Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.523
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
PLoS Pathog ; 20(3): e1011991, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38427625

RESUMEN

The emergence of resistance against antimalarials and insecticides poses a significant threat to malaria elimination strategies. It is crucial to explore potential risk factors for malaria to identify new targets and alternative therapies. Malnutrition is a well-established risk factor for malaria. Deficiencies of micronutrients such as vitamin A, zinc, iron, folic acid, and phenotypic measures of malnutrition, such as stunting and wasting, have been studied extensively in the context of malaria. Vitamin B2, also known as riboflavin, is a micronutrient involved in maintaining cellular homeostasis. Riboflavin deficiency has been shown to have an inverse correlation with malarial parasitaemia. This article reviews the role of riboflavin in maintaining redox homeostasis and probes how riboflavin deficiency could alter malaria pathogenesis by disrupting the balance between oxidants and antioxidants. Though riboflavin analogues have been explored as antimalarials, new in vivo and patient-based research is required to target riboflavin-associated pathways for antimalarial therapy.


Asunto(s)
Antimaláricos , Malaria , Deficiencia de Riboflavina , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Ácido Fólico , Micronutrientes , Riboflavina
2.
PeerJ ; 12: e17084, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38529311

RESUMEN

Background: Malaria has been appraised as a significant vector-borne parasitic disease with grave morbidity and high-rate mortality. Several challenges have been confronting the efficient diagnosis and treatment of malaria. Method: Google Scholar, PubMed, Web of Science, and the Egyptian Knowledge Bank (EKB) were all used to gather articles. Results: Diverse biochemical and physiological indices can mirror complicated malaria e.g., hypoglycemia, dyslipidemia, elevated renal and hepatic functions in addition to the lower antioxidant capacity that does not only destroy the parasite but also induces endothelial damage. Multiple trials have been conducted to improve recent points of care in malaria involving biosensors, lap on-chip, and microdevices technology. Regarding recent therapeutic trials, chemical falcipain inhibitors and plant extracts with anti-plasmodial activities are presented. Moreover, antimalaria nano-medicine and the emergence of nanocarrier (either active or passive) in drug transportation are promising. The combination therapeutic trials e.g., amodiaquine + artemether + lumefantrine are presented to safely counterbalance the emerging drug resistance in addition to the Tafenoquine as a new anti-relapse therapy. Conclusion: Recognizing the pathophysiology indices potentiate diagnosis of malaria. The new points of care can smartly manipulate the biochemical and hematological alterations for a more sensitive and specific diagnosis of malaria. Nano-medicine appeared promising. Chemical and plant extracts remain points of research.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Malaria , Humanos , Antimaláricos/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Malaria/diagnóstico , Extractos Vegetales/uso terapéutico
3.
Int J Parasitol Drugs Drug Resist ; 24: 100530, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38447332

RESUMEN

As etiological agents of malaria disease, Plasmodium spp. parasites are responsible for one of the most severe global health problems occurring in tropical regions of the world. This work involved compiling marine cyanobacteria metabolites reported in the scientific literature that exhibit antiplasmodial activity. Out of the 111 compounds mined and 106 tested, two showed antiplasmodial activity at very low concentrations, with IC50 at 0.1 and 1.5 nM (peptides: dolastatin 10 and lyngbyabellin A, 1.9% of total tested). Examples of chemical derivatives generated from natural cyanobacterial compounds to enhance antiplasmodial activity and Plasmodium selectivity can be found in successful findings from nostocarboline, eudistomin, and carmaphycin derivatives, while bastimolide derivatives have not yet been found. Overall, 57% of the reviewed compounds are peptides with modified residues producing interesting active moieties, such as α- and ß-epoxyketone in camaphycins. The remaining compounds belong to diverse chemical groups such as alkaloids, macrolides, polycyclic compounds, and halogenated compounds. The Dolastatin 10 and lyngbyabellin A, compounds with antiplasmodial high activity, are cytoskeletal disruptors with different protein targets.


Asunto(s)
Alcaloides , Antimaláricos , Cianobacterias , Malaria , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Plasmodium falciparum , Malaria/tratamiento farmacológico , Alcaloides/química , Extractos Vegetales
4.
Microbiol Spectr ; 12(4): e0350023, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38363132

RESUMEN

During blood-stage infection, Plasmodium falciparum parasites are constantly exposed to a range of extracellular stimuli, including host molecules and drugs such as artemisinin derivatives, the mainstay of artemisinin-based combination therapies currently used as first-line treatment worldwide. Partial resistance of P. falciparum to artemisinin has been associated with mutations in the propeller domain of the Pfkelch13 gene, resulting in a fraction of ring stages that are able to survive exposure to artemisinin through a temporary growth arrest. Here, we investigated whether the growth arrest in ring-stage parasites reflects a general response to stress. We mimicked a stressful environment in vitro by exposing parasites to chloroquine or dihydroartemisinin (DHA). We observed that early ring-stage parasites pre-exposed to a stressed culture supernatant exhibited a temporary growth arrest and a reduced susceptibility to DHA, as assessed by the ring-stage survival assay, irrespective of their Pfkelch13 genotype. These data suggest that temporary growth arrest of early ring stages may be a constitutive, Pfkelch13-independent survival mechanism in P. falciparum.IMPORTANCEPlasmodium falciparum ring stages have the ability to sense the extracellular environment, regulate their growth, and enter a temporary growth arrest state in response to adverse conditions such as drug exposure. This temporary growth arrest results in reduced susceptibility to artemisinin in vitro. The signal responsible for this process is thought to be small molecules (less than 3 kDa) released by stressed mature-stage parasites. These data suggest that Pfkelch13-dependent artemisinin resistance and the growth arrest phenotype are two complementary but unrelated mechanisms of ring-stage survival in P. falciparum. This finding provides new insights into the field of P. falciparum antimalarial drug resistance by highlighting the extracellular compartment and cellular communication as an understudied mechanism.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Parásitos , Animales , Plasmodium falciparum/genética , Artemisininas/farmacología , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Resistencia a Medicamentos , Proteínas Protozoarias/genética
5.
Ann Afr Med ; 23(1): 5-12, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38358164

RESUMEN

Malaria is a disease affecting millions of people, especially in Africa, Asia, and South America, and has become a substantial economic burden. Because malaria is contracted through the bite of a mosquito vector, it is very challenging to prevent. Bed nets and insect repellents are used in some homes; others do not have or use them even when available. Thus, treatment measures are crucial to controlling this disease. Artemisinin-based combination therapy (ACT) is currently the first-line treatment for malaria. ACT has been used for decades, but recently, there has been evidence of potential resistance. This threat of resistance has led to the search for possible alternatives to ACT. In sub-Saharan Africa, Azadirachta indica, or simply neem, is a plant used to treat a variety of ailments, including malaria. Neem is effective against one of the more deadly malaria parasites Plasmodium falciparum. Reports show that neem inhibits microgametogenesis of P. falciparum and interferes with the parasite's ookinete development. Although there is substantial in vitro research on the biological activity of A. indica (neem), there is limited in vivo research. Herein, we discuss the in vivo effects of neem on malaria parasites. With A. indica, the future of malaria treatment is promising, especially for high-risk patients, but further research and clinical trials are required to confirm its biological activity.


Résumé Le paludisme est une maladie qui touche des millions de personnes, notamment en Afrique, en Asie et en Amérique du Sud, et est devenu un problème économique majeur fardeau. Le paludisme étant contracté par la piqûre d'un moustique vecteur, il est très difficile à prévenir. Moustiquaires et insectifuges sont utilisés dans certaines maisons ; d'autres ne les possèdent pas ou ne les utilisent pas même lorsqu'ils sont disponibles. Les mesures thérapeutiques sont donc cruciales pour contrôler cette maladie. La thérapie combinée à base d'artémisinine (ACT) constitue actuellement le traitement de première intention contre le paludisme. L'ACT est utilisé depuis des décennies, mais récemment, il y a eu des preuves d'une résistance potentielle. Cette menace de résistance a conduit à la recherche d'alternatives possibles à l'ACT. En Afrique subsaharienne, Azadirachta indica, ou simplement neem, est une plante utilisée pour traiter diverses maladies, dont le paludisme. Le Neem est efficace contre l'un des des parasites du paludisme plus mortels, Plasmodium falciparum. Des rapports montrent que le neem inhibe la microgamétogenèse de P. falciparum et interfere avec le développement de l'ookinète du parasite. Bien qu'il existe d'importantes recherches in vitro sur l'activité biologique d'A. indica (neem), il existe la recherche in vivo est limitée. Nous discutons ici des effets in vivo du neem sur les parasites du paludisme. Avec A. indica, l'avenir du traitement du paludisme est prometteur, en particulier pour les patients à haut risque, mais des recherches et des essais cliniques supplémentaires sont nécessaires pour confirmer son activité biologique. Mots-clés: Azadirachta indica, paludisme, neem, Plasmodium falciparum.


Asunto(s)
Antimaláricos , Azadirachta , Malaria Falciparum , Malaria , Animales , Humanos , Extractos Vegetales/uso terapéutico , Malaria/tratamiento farmacológico , Plasmodium falciparum , África del Sur del Sahara , Antimaláricos/uso terapéutico , Antimaláricos/farmacología , Malaria Falciparum/tratamiento farmacológico
6.
J Ethnopharmacol ; 325: 117839, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38310984

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Djibouti was a country where malaria has been endemic for centuries. The local population use the plants as repellents or first aid for uncomplicated malaria. AIM OF THE STUDY: The aim was, for the first time, to collect and identify plants used by the local population to treat malaria and select the most interesting plants (those that are more commontly used, more available, and have fewer studies). These plants were evaluated for their antiplasmodial activity as well as their cytotoxicity on human cell lines for the most active ones. MATERIALS AND METHODS: A semi-structured questionnaire was developed for this study to collect information about the use and identity of botanical drugs used to treat malaria. The use-reports (percentage) of each plant were recorded to determine their use importance. Also, the availability status of the plants was assessed; and those in critical condition were discarded excluded from further study. Fifteen plants, out of the 41 listed, were extracted with hydro alcohol, ethyl acetate, and dichloromethane for biological testing. Chloroquine-resistant strain FcB-1 of P. falciparum and a human diploid embryonic lung cell line were used for the antiplasmodial test, and to assess the cytotoxicity for human cells respectively. Preliminary analysis of extract constituents was carried out using thin layer chromatography (TLC). RESULTS: This study identifies 41 plant taxa belonging to 32 families and records their use against malaria. Balanites rodunfolia, belonging to the Zygophyllaceae family, was the most commonly used plant, representing 44 % of use-reports. It was followed by Cadaba rodunfolia (15 %) from the Capparaceae family, and then the three species of Aloe: Aloe djiboutiensis (8.2 %), Aloe ericahenriettae (3.4 %), and Aloe rigens (3.4 %) from the Asphodelaceae family. The leaves are the most commonly used part of the plants to treat malaria, accounting for 76 % of usage. The preparation methods were decoction (52 %), maceration (29 %), and boiling (19 %). The administration routes were by oral (80 %), inhalation 19 %), and bathing (1 %). The best antiplasmodial activities were observed in the dichloromethane extracts of Cymbopogon commutatus and the ethyl acetate extracts of Aloe rigens and Terminalia brownii, with IC50 values of 9.8, 5, and 7.5 µg/mL, respectively. Their toxicity/activity levels were very favorable with selectivity indices of 5.6, 8.1, and 11.8 for C. commutatus, A. rigens, and T. Brownii, respectively. CONCLUSION: Forty-one species of botanical drugs were listed as being used to treat malaria in Djibouti. All fifteen selected species showed antiplasmodial activity (IC50 < 50 µg/mL). This work will help guide the valorization of botanical drugs used to treat malaria in Djibouti.


Asunto(s)
Aloe , Antimaláricos , Malaria Falciparum , Malaria , Plantas Medicinales , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Plantas Medicinales/química , Preparaciones Farmacéuticas , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Djibouti , Cloruro de Metileno/uso terapéutico , Malaria/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum
7.
J Ethnopharmacol ; 326: 117936, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38382655

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Phyllanthus muellerianus (Kunze) Exell, a member of the Phyllanthaceae family, is a medicinal plant widely distributed in Africa. Decoctions from the leaves are used in Nigeria to treat fevers, convulsions, some neurological disorders and malaria. AIM OF THE STUDY: This study is to evaluate the anti-malarial properties of methanol extract of Phyllanthus muellerianus (MEPM) leaves and its ethyl acetate fraction using a murine malaria model infected with Plasmodium berghei. Additionally, we seek to investigate the potential modulatory effects of this extract and fraction on CD4+ T-cell populations in the context of malaria infection. MATERIALS AND METHODS: The anti-malarial effects of the leaf methanol extract of Phyllanthus muellerianus (MEPM) were screened using three established in vivo models of anti-plasmodial screening namely the curative, suppressive and prophylactic models. The methanol extract (MEPM) was afterwards fractionated into hexane (HFPM), ethyl acetate (EAFPM), and methanol (MFPM) fractions. In the pilot anti-malarial screening of the fractions, EAFPM exhibited the best antiparasitic activity. Subsequently, EAFPM was screened for anti-malarial activity using the three models above. The effects of the MEPM and EAFPM on haematological indices (Hb and PCV) of the inoculated animals were further screened and the mean survival time (MST) of the animals was monitored. CD4+ T cells of various groups were counted before and after treatment using a flow cytometer. The EAFPM was further subjected to HPLC analysis for identification of its major compounds. RESULTS: The EAFPM (100 and 200 mg/kg) elicited 88% and 93% cure respectively in the curative model, while artesunate (5 mg/kg,- the positive control) gave 87% protection. The MEPM and EAFPM also gave significant suppression of parasitemia in the suppressive model. The treated groups survived beyond 28 days as against 11 days by the control group (infected but not treated). The treated groups also prevented anaemia seen in the negative control. The EAFPM group significantly modulated the CD4+ T cell. Compounds identified were Gallocatechin, Quercetin -3-O-gallate, Ellagic acid, and Methylellagic acid rhamnoside). CONCLUSION: The study established that the leaf of Phyllanthus muellerianus possesses antimalarial activity, thus lending support to its use in the folkloric treatment of malaria.


Asunto(s)
Acetatos , Antimaláricos , Etanol , Glicoles de Etileno , Ácidos Grasos , Malaria , Phyllanthus , Animales , Ratones , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Metanol/uso terapéutico , Plasmodium berghei , Linfocitos T , Malaria/tratamiento farmacológico , Malaria/parasitología , Hojas de la Planta , Linfocitos T CD4-Positivos , Nigeria
8.
PLoS One ; 19(1): e0296756, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38206944

RESUMEN

The emergence and spread of antimalarial drug resistance have become a significant problem worldwide. The search for natural products to develop novel antimalarial drugs is challenging. Therefore, this study aimed to assess the antimalarial and toxicological effects of Chan-Ta-Lee-La (CTLL) and Pra-Sa-Chan-Dang (PSCD) formulations and their plant ingredients. The crude extracts of CTLL and PSCD formulations and their plant ingredients were evaluated for in vitro antimalarial activity using Plasmodium lactate dehydrogenase enzyme and toxicity to Vero and HepG2 cells using the tetrazolium salt method. An extract from the CTLL and PSCD formulations exhibiting the highest selectivity index value was selected for further investigation using Peter's 4-day suppressive test, curative test, prophylactic test, and acute oral toxicity in mice. The phytochemical constituents were characterized using gas chromatography-mass spectrometry (GC-MS). Results showed that ethanolic extracts of CTLL and PSCD formulations possessed high antimalarial activity (half maximal inhibitory concentration = 4.88, and 4.19 g/mL, respectively) with low cytotoxicity. Ethanolic extracts of the CTLL and PSCD formulations demonstrated a significant dose-dependent decrease in parasitemia in mice. The ethanolic CTLL extract showed the greatest suppressive effect after 4 days of suppressive (89.80%) and curative (35.94%) testing at a dose of 600 mg/kg. Moreover, ethanolic PSCD extract showed the highest suppressive effect in the prophylactic test (65.82%) at a dose of 600 mg/kg. There was no acute toxicity in mice treated with ethanolic CTLL and PSCD extracts at 2,000 mg/kg bodyweight. GC-MS analysis revealed that the most abundant compounds in the ethanolic CTLL extract were linderol, isoborneol, eudesmol, linoleic acid, and oleic acid, whereas ethyl 4-methoxycinnamate was the most commonly found compound in the ethanolic PSCD extract, followed by 3-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-4H-chromen-4-one, flamenol, oleic acid amide, linoleic acid, and oleic acid. In conclusions, ethanolic CTLL and PSCD extracts exhibited high antimalarial efficacy in vitro. The ethanolic CTLL extract at a dose of 600 mg/kg exhibited the highest antimalarial activity in the 4-day suppressive and curative tests, whereas the ethanolic PSCD extract at a dose of 600 mg/kg showed the highest antimalarial activity in the prophylactic test.


Asunto(s)
Antimaláricos , Malaria , Animales , Ratones , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Antimaláricos/química , Ácido Linoleico , Ácido Oléico/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Malaria/tratamiento farmacológico , Mezclas Complejas/farmacología , Plasmodium berghei
9.
J Ethnopharmacol ; 323: 117613, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38185259

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Solanum incanum L. is commonly used in traditional herbal medicine (THM) in Kenya for treating various ailments. Recent developments in disease treatment have introduced the concept of host-directed therapy (HDT). This approach involves targeting factors within the host cell that can impede the growth or replication of a pathogen. One such host factor is delta aminolevulinate dehydratase (δ-ALAD), the second enzyme in the heme biosynthesis pathway utilized by Plasmodium for growth. Studies using mice models have shown an increase in δ-ALAD expression during Plasmodium berghei infection. Another plant in the Solanum genus, S. guaranticum, has been found to inhibit δ-ALAD in red blood cells in vitro and in the brain in vivo. Is it possible that the bioactive compounds in S. incanum extracts could also be effective in HDT for malaria treatment? AIM OF STUDY: To better assess the effectiveness of S. incanum leaf extracts as a curative and prophylaxis in malaria parasite infection, and to test the plant's ability to decrease δ-ALAD expression. MATERIALS AND METHODS: The leaves of S. incanum were collected, dried, and pulverized before being subjected to a successive extraction protocol to obtain crude, hexane, ethyl acetate, and aqueous extract fractions. Phytochemical analysis was conducted on all extract fractions, followed by GC-MS analysis of the fraction with the most potent antimalarial activity. An acute toxicity study was also performed on the extracted fractions. The potency of the extract fractions as curative and prophylactic antimalarial was then evaluated in THM using Plasmodium berghei-infected mice at a dose of 100 mg/kg. The extract fraction with the highest activity was further evaluated at varying doses and its effect on δ-ALAD was measured using RT-qPCR. The percentage of parasitemia and chemosuppression, and mean survival time were used as indices of activity. RESULTS: Phytochemical analysis revealed that the ethyl acetate and aqueous extract fractions contained high terpenoids, flavonoids, and phenols levels. However, alkaloids were only present in moderate quantities in the aqueous extract, and quinones were found in high levels only in the crude extract. Additionally, all extract fractions contained saponins in high levels but lacked tannins. While the plant extracts were found to be non-toxic, they did not exhibit curative antimalarial activity. However, all extract fractions showed prophylactic antimalarial activity, with the ethyl acetate extract having the highest percentage of chemosuppression even at doses of 250 and 1000 mg/kg. In the negative control, the expression of δ-ALAD was 5.4-fold, but this was significantly reduced to 2.3-fold when mice were treated with 250 mg/kg of the ethyl acetate fraction. GC-MS analysis of the ethyl acetate fraction revealed high percentages of 2-methyloctacosane, tetracosane, and decane. CONCLUSION: The fractions extracted from S. incanum leaves have been found to possess only antimalarial prophylactic properties, with the ethyl acetate extract fraction showing the most effective results. The activity of this fraction may be attributed to its ability to decrease the expression of δ-ALAD, as it contains an alkane compound implicated with enzyme-inhibitory activity.


Asunto(s)
Acetatos , Antimaláricos , Malaria , Plantas Medicinales , Solanum , Animales , Ratones , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Porfobilinógeno Sintasa/farmacología , Porfobilinógeno Sintasa/uso terapéutico , Malaria/tratamiento farmacológico , Malaria/parasitología , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Plasmodium berghei , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico
10.
Med Res Rev ; 44(2): 867-891, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38054758

RESUMEN

Autoimmune diseases are characterized by the immune system's attack on one's own tissues which are highly diverse and diseases differ in severity, causing damage in virtually all human systems including connective tissue (e.g., rheumatoid arthritis), neurological system (e.g., multiple sclerosis) and digestive system (e.g., inflammatory bowel disease). Historically, treatments normally include pain-killing medication, anti-inflammatory drugs, corticosteroids, and immunosuppressant drugs. However, given the above characteristics, treatment of autoimmune diseases has always been a challenge. Artemisinin is a natural sesquiterpene lactone initially extracted and separated from Chinese medicine Artemisia annua L., which has a long history of curing malaria. Artemisinin's derivatives such as artesunate, dihydroartemisinin, artemether, artemisitene, and so forth, are a family of artemisinins with antimalarial activity. Over the past decades, accumulating evidence have indicated the promising therapeutic potential of artemisinins in autoimmune diseases. Herein, we systematically summarized the research regarding the immunoregulatory properties of artemisinins including artemisinin and its derivatives, discussing their potential therapeutic viability toward major autoimmune diseases and the underlying mechanisms. This review will provide new directions for basic research and clinical translational medicine of artemisinins.


Asunto(s)
Antimaláricos , Artemisininas , Enfermedades Autoinmunes , Humanos , Artemisininas/farmacología , Artemisininas/uso terapéutico , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Arteméter , Enfermedades Autoinmunes/tratamiento farmacológico
11.
J Ethnopharmacol ; 321: 117558, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38092319

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The King of Bitters (Andrographis paniculata) is a plant used to cure a wide range of infectious diseases which includes malaria, fever and others. However, there is a paucity of scientific evidence of its effect on male reproductive indices during malaria treatment. AIM OF THE STUDY: The aim of this study is to evaluate the effect of supplemented diet on antiplasmodial, hematological and male reproductive indices in mice infected with Plasmodium berghei. MATERIALS AND METHODS: Aqueous extract of A. paniculata (King of Bitters, KGB) was prepared and the total phenol and flavonoid contents were determined. Forty-two mice, weighing 20-25 g, were distributed into 7 groups consisting of 6 mice each. The mice were innoculated with strain NK65 Plasmodium berghei (Chloroquine, CQ sensitive) and the parasitemia suppression was assessed. The mice were fed with the dietary supplementation of KGB at varying inclusions (2.5%, 5%, 7.5%, and 10%) and administered 10 mg/kg CQ (which served as the positive control) for 5 consecutive days after infection was established. The reactive malondialdeahyde (MDA), antioxidant [superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH)] and the hematological (hemoglobin, packed cell volume and red blood cell) parameters in the infected mice were determined. The reproductive indices (serum testosterone, luteinizing hormone (LH), follicle-stimulating hormone (FSH), sperm count, sperm motility, and sperm viability) and testis histopathology were also assessed. RESULT: The result revealed that KGB had a total phenol content of 32.55 mgGAE/g and total flavonoid content of 19.71 mgQUE/g. The infected mice treated with the dietary supplementation of KGB showed significantly decreased (p < 0.05) parasitaemia and MDA levels. Furthermore, the 7.5% dietary inclusion showed significant improvement in the antioxidant, hematological and reproductive indices as well as the restoration of testis morphology as seen in the histopathology plate of the infected mice treated with KGB. Hence, this study suggests that the KGB- supplemented diet (7.5%) may be a potential alternative and complementary therapy in the treatment of malaria infection and reproductive disorders.


Asunto(s)
Antimaláricos , Malaria , Masculino , Animales , Ratones , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Plasmodium berghei , Andrographis paniculata , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Motilidad Espermática , Semillas , Malaria/tratamiento farmacológico , Suplementos Dietéticos , Dieta , Flavonoides/farmacología , Fenoles/farmacología
12.
J Ethnopharmacol ; 321: 117394, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37967777

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Plasmodium falciparum multi-drug resistant (MDR) strains are a great challenge to global health care. This predicament implies the urgent need to discover novel antimalarial drugs candidate from alternative natural sources. The Himalaya constitute a rich repository of medicinal plants which have been used traditionally in the folklore medicine since ages and having no scientific evidence for their activity. Crambe kotschyana Boiss. and Eremurus himalaicus Baker are used for their antipyretic and hepatoprotective properties in Kinnaur district of Himachal Pradesh, India. AIM OF THE STUDY: This study would investigate the antiplasmodial efficacy of C. kotschyana and E. himalaicus extracts, their fractions and active components using in vitro, in vivo and in silico approaches to provide a scientific insight into their activity. METHODS: The methanol extracts of C. kotschyana (CKME) and E. himalaicus (EHME) were prepared by maceration followed by fractionation using ethyl acetate. The isolation of flavonoid glycosides isorhamnetin-3, 7-di-O-glucoside from C. kotschyana and luteolin-6-C-glucoside (isoorientin) from E. himalaicus was carried out by antiplasmodial activity-guided isolation. In vitro antimalarial activity was assessed by WHO method while in vitro cytotoxicity was ascertained employing the MTT assay. Molecular docking and molecular dynamics simulation were performed using the Glide module of Schrödinger Software and Gromacs-2022 software package respectively. In vivo curative activity was assessed by Ryley and Peters method. RESULTS: The methanol extracts of both the plants illustrated the best antiplasmodial activity followed by the ethyl acetate fractions. Iso-orientin (IC50 6.49 µg/ml) and Isorhamnetin-3,7-di-O-glucoside (IC50 9.22 µg/ml) illustrated considerable in vitro activity even against P. falciparum resistant strain. Extracts/fractions as well as the isolated compounds were found to be non-toxic with CC50 > 640 µg/ml. Molecular docking studies were performed with these 2 O-glucosides against four malaria targets to understand the binding pose of these molecules and the results suggested that these molecules have selectivity for lactate dehydrogenase enzyme. CKME and EHME exhibited curative activity in vivo along with increase in Mean Survival Time of mice. CONCLUSION: The research delineated the scientific evidence that both the therapeutic herbs possessed antimalarial activity and notably, bioactive compounds responsible to exhibit the antimalarial activity have been isolated, identified and characterized. Further studies are underway to assess the antiplasmodial efficacy of isolated compounds alone and in combination with standard antimalarials.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Parásitos , Animales , Ratones , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Antimaláricos/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Metanol/uso terapéutico , Simulación del Acoplamiento Molecular , Malaria/tratamiento farmacológico , Plasmodium falciparum , Malaria Falciparum/tratamiento farmacológico , Glucósidos/uso terapéutico
13.
J Ethnopharmacol ; 321: 117466, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37981115

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Malaria is a major global health concern that is presently challenged by the emergence of Plasmodium falciparum (Pf) resistance to mainstay artemisinin-based combination therapies (ACTs). Hence, the discovery of novel and effective antimalarial drugs is pivotal to treating and controlling malaria. For many years, traditional plant-based herbal medicines have been employed in the treatment of various illnesses. Rotheca serrata (L.) Steane & Mabb. belongs to the Lamiaceae family that has been traditionally used to treat, cure, and prevent numerous diseases including malaria. AIM: The present investigation sought to assess the phytoconstituents, antioxidant, cytotoxicity, antimalarial activities of Rotheca serrata extract and its fractions. The in vitro antiplasmodial activity was assessed in chloroquine-sensitive Pf3D7 and artemisinin-resistant PfCam3.IR539T cultures, and the in vivo antimalarial activity was analyzed in Plasmodium berghei (Pb) ANKA strain-infected BALB/c mouse model. MATERIALS AND METHODS: The fresh leaves of Rotheca serrata were extracted in methanol (RsMeOH crude leaf extract). A portion of the extract was used to prepare successive solvent fractions using ethyl acetate (RsEA) and hexane (RsHex). The in vitro antiplasmodial activity was evaluated using [3H]-hypoxanthine incorporation assays against Pf3D7 and PfCam3.IR539T cultures. In vitro cytotoxicity study on HeLa, HEK-293T, and MCF-7 cell lines was carried out using MTT assay. The human red blood cells (RBCs) were used to perform the hemolysis assays. In vitro antioxidant studies and detailed phytochemical analysis were performed using GC-MS and FTIR. The four-day Rane's test was performed to evaluate the in vivo antimalarial activity against Pb ANKA strain-infected mice. RESULTS: Phytochemical quantification of Rotheca serrata extract (RsMeOH) and its fractions (RsEA and RsHex) revealed that RsMeOH crude extract and RsEA fraction had higher contents of total phenol and flavonoid than RsHex fraction. The RsEA fraction showed potent in vitro antiplasmodial activity against Pf3D7 and PfCam3.IR539T with IC50 values of 9.24 ± 0.52 µg/mL and 17.41 ± 0.43 µg/mL, respectively. The RsMeOH crude extract exhibited moderate antiplasmodial activity while the RsHex fraction showed the least antiplasmodial activity. The GC-MS and FTIR analysis of RsMeOH and RsEA revealed the presence of triterpenes, phenols, and hydrocarbons as major constituents. The RsMeOH crude extract was non-hemolytic and non-cytotoxic to HeLa, HEK-293T, and MCF-7 cell lines. The in vivo studies showed that a 1200 mg/kg dose of RsMeOH crude extract could significantly suppress parasitemia by ∼63% and prolong the survival of treated mice by ∼10 days. The in vivo antiplasmodial activity of RsMeOH was better than the RsEA fraction. CONCLUSION: The findings of this study demonstrated that traditionally used herbal medicinal plants like R. serrata provide a platform for the identification and isolation of potent bioactive phytochemicals that in turn can promote the antimalarial drug research. RsMeOH crude extract and RsEA fraction showed antiplasmodial, antimalarial and antioxidant activities. Chemical fingerprinting analysis suggested the presence of bioactive phytocompounds that are known for their antimalarial effects. Further detailed investigations on RsMeOH crude extract and RsEA fraction would be needed for the identification of the entire repertoire of the active antimalarial components with potent pharmaceutical and therapeutic values.


Asunto(s)
Antimaláricos , Artemisininas , Malaria , Plantas Medicinales , Humanos , Animales , Ratones , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Antimaláricos/química , Plantas Medicinales/química , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Plomo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Malaria/tratamiento farmacológico , Plasmodium falciparum , Artemisininas/farmacología , Plasmodium berghei , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico
14.
EBioMedicine ; 99: 104921, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38101300

RESUMEN

BACKGROUND: Sulfadoxine-pyrimethamine (SP) antimalarial therapy has been suggested to potentially increase the birth weight of infants in pregnant women in sub-Saharan Africa, independently of malarial infection. Here, we utilized female intestinal organoid-derived cells cultured within microfluidic Organ Chips to investigate whether SP could directly impact intestinal function and thereby improve the absorption of essential fats and nutrients crucial for fetal growth. METHODS: Using a human organ-on-a-chip model, we replicated the adult female intestine with patient organoid-derived duodenal epithelial cells interfaced with human intestinal endothelial cells. Nutrient-deficient (ND) medium was perfused to simulate malnutrition, resulting in the appearance of enteric dysfunction indicators such as villus blunting, reduced mucus production, impaired nutrient absorption, and increased inflammatory cytokine secretion. SP was administered to these chips in the presence or absence of human peripheral blood mononuclear cells (PBMCs). FINDINGS: Our findings revealed that SP treatment effectively reversed multiple intestinal absorptive abnormalities observed in malnourished female Intestine Chips, as validated by transcriptomic and proteomic analyses. SP also reduced the production of inflammatory cytokines and suppressed the recruitment of PBMCs in ND chips. INTERPRETATION: Our results indicate that SP could potentially increase birth weights by preventing enteric dysfunction and suppressing intestinal inflammation. This underscores the potential of SP as a targeted intervention to improve maternal absorption, subsequently contributing to healthier fetal growth. While SP treatment shows promise in addressing malabsorption issues that can influence infant birth weight, we did not model pregnancy in our chips, and thus its usefulness for treatment of malnourished pregnant women requires further investigation through clinical trials. FUNDING: The Bill and Melinda Gates Foundation, and the Wyss Institute for Biologically Inspired Engineering at Harvard University, and the HDDC Organoid Core of the P30 DK034854.


Asunto(s)
Antimaláricos , Desnutrición , Complicaciones Parasitarias del Embarazo , Sulfadoxina , Adulto , Femenino , Humanos , Embarazo , Peso al Nacer , Células Endoteliales , Leucocitos Mononucleares , Proteómica , Pirimetamina/farmacología , Pirimetamina/uso terapéutico , Antimaláricos/uso terapéutico , Combinación de Medicamentos , Intestinos , Desnutrición/complicaciones , Desnutrición/tratamiento farmacológico
15.
J Ethnopharmacol ; 322: 117595, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38122914

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Malaria continues to be a serious global public health problem in subtropical and tropical countries of the world. The main drugs used in the treatment of human malaria, quinine and artemisinin, are isolates of medicinal plants, making the use of plants a widespread practice in countries where malaria is endemic. Over the years, due to the increased resistance of the parasite to chloroquine and artemisinin in certain regions, new strategies for combating malaria have been employed, including research with medicinal plants. AIM: This review focuses on the scientific production regarding medicinal plants from Brazil whose antimalarial activity was evaluated during the period from 2011 to 2022. 2. METHODOLOGY: For this review, four electronic databases were selected for research: Pubmed, ScienceDirect, Scielo and Periódicos CAPES. Searches were made for full texts published in the form of scientific articles written in Portuguese or English and in a digital format. In addition, prospects for new treatments as well as future research that encourages the search for natural products and antimalarial derivatives are also presented. RESULTS: A total of 61 publications were encountered, which cited 36 botanical families and 92 species using different Plasmodium strains in in vitro and in vivo assays. The botanical families with the most expressive number of species found were Rubiaceae, Apocynaceae, Fabaceae and Asteraceae (14, 14, 9 and 6 species, respectively), and the most frequently cited species were of the genera Psychotria L. (8) and Aspidosperma Mart. (12), which belong to the families Rubiaceae and Apocynaceae. Altogether, 75 compounds were identified or isolated from 28 different species, 31 of which are alkaloids. In addition, the extracts of the analyzed species, including the isolated compounds, showed a significant reduction of parasitemia in P. falciparum and P. berghei, especially in the clones W2 CQ-R (in vitro) and ANKA (in vivo), respectively. The Brazilian regions with the highest number of species analyzed were those of the north, especially the states of Pará and Amazonas, and the southeast, especially the state of Minas Gerais. CONCLUSION: Although many plant species with antimalarial potential have been identified in Brazil, studies of new antimalarial molecules are slow and have not evolved to the production of a phytotherapeutic medicine. Given this, investigations of plants of traditional use and biotechnological approaches are necessary for the discovery of natural antimalarial products that contribute to the treatment of the disease in the country and in other endemic regions.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Malaria , Plantas Medicinales , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Brasil , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Malaria/tratamiento farmacológico , Artemisininas/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum
16.
BMC Res Notes ; 16(1): 381, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38135870

RESUMEN

OBJECTIVE: Plants in the Annonaceae family are known for having abundant biologically active secondary metabolites. They have been used in alternative drugs for various diseases in several countries, for instance, the bark of Cananga odorata (Lam.) Hook and Thomson is used for Ophthalmic inflammation and wound healing in Malaysia. Extracts from the leaves and stems of four Annonaceae plants, namely Uvaria longipes (Craib) L.L.Zhou, Y.C.F.Su & R.M.K.Saunders, Dasymaschalon sp., Artabotrys burmanicus A.DC, and Marsypopetalum modestum (Pierre) B.Xue & R.M.K.Saunders were investigated for growth inhibitory activity against blood-stage Plasmodium falciparum growth in vitro and for non-specific cytotoxicity against normal peripheral blood mononuclear cells (PBMCs). Antimalarial activity was assessed by invasion inhibition assay and the percentage of infected red blood cells on blood smears were determined. Cytotoxicity was tested by culturing PBMCs with the extracts, and viabilities were determined by Annexin V/propidium iodide staining. RESULTS: A. burmanicus stem extract and M. modestum leaf extract were capable of inhibiting growth of P. falciparum when used at 200 µg/mL compared to chloroquine. The extracts at effective concentrations, did not affect the viability of PBMCs. These results support further need for characterization of active compounds from specific Annonaceae plants in order to exploit their components for potential malaria treatment.


Asunto(s)
Annonaceae , Antimaláricos , Malaria , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Leucocitos Mononucleares , Malaria/tratamiento farmacológico , Plasmodium falciparum
17.
Sci Rep ; 13(1): 22383, 2023 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-38104159

RESUMEN

Artesunate is a derivative of artemisinin, an active compound isolated from Artemisia annua which has been used in Traditional Chinese Medicine and to treat malaria worldwide. Artemisinin derivatives have exhibited anti-cancer activity against both solid tumors and leukemia. The direct target(s) of artesunate are controversial; although, heme-bound proteins in the mitochondria have been implicated. We utilized computational modeling to calculate the predicted binding score of artesunate with heme-bound mitochondrial proteins and identified cytochrome c as potential artesunate target. UV-visible spectroscopy showed changes in the absorbance spectrum, and thus protein structure, when cytochrome c was incubated with artesunate. Artesunate induces apoptosis, disrupts mitochondrial membrane potential, and is antagonized by methazolamide in pediatric AML cells indicating a probable mechanism of action involving cytochrome c. We utilized a multi-disciplinary approach to show that artesunate can interact with and is dependent on cytochrome c release to induce cell death in pediatric AML cell lines.


Asunto(s)
Antimaláricos , Artemisininas , Leucemia Mieloide Aguda , Niño , Humanos , Artesunato/farmacología , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Citocromos c , Artemisininas/farmacología , Hemo , Leucemia Mieloide Aguda/tratamiento farmacológico
18.
BMC Complement Med Ther ; 23(1): 402, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37946127

RESUMEN

Malaria is a global health challenge with endemicity in sub-Saharan Africa, where there are multiple drug-resistant strains and limited access to modern health care facilities, especially in rural areas. Studies indicate that African traditional medicine could make a substantial contribution to the reduction of malaria-related deaths and achievement of universal health coverage (UHC), particularly in these regions. Thus, this study evaluated the curative antimalarial effects of Chromolaena odorata leaf extract using mouse model. Forty-five (45) albino mice weighing between 18 and 22 g were grouped into nine groups of 5 animals each. Animals in groups 2-9 were infected with the chloroquine-resistant strain of Plasmodium berghei, while animals in groups 3-9 were subsequently treated with 10 mg/kg chloroquine, a combination of 1.4 mg/kg artemether and 8.75 mg/kg lumefantrine (Coartem), and varying concentrations of the fraction from the aqueous leaf extract of C. odorata at day 3 post-infection. The findings from this study indicate that treatment with 400 mg/kg of the ethanolic fraction of the crude extract resulted in a significant decrease in parasite load (97.6%), which was comparable to the activities of the conventional drugs chloroquine (98.6%) and Coartem (98.8%). The ethyl acetate and ethanolic fractions at 400 mg/kg also ameliorated the significant alterations in the red blood cells, white blood cells, and platelets of the infected animals. The high antimalarial activity displayed by the ethanolic fraction could be due to the presence of quercetin and kaempferol, as detected by high performance liquid chromatography (HPLC) analysis. The findings suggest that the fractions from C. odorata could serve as an alternative source of malaria therapy, particularly in sub-Saharan Africa.


Asunto(s)
Antimaláricos , Chromolaena , Malaria , Animales , Ratones , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Chromolaena/química , Combinación Arteméter y Lumefantrina , Extractos Vegetales/química , Malaria/tratamiento farmacológico , Malaria/parasitología , Cloroquina/farmacología
19.
Parasit Vectors ; 16(1): 421, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37974285

RESUMEN

BACKGROUND: The emergence and spread of artemisinin resistance threaten global malaria control and elimination goals, and encourage research on the mechanisms of drug resistance in malaria parasites. Mutations in Plasmodium falciparum Kelch 13 (PfK13) protein are associated with artemisinin resistance, but the unique or common mechanism which results in this resistance is unclear. METHODS: We analyzed the effects of the PfK13 mutation on the transcriptome and proteome of P. falciparum at different developmental stages. Additionally, the number of merozoites, hemozoin amount, and growth of P. falciparum 3D7C580Y and P. falciparum 3D7WT were compared. The impact of iron supplementation on the number of merozoites of P. falciparum 3D7C580Y was also examined. RESULTS: We found that the PfK13 mutation did not significantly change glycolysis, TCA, pentose phosphate pathway, or oxidative phosphorylation, but did reduce the expression of reproduction- and DNA synthesis-related genes. The reduced number of merozoites, decreased level of hemozoin, and slowed growth of P. falciparum 3D7C580Y were consistent with these changes. Furthermore, adding iron supply could increase the number of the merozoites of P. falciparum 3D7C580Y. CONCLUSIONS: These results revealed that the PfK13 mutation reduced hemoglobin ingestion, leading to artemisinin resistance, likely by decreasing the parasites' requirement for haem and iron. This study helps elucidate the mechanism of artemisinin resistance due to PfK13 mutations.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Animales , Plasmodium falciparum/genética , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Artemisininas/farmacología , Artemisininas/uso terapéutico , Malaria Falciparum/parasitología , Mutación , Resistencia a Medicamentos/genética , Proteínas Protozoarias/genética , Hierro/uso terapéutico
20.
Mikrobiyol Bul ; 57(4): 608-624, 2023 Oct.
Artículo en Turco | MEDLINE | ID: mdl-37885389

RESUMEN

In this study, it was aimed to investigate the antimalarial activity of cinnamaldehyde (CIN) and cannabidiol (CBD) which have shown various biological activities such as potent antimicrobial activity and eravacycline (ERA), a new generation tetracycline derivative, in an in vivo malaria model. The cytotoxic activities of the active substances were determined by the MTT method against L929 mouse fibroblasts and their antimalarial activity were determined by the four-day test in an in vivo mouse model. In this study, five groups were formed: the CIN group, the CBD group, the ERA group, the chloroquine group (CQ) and the untreated group (TAG). 2.5 x 107 parasites/mL of P.berghei-infected erythrocyte suspension was administered IP to all mice. The determined doses of active substances were given to the mice by oral gavage in accordance with the four-day test and the parasitemia status in the mice was controlled for 21 days with smear preparations made from the blood taken from the tail end of the mice. The IC50 values, which express the cytotoxic activity values of the active substances were determined as 27.55 µg/mL, 16.40 µM and 48.82 µg/mL for CIN, CBD and ERA, respectively. The mean parasitemia rate in untreated mice was 33% on day nine and all mice died on day 11. On the ninth day, when compared with the TAG group, no parasites were observed in the CIN group, while the average parasitemia was 0.08% in the CBD group and 17.8% in the ERA group. Compared to the mice in the TAG group, the life expectancy of the other groups was prolonged by eight days in the CIN group, 12 days in the CBD group and eight days in the ERA group. It has been determined that all three active subtances tested in this study suppressed the development of Plasmodium parasites in an in vivo mouse model and prolonged the life span of the mice. It is thought that the strong antimalarial activity of CIN and CBD shown in the study and the possible positive effect of ERA on the clinical course can be improved by combining them with the existing and potential antimalarial molecules.


Asunto(s)
Antimaláricos , Cannabidiol , Malaria , Animales , Ratones , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Parasitemia/tratamiento farmacológico , Parasitemia/parasitología , Plasmodium berghei , Extractos Vegetales/farmacología , Malaria/tratamiento farmacológico , Malaria/parasitología , Tetraciclina/farmacología , Tetraciclina/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA