. However, AgNPs exhibits greater antifungal activity than SPIONPs. The results of the cytotoxicity tests of SPIONs and AgNPs on the MCF-7 cell line showed that AgNPs was significantly more cytotoxic towards the MCF-7 cell line, whereas no significant cytotoxic effect was recorded by SPIONs. Therefore, these biosynthesized MNPs could be substituted for toxic fungicides that are extensively applied in agriculture and contribute to environmental health and food safety.


Asunto(s)
Compuestos Férricos , Nanopartículas del Metal , Satureja , Plata/farmacología , Plata/metabolismo , Nanopartículas del Metal/química , Antifúngicos/farmacología , Satureja/metabolismo , Nanopartículas Magnéticas de Óxido de Hierro , Difracción de Rayos X , Extractos Vegetales/farmacología , Extractos Vegetales/química , Espectroscopía Infrarroja por Transformada de Fourier , Antibacterianos/farmacología
2.
Sci Rep ; 14(1): 8325, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594363

RESUMEN

Although giant fennel is recognized as a "superfood" rich in phytochemicals with antioxidant activity, research into the antibacterial properties of its fruits has been relatively limited, compared to studies involving the root and aerial parts of the plant. In this study, seven solvents-acetone, methanol, ethanol, ethyl acetate, chloroform, water, and hexane-were used to extract the chemical constituents of the fruit of giant fennel (Ferula communis), a species of flowering plant in the carrot family Apiaceae. Specific attributes of these extracts were investigated using in silico simulations and in vitro bioassays. High-performance liquid chromatography equipped with a diode-array detector (HPLC-DAD) identified 15 compounds in giant fennel extract, with p-coumaric acid, 3-hydroxybenzoic acid, sinapic acid, and syringic acid being dominant. Among the solvents tested, ethanol demonstrated superior antioxidant activity and phenolic and flavonoid contents. F. communis extracts showed advanced inhibition of gram-negative pathogens (Escherichia coli and Proteus mirabilis) and variable antifungal activity against tested strains. Molecular docking simulations assessed the antioxidative, antibacterial, and antifungal properties of F. communis, facilitating innovative therapeutic development through predicted compound-protein interactions. In conclusion, the results validate the ethnomedicinal use and potential of F. communis. This highlights its significance in natural product research and ethnopharmacology.


Asunto(s)
Ferula , Frutas , Solventes/química , Frutas/química , Antifúngicos/farmacología , Extractos Vegetales/química , Antioxidantes/química , Simulación del Acoplamiento Molecular , Antibacterianos/química , Etanol/análisis
3.
Sci Rep ; 14(1): 8399, 2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600229

RESUMEN

Fungi belonging to the genus Neosartorya (teleomorph of Aspergillus spp.) are of great concern in the production and storage of berries and fruit-based products, mainly due to the production of thermoresistant ascospores that cause food spoilage and possible secretion of mycotoxins. We initially tested the antifungal effect of six natural extracts against 20 isolates of Neosartorya spp. using a traditional inhibition test on Petri dishes. Tested isolates did not respond uniformly, creating 5 groups of descending sensitivity. Ten isolates best representing of the established sensitivity clusters were chosen for further investigation using a Biolog™ MT2 microplate assay with the same 6 natural extracts. Additionally, to test for metabolic profile changes, we used a Biolog™ FF microplate assay after pre-incubation with marigold extract. All natural extracts had an inhibitory effect on Neosartorya spp. growth and impacted its metabolism. Lavender and tea tree oil extracts at a concentration of 1000 µg mL-1 presented the strongest antifungal effect during the inhibition test, however all extracts exhibited inhibitory properties at even the lowest dose (5 µg mL-1). The fungal stress response in the presence of marigold extract was characterized by a decrease of amino acids and carbohydrates consumption and an uptake of carboxylic acids on the FF microplates, where the 10 studied isolates also presented differences in their innate resilience, creating 3 distinctive sensitivity groups of high, average and low sensitivity. The results confirm that natural plant extracts and essential oils inhibit and alter the growth and metabolism of Neosartorya spp. suggesting a possible future use in sustainable agriculture as an alternative to chemical fungicides used in traditional crop protection.


Asunto(s)
Antifúngicos , Neosartorya , Antifúngicos/farmacología , Antifúngicos/metabolismo , Aspergillus/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/metabolismo , Metaboloma , Pruebas de Sensibilidad Microbiana
4.
PLoS One ; 19(4): e0302329, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38662667

RESUMEN

Seriphidium herba-alba (Asso), a plant celebrated for its therapeutic qualities, is widely used in traditional medicinal practices throughout the Middle East and North Africa. In a detailed study of Seriphidium herba-alba (Asso), essential oils and extracts were analyzed for their chemical composition and antimicrobial properties. The essential oil, characterized using mass spectrometry and retention index methods, revealed a complex blend of 52 compounds, with santolina alcohol, α-thujone, ß-thujone, and chrysanthenone as major constituents. Extraction yields varied significantly, depending on the plant part and method used; notably, methanol soaking of aerial parts yielded the most extract at 17.75%. The antimicrobial analysis showed that the extracts had selective antibacterial activity, particularly against Staphylococcus aureus, and broad-spectrum antifungal activity against organisms such as Candida albicans and Aspergillus spp. The methanol-soaked extract demonstrated the strongest antimicrobial properties, indicating its potential as a natural antimicrobial source. This study not only underscores the therapeutic potential of Seriphidium herba-alba (Asso) in pharmaceutical applications but also sets a foundation for future research focused on isolating specific bioactive compounds and in vivo testing.


Asunto(s)
Antiinfecciosos , Pruebas de Sensibilidad Microbiana , Aceites Volátiles , Extractos Vegetales , Aceites Volátiles/farmacología , Aceites Volátiles/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Candida albicans/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Burseraceae/química , Antifúngicos/farmacología , Antifúngicos/química
5.
Rocz Panstw Zakl Hig ; 75(1): 75-81, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38587107

RESUMEN

Background: Despite the extensive literature focused on propolis extract, few data exists on the bioactive compounds and biological activities in the Moroccan propolis and its economic value is low. Objective: In this research, the aim was to evaluate the total content of phenols and flavonoids as well as the antioxidant, antibacterial and antifungal activities of Moroccan propolis. Material and Methods: The polyphenol and flavonoid content of the Moroccan propolis from three geographic regions, was quantified in the ethanolic extract by colorimetric methods using folin-ciocalteu and aluminum chloride. The antioxidant activity was evaluated by the DPPH test and expressed as IC50. Disk diffusion and broth microdilution methods were used to examine in vitro antimicrobial activity against known human microorganism pathogens. Results: The obtained data revealed that Moroccan propolis samples presented significant variations in total polyphenols and flavonoids. All samples showed significant antioxidant activity with IC50 values ranging from 4.23±0.5 to 154±0.21 µg/ mL. A strong correlation between total phenolic activity, flavonoids and antioxidant activity was found. The in vitro study of antibacterial activity showed that the propolis samples exhibited a range of growth inhibitory actions against all bacterial strains tested with the highest activity against gram-positive bacteria. Only propolis from the Sidi Bennour region demonstrated an antifungal activity. Conclusion: The study data show that Moroccan propolis extracts have a promising content of antioxidant and antimicrobial compounds that could be exploited to prevent certain diseases linked to oxidative stress and pathogenic infections.


Asunto(s)
Antiinfecciosos , Própolis , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Flavonoides/farmacología , Própolis/farmacología , Própolis/química , Antifúngicos/farmacología , Fenoles/farmacología , Polifenoles , Extractos Vegetales/química , Antiinfecciosos/farmacología , Antibacterianos/farmacología
6.
Chem Biodivers ; 21(5): e202400274, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38466647

RESUMEN

The aim of the current study was to compare some biological activities of edible oils enriched with 10 % of cannabidiol (CBD samples) from the Slovak market. In addition, hemp, coconut, argan, and pumpkin pure oils were also examined. The study evaluated the fatty acids content, as well as antibacterial, antifungal, antioxidant, cytotoxic, and phytotoxic activities. The CBD samples presented antimicrobial activity against the tested bacterial strains at higher concentrations (10000 and 5000 mg/L) and antifungal activity against Alternaria alternata, Penicillium italicum and Aspergillus flavus. DPPH⋅ and FRAP assays showed greater activity in CBD-supplemented samples compared to pure oils and vitamin E. In cell lines (IPEC-J2 and Caco-2), a reduced cell proliferation and viability were observed after 24 hours of incubation with CBD samples. The oils showed pro-germinative effects. The tested activities were linked to the presence of CBD in the oils.


Asunto(s)
Antioxidantes , Cannabidiol , Proliferación Celular , Cannabidiol/farmacología , Cannabidiol/química , Humanos , Proliferación Celular/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/química , Pruebas de Sensibilidad Microbiana , Células CACO-2 , Supervivencia Celular/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Aceites de Plantas/farmacología , Aceites de Plantas/química , Antifúngicos/farmacología , Antifúngicos/química , Penicillium/efectos de los fármacos , Alternaria/efectos de los fármacos , Aspergillus flavus/efectos de los fármacos
7.
Pol J Vet Sci ; 27(1): 25-33, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38511572

RESUMEN

Candida albicans, a polymorphic yeast, is a physiological component of the human and animal commensal microbiome. It is an etiological factor of candidiasis, which is treated by azole antifungals. Growing resistance to azoles is a reason to look for other alternative treatment options. The pharmacotherapeutic use of plant extracts and essential oils has become increasingly important. In our experiment, C. albicans showed susceptibility to four observed plant extracts and essential oils from peppermint ( Mentha piperita), thyme ( Thymus vulgaris), sage ( Salvia officinalis), and oregano ( Origanum vulgare). Oregano plant extract and essential oil showed the highest antifungal activity, at MIC values of 4.9 mg/mL and 0.4 mg/mL respectively. Therefore, it was subjected to further research on the influence of virulence factors - biofilm formation, extracellular phospholipase production and germ tube formation. Oregano plant extract and essential oil showed an inhibitory effect on the observed C. albicans virulence factors at relatively low concentrations. The extract inhibited the adherence of cells at MIC 12.5 mg/mL and essential oil at MIC 0.25 mg/mL. Degradation of the formed biofilm was detected at MIC 14.1 mg/mL for plant extract and at MIC 0.4 mg/mL for essential oil. Extracellular phospholipase production was most effectively inhibited by the essential oil. In particular, the number of isolates with intensive extracellular phospholipase production decreased significantly. Of the 12 isolates intensively producing extracellular phospholipase, only 1 isolate (4.5%) retained intense production. Essential oil caused up to a 100 % reduction in germ tubes formation and plant extract reduced their formation depending on the concentration as follows: 2.6% (0.8 mg/mL), 21.2 % (6.25 mg/mL), and 64.5 % (12.5 mg/mL) compared to the control.


Asunto(s)
Aceites Volátiles , Origanum , Humanos , Animales , Aceites Volátiles/farmacología , Candida albicans , Extractos Vegetales/farmacología , Factores de Virulencia , Pruebas de Sensibilidad Microbiana/veterinaria , Antifúngicos/farmacología , Fosfolipasas/farmacología , Aceites de Plantas/farmacología
8.
Sci Rep ; 14(1): 7513, 2024 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553574

RESUMEN

This research investigates the biogenic synthesis of silver nanoparticles (AgNPs) using the leaf extract of Chromolaena odorata (Asteraceae) and their potential as antibacterial and antifungal agents. Characterization techniques like ultraviolet-visible, Fourier transform infrared (FTIR), Dynamic light scattering and zeta potential (DLS), X-ray diffraction (XRD), transmission electron microscopy (TEM), and field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy (FESEM-EDX) confirmed the formation of spherical (AgNPs). UV-vis spectroscopy reaffirms AgNP formation with a peak at 429 nm. DLS and zeta potential measurements revealed an average size of 30.77 nm and a negative surface charge (- 0.532 mV). Further, XRD analysis established the crystalline structure of the AgNPs. Moreover, the TEM descriptions indicate that the AgNPs are spherical shapes, and their sizes ranged from 9 to 22 nm with an average length of 15.27 nm. The X-ray photoelectron spectroscopy (XPS) analysis validated the formation of metallic silver and elucidated the surface state composition of AgNPs. Biologically, CO-AgNPs showed moderate antibacterial activity but excellent antifungal activity against Candida tropicalis (MCC 1559) and Trichophyton rubrum (MCC 1598). Low MIC values (0.195 and 0.390 mg/mL) respectively, suggest their potential as effective antifungal agents. This suggests potential applications in controlling fungal infections, which are often more challenging to treat than bacterial infections. Molecular docking results validated that bioactive compounds in C. odorata contribute to antifungal activity by interacting with its specific domain. Further research could pave the way for the development of novel and safe antifungal therapies based on biogenic nanoparticles.


Asunto(s)
Chromolaena , Nanopartículas del Metal , Plata/farmacología , Plata/química , Antifúngicos/farmacología , Nanopartículas del Metal/química , Simulación del Acoplamiento Molecular , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antibacterianos/química , Difracción de Rayos X , Espectroscopía Infrarroja por Transformada de Fourier
9.
World J Microbiol Biotechnol ; 40(5): 152, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38553646

RESUMEN

Saponins are a large group of compounds, produced mostly by plants as a side product of their metabolic activity. These compounds have attracted much attention over the years mostly because of their surface activity and antibacterial, anti-inflammatory and antifungal properties. On the other hand, most of the hitherto research has concerned the action of saponins against microbial cells as a whole. Therefore, knowing the possible interaction of saponins with biomembrane, we decided to check in-vitro the influence of saponin-rich extract of Saponaria officinalis on spheroplasts of two Candida sp. The obtained results show that 10 mg L- 1 of extract increased the permeability of spheroplasts up to 21.76% relative to that of the control sample. Moreover, the evaluation of surface potential has revealed a decrease by almost 10 mV relative to that of the untreated samples. Such results suggest its direct correlation to integration of saponins into the biomembrane structure. The obtained results have proved the antifungal potential of saponins and their ability of permeabilization of cells. This proves the high potential of saponins use as additives to antifungal pharmaceutics, which is expected to lead to improvement of their action or reduction of required dosage.


Asunto(s)
Saponaria , Saponinas , Antifúngicos/farmacología , Antifúngicos/química , Saponaria/química , Saponinas/farmacología , Saponinas/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Candida , Permeabilidad
10.
PLoS One ; 19(3): e0297870, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38527060

RESUMEN

The best biocontroller Bacillus subtilis produced silver nanoparticles (AgNPs) with a spherical form and a 62 nm size through green synthesis. Using UV-vis spectroscopy, PSA, and zeta potential analysis, scanning electron microscopy, and Fourier transform infrared spectroscopy, the properties of synthesized silver nanoparticles were determined. Silver nanoparticles were tested for their antifungicidal efficacy against the most virulent isolate of the Aspergillus flavus fungus, JAM-JKB-BHA-GG20, and among the 10 different treatments, the treatment T6 [PDA + 1 ml of NP (19: 1)] + Pathogen was shown to be extremely significant (82.53%). TG-51 and GG-22 were found to be the most sensitive groundnut varieties after 5 and 10 days of LC-MS QTOF infection when 25 different groundnut varieties were screened using the most toxic Aspergillus flavus isolate JAM- JKB-BHA-GG20, respectively. In this research, the most susceptible groundnut cultivar, designated GG-22, was tested. Because less aflatoxin (1651.15 g.kg-1) was observed, treatment T8 (Seed + Pathogen + 2 ml silver nanoparticles) was determined to be much more effective. The treated samples were examined by Inductively Coupled Plasma Mass Spectrometry for the detection of metal ions and the fungicide carbendazim. Ag particles (0.8 g/g-1) and the fungicide carbendazim (0.025 g/g-1) were found during Inductively Coupled Plasma Mass Spectrometry analysis below detectable levels. To protect plants against the invasion of fungal pathogens, environmentally friendly green silver nanoparticle antagonists with antifungal properties were able to prevent the synthesis of mycotoxin by up to 82.53%.


Asunto(s)
Bencimidazoles , Carbamatos , Fungicidas Industriales , Nanopartículas del Metal , Antifúngicos/farmacología , Aspergillus flavus , Plata/farmacología , Plata/química , Nanopartículas del Metal/química , Aspergillus , Bacterias , Extractos Vegetales/química , Espectroscopía Infrarroja por Transformada de Fourier , Antibacterianos/química , Pruebas de Sensibilidad Microbiana
11.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38542055

RESUMEN

The circular economy, which attempts to decrease agricultural waste while also improving sustainable development through the production of sustainable products from waste and by-products, is currently one of the main objectives of environmental research. Taking this view, this study used a green approach to synthesize two forms of silver nanoparticles: coated silver nanoparticles with olive leaf extract (Ag-olive) and uncoated pure silver nanoparticles (Ag-pure), which were produced by the calcination of Ag-olive at 550 °C. The extract and the fabricated nanoparticles were characterized by a variety of physicochemical techniques, including high-performance liquid chromatography (HPLC), thermal gravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Adult ticks (Hyalomma dromedarii) (Acari: Ixodidae) were used in this study to evaluate the antiparasitic activity of synthesized nanoparticles and extract. Furthermore, the antifungal activity was evaluated against Aspergillus aculeatus strain N (MW958085), Fuserium oxysporum (MT550034), and Alternaria tenuissiuma (MT550036). In both antiparasitic and antifungal tests, the as-synthesized Ag-olive showed higher inhibition activity than Ag-pure and olive leaf extract. The findings of this research suggest that Ag-olive may be a powerful and eco-friendly antiparasitic and antifungal agent. Ag-pure was also evaluated as a photocatalyst under sunlight for the detoxification of Eri-chrome-black T (EBT), methylene blue (MB), methyl orange (MO), and rhodamine B (RhB).


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Olea , Antifúngicos/farmacología , Plata/química , Nanopartículas del Metal/química , Antiparasitarios , Extractos Vegetales/farmacología , Extractos Vegetales/química , Luz Solar , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
12.
Sci Rep ; 14(1): 6345, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491116

RESUMEN

Medicinal plants can be potential sources of therapeutic agents. Traditional healers use a medicinal plant from Ethiopia, Bersama abyssinica Fresen, to treat various diseases. This study aimed to investigate the phytochemical components and antioxidant and antimicrobial activities of B. abyssinica seed extracts (BASE). Gas chromatography coupled to mass spectroscopy (GC-MS) analysis was used to determine the phytochemical compositions of BASE. The antioxidant activities were assessed by using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay, thiobarbituric acid-reactive species (TBARS) assay, ferric chloride reducing assay and hydroxyl scavenging capacity assay. Antimicrobial activity was investigated using the agar well diffusion method. Phytochemical screening showed the presence of saponins, glycosides, tannins, steroids, phenols, flavonoids, terpenoids, and alkaloids. GC-MS analysis revealed the presence of 30 volatile compounds; α-pinene (23.85%), eucalyptol (20.74%), ß-pinene (5.75%), D-limonene (4.05%), and o-cymene (5.02%). DPPH-induced free radical scavenging (IC50 = 8.78), TBARS (IC50 = 0.55 µg/mL), and hydroxyl radicals' scavenging capacities assays (IC50 = 329.23) demonstrated high antioxidant effects of BASE. Reducing power was determined based on Fe3+-Fe2+ transformation in the presence of extract. BASE was found to show promising antibacterial activity against S. aureus, E. coli, and P. aeruginosa (zone of inhibition 15.7 ± 2.5 mm, 16.0 ± 0.0 mm, and 16.7 ± 1.5 mm, respectively), but excellent antifungal activities against C. albican and M. furfur (zone of inhibition 22.0 ± 2.0 mm and 22.0 ± 4.0 mm, respectively). The seeds of B. abyssinica grown in Ethiopia possess high antioxidant potential, promising antibacterial and superior antifungal activity. Therefore, seeds of B. abyssinica provide a potential source for drug discovery.


Asunto(s)
Magnoliopsida , Plantas Medicinales , Antioxidantes/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antifúngicos/farmacología , Sustancias Reactivas al Ácido Tiobarbitúrico , Escherichia coli , Staphylococcus aureus , Fitoquímicos/farmacología , Antibacterianos/farmacología
13.
Lett Appl Microbiol ; 77(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38467396

RESUMEN

Endophytic microorganisms associated with medicinal plants are of particular interest as they are a potential source of new bioactive chemicals effective against novel emerging and drug-resistant pathogens. Agave americana is a tropical medicinal plant with antibacterial, antifungal, and anticancer properties. We studied the biodiversity of fungal endophytes of A. americana and their antimicrobial production potential. Isolated endophytic fungi were classified into 32 morphotypes (15 from stem and 17 from leaf) based on their cultural and morphological characteristics. Among the fungal crude extracts tested, 82% of isolates from the leaves and 80% of the isolates from the stem showed antibacterial activity against the bacterial strains (Escherichia coli ATTC 25902, Staphylococcus aureus ATTC 14775, and Bacillus subtilis NRRL 5109) tested. Extracts from four fungal isolates from leaves showed antifungal activity against at least one of the fungal strains (Candida albicans ATTC 10231 and Aspergillus fumigatus NRRL 5109) tested. Crude extracts of seven fungal isolates showed a zone of inhibition of more than 11 mm at 10 mgml-1 against both Gram-positive and Gram-negative bacteria tested. Penicillium, Colletotrichum, Curvularia, Pleosporales, Dothideomycetes, and Pleurotus are the main endophytes responsible for bioactive potential. These results indicate that A. americana harbors endophytes capable of producing antimicrobial metabolites.


Asunto(s)
Agave , Antiinfecciosos , Ascomicetos , Plantas Medicinales , Antifúngicos/farmacología , Antifúngicos/metabolismo , Antibacterianos/farmacología , Plantas Medicinales/microbiología , Bacterias Gramnegativas , Pruebas de Sensibilidad Microbiana , Bacterias Grampositivas , Hongos , Antiinfecciosos/farmacología , Antiinfecciosos/metabolismo , Endófitos , Mezclas Complejas/metabolismo , Mezclas Complejas/farmacología
14.
J Agric Food Chem ; 72(15): 8550-8568, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38546976

RESUMEN

Pathogenic fungi pose a significant threat to crop yields and human healthy, and the subsequent fungicide resistance has greatly aggravated these agricultural and medical challenges. Hence, the development of new fungicides with higher efficiency and greater environmental friendliness is urgently required. In this study, luvangetin, isolated and identified from the root of Zanthoxylum avicennae, exhibited wide-spectrum antifungal activity in vivo and in vitro. Integrated omics and in vitro and in vivo transcriptional analyses revealed that luvangetin inhibited GAL4-like Zn(II)2Cys6 transcriptional factor-mediated transcription, particularly the FvFUM21-mediated FUM cluster gene expression, and decreased the biosynthesis of fumonisins inFusarium verticillioides. Moreover, luvangetin binds to the double-stranded DNA helix in vitro in the groove mode. We isolated and identified luvangetin, a natural metabolite from a traditional Chinese edible medicinal plant and uncovered its multipathogen resistance mechanism. This study is the first to reveal the mechanism underlying the antifungal activity of luvangetin and provides a promising direction for the future use of plant-derived natural products to prevent and control plant and animal pathogenic fungi.


Asunto(s)
Fumonisinas , Fungicidas Industriales , Fusarium , Zanthoxylum , Animales , Humanos , Fungicidas Industriales/farmacología , Fungicidas Industriales/metabolismo , Antifúngicos/farmacología , Antifúngicos/metabolismo , Zanthoxylum/metabolismo , Fumonisinas/metabolismo
15.
Molecules ; 29(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38474434

RESUMEN

In this study, AuNPs were biosynthesized from Cucurbita moschata fruit peel extracts. Biosynthesized AuNPs exhibited maximum absorbance at a 555 nm wavelength, and XRD analysis indicated that the CM-AuNPs had a particle size of less than 100 nm and a cubic crystal structure. TEM scans revealed that the gold particles exhibited a spherical morphology, with an average size of 18.10 nm. FTIR analysis revealed strong peaks indicating the presence of functional groups involved in the reduction reactions. The surface charge of the biosynthesized AuNPs was determined to be -19.7 mV. The antibacterial and antifungal activities of AuNPs against pathogen strains were assessed by the minimum inhibitory concentration (MIC) method. The cytotoxic effects of CM-AuNPs on cancer cell lines (Sk-Ov-3, CaCo2, and A549) and healthy cell lines (HUVEC) were investigated using the MTT method. The findings indicated that AuNPs biosynthesized by the green synthesis method using C. moschata peel aqueous extract had high inhibition on the growth of pathogenic microorganisms and effective cytotoxic activity against cancerous cell lines at low doses. As a result, it can be concluded that CM-AuNPs will be eminently effective in the production of antibacterial and/or anticancer drugs in the pharmaceutical, food, and cosmetic industries.


Asunto(s)
Antineoplásicos , Cucurbita , Nanopartículas del Metal , Oro/química , Cucurbita/metabolismo , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antifúngicos/farmacología , Antineoplásicos/farmacología , Extractos Vegetales/química , Tecnología Química Verde
16.
World J Microbiol Biotechnol ; 40(4): 129, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38459287

RESUMEN

Fungal infections represent a challenging threat to the human health. Microsporum gypseum and Trichophyton rubrum are pathogenic fungi causing various topical mycoses in humans. The globally emerging issue of resistance to fungi demands the development of novel therapeutic strategies. In this context, the application of nanoliposomes as vehicles for carrying active therapeutic agents can be a suitable alternative. In this study, rhinacanthin-C was isolated from Rhinacanthus naustus and encapsulated in nano-liposomal formulations, which were prepared by the modified ethanol injection method. The two best formulations composed of soybean phosphatidylcholine (SPC), cholesterol (CHL), and tween 80 (T80) in a molar ratio of 1:1:0 (F1) and 1:1:0.5 (F2) were proceeded for experimentation. The physical characteristics and antifungal activities were performed and compared with solutions of rhinacanthin-C. The rhinacanthin-C encapsulating efficiencies in F1 and F2 were 94.69 ± 1.20% and 84.94 ± 1.32%, respectively. The particle sizes were found to be about 221.4 ± 13.76 nm (F1) and 115.8 ± 23.33 nm (F2), and zeta potential values of -38.16 mV (F1) and -40.98 mV (F2). Similarly, the stability studies of rhinacanthin-C in liposomes demonstrated that rhinacanthin-C in both formulations was more stable in mediums with pH of 4.0 and 6.6 than pure rhinacanthin-C when stored at the same conditions. Rhinacanthin-C in F1 was slightly more stable than F2 when stored in mediums with a pH of 10.0 after three months of storage. However, rhinacanthin-C in both formulations was less stable than pure rhinacanthin-C in a basic medium of pH 10.0. The antifungal potential was evaluated against M. gypsum and T. rubrum. The findings revealed a comparatively higher zone of inhibition for F1. In the MIC study, SPC: CHL: T80 showed higher inhibition against M. gypseum and a slightly higher inhibition against T. rubrum compared to free rhinacanthin-C solution. Moreover, rhinacanthin-C showed significant interaction against 14α-demethylase in in silico study. Overall, this study demonstrates that nanoliposomes containing rhinacanthin-C can improve the stability and antifungal potential of rhinacanthin-C with sustained and prolonged duration of action and could be a promising vehicle for delivery of active ingredients for targeting various fungal infections.


Asunto(s)
Acanthaceae , Micosis , Naftoquinonas , Humanos , Antifúngicos/farmacología , Extractos Vegetales/farmacología , Naftoquinonas/química , Acanthaceae/química
17.
PeerJ ; 12: e17023, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38440409

RESUMEN

Adansonia digitata L. is a royal tree that is highly valued in Africa for its medicinal and nutritional properties. The objective of this study was to use its fruit shell extract to develop new, powerful mono and bimetallic nanoparticles (NPs) and biochar (BC) using an eco-friendly approach. Silver (Ag), iron oxide (FeO), the bimetallic Ag-FeO NPs, as well as (BC) were fabricated by A. digitata fruit shell extract through a reduction process and biomass pyrolysis, respectively, and their activity against tomato pathogenic fungi Alternaria sp., Sclerotinia sclerotiorum, Fusarium equiseti, and Fusarium venenatum were detected by agar dilution method. The Ag, FeO, Ag-FeONPs, and BC were characterized using a range of powerful analytical techniques such as ultraviolet-visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier Transform-Infra Red (FT-IR), dynamic light scatter (DLS), and zeta potential analysis. The fabricated Ag, FeO and Ag-FeO NPs have demonstrated a remarkable level of effectiveness in combating fungal strains. UV-Vis spectra ofAg, FeO, Ag-FeONPs, and BC show broad exhibits peaks at 338, 352, 418, and 480 nm, respectively. The monometallic, bimetallic NPs, and biochar have indicated the presence in various forms mostly in Spherical-shaped. Their size varied from 102.3 to 183.5 nm and the corresponding FTIR spectra suggested that the specific organic functional groups from the plant extract played a significant role in the bio-reduction process. Ag and Ag-FeO NPs exhibited excellent antifungal activity against pathogenic fungi Alternaria sp., S. sclerotiorum, F. equiseti, and F. venenatum. The current study could be a significant achievement in the field of antifungal agents since has the potential to develop new approaches for treating fungal infections.


Asunto(s)
Adansonia , Carbón Orgánico , Solanum lycopersicum , Espectroscopía Infrarroja por Transformada de Fourier , Antifúngicos/farmacología , Alternaria , Rayos Infrarrojos , Extractos Vegetales
18.
Sci Rep ; 14(1): 5934, 2024 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467843

RESUMEN

The present study reports the green synthesis of silver nanoparticles (AgNPs) in powder form using the leaf extract of Azadirachta indica. The synthesis of AgNPs was confirmed by UV-vis spectroscopy, FTIR, XRD, FESEM, and EDX. The synthesized AgNPs were in a powdered state and dispersed completely in 5% polyethylene glycol (PEG) and demonstrated prolonged shelf life and enhanced bioavailability over a year without any aggregation. The resulting silver nanoformulation demonstrated complete inhibition against Sclerotinia sclerotiorum and Colletotrichum falcatum and 68% to 80% inhibition against Colletotrichum gloeosporioides and Rhizoctonia solani respectively, at 2000 ppm. The EC50 values determined through a statistical analysis were 66.42, 157.7, 19.06, and 33.30 ppm for S. sclerotiorum, C. falcatum, C. gloeosporioides, and R. solani respectively. The silver nanoformulation also established significant cytotoxicity, with a 74.96% inhibition rate against the human glioblastoma cell line U87MG at 250 ppm. The IC50 value for the cancerous cell lines was determined to be 56.87 ppm through statistical analysis. The proposed silver nanoformulation may be used as a next-generation fungicide in crop improvement and may also find application in anticancer investigations. To the best of our knowledge, this is also the first report of silver nanoformulation demonstrating complete inhibition against the economically significant phytopathogen C. falcatum.


Asunto(s)
Antineoplásicos , Nanopartículas del Metal , Humanos , Plata/química , Antifúngicos/farmacología , Nanopartículas del Metal/química , Hongos/metabolismo , Línea Celular , Antineoplásicos/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antibacterianos/farmacología
19.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38473725

RESUMEN

Environmental sustainability is an increasing challenge in the pharmaceutical field, leading to the search for eco-friendly active ingredients. Among natural ingredients, propolis arises as an excellent alternative, being a complex substance with pharmacological properties. This work aims to explore the potential of propolis as a new pharmaceutical ingredient for the replacement of conventional vulvovaginal antifungals. Propolis extracts were obtained by Ultrasound-Assisted Extraction using different solvents (water, water/ethanol (50:50, v/v), and ethanol). Afterwards, the extracts were characterized regarding total phenolic content (TPC), antioxidant/antiradical activities, radical scavenging capacity, antifungal activity against strains of Candida species, and viability effect on two female genital cell lines. The aqueous extract achieved the best TPC result as well as the highest antioxidant/antiradical activities and ability to capture reactive oxygen species. A total of 38 phenolic compounds were identified and quantified by HPLC, among which ferulic acid, phloridzin and myricetin predominated. Regarding the anti-Candida spp. activity, the aqueous and the hydroalcoholic extracts achieved the best outcomes (with MIC values ranging between 128 and 512 µg/mL). The cell viability assays confirmed that the aqueous extract presented mild selectivity, while the hydroalcoholic and alcoholic extracts showed higher toxicities. These results attest that propolis has a deep potential for vulvovaginal candidiasis management, supporting its economic valorization.


Asunto(s)
Candidiasis Vulvovaginal , Própolis , Femenino , Humanos , Própolis/farmacología , Antioxidantes/farmacología , Etanol/farmacología , Fenoles/farmacología , Antifúngicos/farmacología , Candida , Agua/química , Extractos Vegetales/farmacología
20.
Sci Rep ; 14(1): 5676, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453942

RESUMEN

Actinobacteria are one of the predominant groups that successfully colonize and survive in various aquatic, terrestrial and rhizhospheric ecosystems. Among actinobacteria, Nocardia is one of the most important agricultural and industrial bacteria. Screening and isolation of Nocardia related bacteria from extreme habitats such as endolithic environments are beneficial for practical applications in agricultural and environmental biotechnology. In this work, bioinformatics analysis revealed that a novel strain Nocardia mangyaensis NH1 has the capacity to produce structurally varied bioactive compounds, which encoded by non-ribosomal peptide synthases (NRPS), polyketide synthase (PKS), and post-translationally modified peptides (RiPPs). Among NRPS, five gene clusters have a sequence homology with clusters encoding for siderophore synthesis. We also show that N. mangyaensis NH1 accumulates both catechol- and hydroxamate-type siderophores simultaneously under iron-deficient conditions. Untargeted LC-MS/MS analysis revealed a variety of metabolites, including siderophores, lipopeptides, cyclic peptides, and indole-3-acetic acid (IAA) in the culture medium of N. mangyaensis NH1 grown under iron deficiency. We demonstrate that four CAS (chrome azurol S)-positive fractions display variable affinity to metals, with a high Fe3+ chelating capability. Additionally, three of these fractions exhibit antioxidant activity. A combination of iron scavenging metabolites produced by N. mangyaensis NH1 showed antifungal activity against several plant pathogenic fungi. We have shown that the pure culture of N. mangyaensis NH1 and its metabolites have no adverse impact on Arabidopsis seedlings. The ability of N. mangyaensis NH1 to produce siderophores with antifungal, metal-chelating, and antioxidant properties, when supplemented with phytohormones, has the potential to improve the release of macro- and micronutrients, increase soil fertility, promote plant growth and development, and enable the production of biofertilizers across diverse soil systems.


Asunto(s)
Actinobacteria , Nocardia , Nocardia/genética , Nocardia/metabolismo , Sideróforos/metabolismo , Ecosistema , Antifúngicos/farmacología , Cromatografía Liquida , Espectrometría de Masas en Tándem , Actinobacteria/metabolismo , Hierro/metabolismo , Bacterias/metabolismo , Genómica , Metaboloma , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA