Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Vet Parasitol ; 328: 110167, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38518713

RESUMEN

Tetrahymena piriformis belongs to the ciliated protists (ciliates), causing severe economic losses in aquaculture. Chemical drugs currently used usually have toxic side effects, and there is no specific drug against Tetrahymena. Therefore, it is an urgent need to identify new antiparasitic lead compounds. In the present study, the in vitro parasiticidal activity of ethyl acetate (EtOAc) extracts and water extracts from 22 selected traditional Chinese medicines (TCMs) were evaluated against T. piriformis. The EtOAc extract of P. corylifolia turned out to be the most active with the minimum parasiticidal concentration of 100 mg/L within 3 h. Thus, it was separated into 12 fractions by the first-dimensional (D1) normal phase liquid chromatography (NPLC), meanwhile combining with in vitro antiparasitic tests for activity tracking. Subsequently, 8 flavonoids were identified in the active fractions by the second-dimensional (D2) reverse phase liquid chromatography (RPLC) tandem high-resolution mass spectrometry. According to the results, 5 flavonoids were selected for in vitro antiparasitic test, of which isobavachalcone showed the minimum parasiticidal concentration of 3.125 mg/L in 2 h. Bathing treatment of infected guppies with isobavachalcone could significantly reduce the burden of T. piriformis, obtaining a 24-h median effective concentration (24-h EC50) value of 1.916 mg/L. And the concentration of isobavachalcone causing guppies to die within 24 h is 39 times than that of 24-h EC50. The results demonstrated that isobavachalcone has the potential to be developed into a novel commercial fish drug against T. piriformis.


Asunto(s)
Infecciones por Cilióforos , Enfermedades de los Peces , Flavonoides , Poecilia , Psoralea , Animales , Flavonoides/farmacología , Flavonoides/química , Poecilia/parasitología , Enfermedades de los Peces/parasitología , Enfermedades de los Peces/tratamiento farmacológico , Infecciones por Cilióforos/veterinaria , Infecciones por Cilióforos/tratamiento farmacológico , Infecciones por Cilióforos/parasitología , Psoralea/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antiparasitarios/farmacología , Antiparasitarios/química
2.
Phytomedicine ; 128: 155414, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38503155

RESUMEN

BACKGROUND: Chagas disease and leishmaniasis affect a significant portion of the Latin American population and still lack efficient treatments. In this context, natural products emerge as promising compounds for developing more effective therapies, aiming to mitigate side effects and drug resistance. Notably, species from the Amaryllidaceae family emerge as potential reservoirs of antiparasitic agents due to the presence of diverse biologically active alkaloids. PURPOSE: To assess the anti-Trypanosoma cruzi and anti-Leishmania infantum activity of five isolated alkaloids from Hippeastrum aulicum Herb. (Amaryllidaceae) against different life stages of the parasites using in silico and in vitro assays. Furthermore, molecular docking was employed to evaluate the interaction of the most active alkaloids. METHODS: Five natural isoquinoline alkaloids isolated in suitable quantities for in vitro testing underwent preliminary in silico analysis to predict their potential efficacy against Trypanosoma cruzi (amastigote and trypomastigote forms) and Leishmania infantum (amastigote and promastigote forms). The in vitro antiparasitic activity and mammalian cytotoxicity were investigated with a subsequent comparison of both analysis (in silico and in vitro) findings. Additionally, this study employed the molecular docking technique, utilizing cruzain (T. cruzi) and sterol 14α-demethylase (CYP51, L. infantum) as crucial biological targets for parasite survival, specifically focusing on compounds that exhibited promising activities against both parasites. RESULTS: Through computational techniques, it was identified that the alkaloids haemanthamine (1) and lycorine (8) were the most active against T. cruzi (amastigote and trypomastigote) and L. infantum (amastigote and promastigote), while also revealing unprecedented activity of alkaloid 7­methoxy-O-methyllycorenine (6). The in vitro analysis confirmed the in silico tests, in which compound 1 presented the best activities against the promastigote and amastigote forms of L. infantum with half-maximal inhibitory concentration (IC50) 0.6 µM and 1.78 µM, respectively. Compound 8 exhibited significant activity against the amastigote form of T. cruzi (IC50 7.70 µM), and compound 6 demonstrated activity against the trypomastigote forms of T. cruzi and amastigote of L. infantum, with IC50 values of 89.55 and 86.12 µM, respectively. Molecular docking analyses indicated that alkaloids 1 and 8 exhibited superior interaction energies compared to the inhibitors. CONCLUSION: The hitherto unreported potential of compound 6 against T. cruzi trypomastigotes and L. infantum amastigotes is now brought to the forefront. Furthermore, the acquired dataset signifies that the isolated alkaloids 1 and 8 from H. aulicum might serve as prototypes for subsequent structural refinements aimed at the exploration of novel leads against both T. cruzi and L. infantum parasites.


Asunto(s)
Alcaloides , Amaryllidaceae , Isoquinolinas , Leishmania infantum , Simulación del Acoplamiento Molecular , Trypanosoma cruzi , Trypanosoma cruzi/efectos de los fármacos , Leishmania infantum/efectos de los fármacos , Amaryllidaceae/química , Alcaloides/farmacología , Alcaloides/química , Alcaloides/aislamiento & purificación , Isoquinolinas/farmacología , Isoquinolinas/química , Isoquinolinas/aislamiento & purificación , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Humanos , Antiparasitarios/farmacología , Antiparasitarios/química , Antiparasitarios/aislamiento & purificación , Antiprotozoarios/farmacología , Antiprotozoarios/química , Antiprotozoarios/aislamiento & purificación
3.
Parasitol Int ; 86: 102484, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34688884

RESUMEN

In this study, a combination therapy of several natural products was evaluated in vivo in the Giardia duodenalis infection model. G. duodenalis infected mice were treated as follows: distilled water (infected control C+), BIOintestil® (BIO; natural products of Cymbopogon martinii and Zingiber officinale), MicrobiomeX® (MBX; extract of Citrus sinensis and Citrus paradisi), MBX + BIO, Camellia sinensis tea (CPR; black tea). These natural compounds were administered in a dose of 100 mg/day and were compared to G. duodenalis-infected mice treated with albendazole (ALB; 50 mg/Kg/day) and metronidazole (MET; 500 mg/Kg/day), the conventional therapies used to this day. One group remained un-infected and untreated as our control group (C-). Treatment started 8 days after infection, and after 5 days of treatment (7 days for MET), all animals were followed for 15 days. We continuously checked for the presence of G. duodenalis by Faust method, in association with detection of the parasite by PCR from feces, as well for the presence of trophozoites in the intestinal mucosa after sacrifice. Animals treated with MBX, BIO and MBX + BIO presented an undetectable parasitic load until the 15th day of monitoring, while animals treated with CPR, MET and ALB continued to release cysts. Animals in the MBX, MBX + BIO, ALB groups consumed lower feed, MBX, CPR, MET had greater weight and MBX, MBX + BIO, BIO, CPR, C- consumed more water when compared to infected-group control. MBX and BIO alone or associated eliminated G. duodenalis without apparent adverse effects and animals of these groups showed better clinical performance in relation to those with high parasitic load. MET, ALB and CPR only decreased the number of cysts, indicating limitations and therapeutic failure.


Asunto(s)
Antiparasitarios/farmacología , Giardia lamblia/efectos de los fármacos , Giardiasis/tratamiento farmacológico , Microbiota , Extractos Vegetales/farmacología , Albendazol/química , Albendazol/farmacología , Animales , Antiparasitarios/química , Citrus/química , Suplementos Dietéticos/análisis , Masculino , Metronidazol/química , Metronidazol/farmacología , Ratones , Extractos Vegetales/química , Distribución Aleatoria , Té/química
4.
Molecules ; 26(23)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34885738

RESUMEN

Pentacyclic triterpenes (PTs) are commonly found in medicinal plants with well-known antiparasitic effects. Previous research on C-3 and C-27 triterpenic esters showed effective and selective in vitro antiparasitic activities and in vivo effectiveness by parenteral routes. The aim of this study was to determine triterpenic esters' stability in different biological-like media and the main microsomal degradation products. An HPLC-PDA method was developed and validated to simultaneously analyze and quantify bioactive triterpenic esters in methanol (LOQ: 2.5 and 1.25-100 µg/mL) and plasma (LOQ: 5-125 µg/mL). Overall, both triterpenic esters showed a stable profile in aqueous and buffered solutions as well as in entire plasma, suggesting gaining access to the ester function is difficult for plasma enzymes. Conversely, after 1 h, 30% esters degradation in acidic media was observed with potential different hydrolysis mechanisms. C-3 (15 and 150 µM) and C-27 esters (150 µM) showed a relatively low hepatic microsomal metabolism (<23%) after 1 h, which was significantly higher in the lowest concentration of C-27 esters (15 µM) (>40% degradation). Metabolic HPLC-PDA-HRMS studies suggested hydrolysis, hydroxylation, dehydration, O-methylation, hydroxylation and/or the reduction of hydrolyzed derivatives, depending on the concentration and the position of the ester link. Further permeability and absorption studies are required to better define triterpenic esters pharmacokinetic and specific formulations designed to increase their oral bioavailability.


Asunto(s)
Antiparasitarios/química , Triterpenos Pentacíclicos/química , Extractos Vegetales/farmacología , Plantas Medicinales/química , Antiparasitarios/farmacología , Cromatografía Líquida de Alta Presión , Ésteres/química , Ésteres/farmacología , Hidrólisis/efectos de los fármacos , Triterpenos Pentacíclicos/aislamiento & purificación , Extractos Vegetales/química , Plantas Medicinales/parasitología
5.
Bioorg Med Chem ; 50: 116458, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34687983

RESUMEN

Parasitic diseases remain a major public health concern for humans, claiming millions of lives annually. Although different treatments are required for these diseases, drug usage is limited due to the development of resistance and toxicity, which necessitate alternative therapies. It has been shown in the literature that parasitic lactate dehydrogenases (LDH) and malate dehydrogenases (MDH) have unique pharmacological selective and specificity properties compared to other isoforms, thus highlighting them as viable therapeutic targets involved in aerobic and anaerobic glycolytic pathways. LDH and MDH are important therapeutic targets for invasive parasites because they play a critical role in the progression and development of parasitic diseases. Any strategy to impede these enzymes would be fatal to the parasites, paving the way to develop and discover novel antiparasitic agents. This review aims to highlight the importance of parasitic LDH and MDH as therapeutic drug targets in selected obligate apicoplast parasites. To the best of our knowledge, this review presents the first comprehensive review of LDH and MDH as potential antiparasitic targets for drug development studies.


Asunto(s)
Antiparasitarios/farmacología , Desarrollo de Medicamentos , L-Lactato Deshidrogenasa/antagonistas & inhibidores , Malato Deshidrogenasa/antagonistas & inhibidores , Animales , Antiparasitarios/síntesis química , Antiparasitarios/química , Cryptosporidium parvum/efectos de los fármacos , Cryptosporidium parvum/enzimología , Humanos , L-Lactato Deshidrogenasa/metabolismo , Malato Deshidrogenasa/metabolismo , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Plasmodium/efectos de los fármacos , Plasmodium/enzimología , Schistosoma/efectos de los fármacos , Schistosoma/enzimología , Toxoplasma/efectos de los fármacos , Toxoplasma/enzimología , Trichomonas vaginalis/efectos de los fármacos , Trichomonas vaginalis/enzimología
6.
Steroids ; 176: 108933, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34695457

RESUMEN

The steroidal glycoalkaloid α-tomatine (αTM) and its aglycone tomatidine (TD) are abundant in the skin of unripe green tomato and present in tomato leaves and flowers. They mainly serve as defensive agents to protect the plant against infections by insects, bacteria, parasites, viruses, and fungi. In addition, the two products display a range of pharmacological properties potentially useful to treat various human diseases. We have analyzed all known pharmacological activities of αTM and TD, and the corresponding molecular targets and pathways impacted by these two steroidal alkaloids. In experimental models, αTM displays anticancer effects, particularly strong against androgen-independent prostate cancer, as well as robust antifungal effects. αTM is a potent cholesterol binder, useful as a vaccine adjuvant to improve delivery of protein antigens or therapeutic oligonucleotides. TD is a much less cytotoxic compound, able to restrict the spread of certain viruses (such as dengue, chikungunya and porcine epidemic diarrhea viruses) and to provide cardio and neuro-protective effects toward human cells. Both αTM and TD exhibit marked anti-inflammatory activities. They proceed through multiple signaling pathways and protein targets, including the sterol C24 methyltransferase Erg6 and vitamin D receptor, both directly targeted by TD. αTM is a powerful regulator of the NFkB/ERK signaling pathway implicated in various diseases. Collectively, the analysis shed light on the multitargeted action of αTM/TD and their usefulness as chemo-preventive or chemotherapeutic agents. A novel medicinal application for αTM is proposed.


Asunto(s)
Antiinfecciosos/farmacología , Antiinflamatorios/farmacología , Antineoplásicos Fitogénicos/farmacología , Antiparasitarios/farmacología , Insecticidas/farmacología , Solanum lycopersicum/química , Antiinfecciosos/química , Antiinfecciosos/aislamiento & purificación , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Antiparasitarios/química , Antiparasitarios/aislamiento & purificación , Humanos , Insecticidas/química , Insecticidas/aislamiento & purificación , Conformación Molecular , Tomatina/análogos & derivados , Tomatina/química , Tomatina/aislamiento & purificación , Tomatina/farmacología
7.
Chem Biodivers ; 18(9): e2100278, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34227240

RESUMEN

This work aimed to investigate, for the first time, the chemical composition, antioxidant, antiparasitic, cytotoxicity, and antimicrobial activities of the aromatic plant Limonium oleifolium Mill. essential oil (EO) and organic extracts. L. oleifolium aerial parts essential oil was analyzed by GC-FID and GC-MS, and 46 constituents representing 98.25±1.12 % of the oil were identified. γ-Muurolene (10.81±0.07 %), cis-caryophyllene (7.71±0.06 %), o-cymene (7.07±0.01 %) and α-copaene (5.02±0.05 %) were the essential oil main compounds. The antioxidant activity of L. oleifolium EO and organic extracts (MeOH, CHCl3 , AcOEt, BuOH) was explored using 2,2-diphenyl-1-picrylhydrazyl (DPPH), ABTS, ß-carotene/linoleic acid, cupric reducing antioxidant capacity (CUPRAC), and ferric reducing power assays. The results showed that L. oleifolium EO exhibit antioxidant capacity (IC50 =17.40±1.32 µg/mL for DPPH assay, IC50 =29.82±1.08 µg/mL for ß-carotene assay, IC50 =25.23±1.01 µg/mL for ABTS assay, IC50 =9.11±0.08 µg/mL for CUPRAC assay and IC50 =19.41±2.06 mg/mL for reducing power assay). Additionally, the EO showed significant activity against trophozoite form of Acanthamoeba castellanii (IC50 =7.48±0.41 µg/mL) and promastigote form of Leishmania amazonensis (IC50 =19.36±1.06 µg/mL) and low cytotoxicity on murine macrophages (LC50  90.23±1.09 µg/mL), as well as good antimicrobial activity against Staphylococcus aureus, Escherichia coli, Klebsiella oxytoca, and Pseudomonas aeruginosa. These results suggest that L. oleifolium essential oil is a valuable source of bioactive compounds presenting antioxidant, antiparasitic, and antimicrobial activities. Furthermore, it is considered nontoxic.


Asunto(s)
Antibacterianos/farmacología , Antioxidantes/farmacología , Antiparasitarios/farmacología , Extractos Vegetales/farmacología , Plumbaginaceae/química , Acanthamoeba castellanii/efectos de los fármacos , Animales , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Antiparasitarios/química , Antiparasitarios/aislamiento & purificación , Bacterias/efectos de los fármacos , Benzotiazoles/antagonistas & inhibidores , Compuestos de Bifenilo/antagonistas & inhibidores , Línea Celular , Supervivencia Celular/efectos de los fármacos , Leishmania/efectos de los fármacos , Macrófagos/efectos de los fármacos , Ratones , Pruebas de Sensibilidad Microbiana , Pruebas de Sensibilidad Parasitaria , Picratos/antagonistas & inhibidores , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Ácidos Sulfónicos/antagonistas & inhibidores
8.
Chem Biodivers ; 18(9): e2100310, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34231306

RESUMEN

Propolis is a bee product that has been used in medicine since ancient times. Although its anti-inflammatory, antioxidant, antimicrobial, antitumor, and immunomodulatory activities have been investigated, its anti-parasitic properties remain poorly explored, especially regarding helminths. This review surveys the results obtained with propolis around the world against human parasites. Regarding protozoa, studies carried out with the protozoa Trypanosoma spp. and Leishmania spp. have demonstrated promising results in vitro and in vivo. However, there are fewer studies for Plasmodium spp., the etiological agent of malaria and less so for helminths, particularly for Fasciola spp. and Schistosoma spp. Despite the favorable in vitro results with propolis, helminth assays need to be further investigated. However, propolis has shown itself to be an excellent natural product for parasitology, thus opening new paths and approaches in its activity against protozoa and helminths.


Asunto(s)
Antiparasitarios/farmacología , Fenoles/farmacología , Extractos Vegetales/farmacología , Própolis/química , Animales , Antiparasitarios/química , Antiparasitarios/aislamiento & purificación , Brasil , Helmintos/efectos de los fármacos , Leishmania/efectos de los fármacos , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Fenoles/química , Fenoles/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Plasmodium/efectos de los fármacos , Trypanosoma/efectos de los fármacos
9.
Molecules ; 26(6)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33807029

RESUMEN

Natural products are gaining more interest recently, much of which focuses on those derived from medicinal plants. The common chicory (Cichorium intybus L.), of the Astraceae family, is a prime example of this trend. It has been proven to be a feasible source of biologically relevant elements (K, Fe, Ca), vitamins (A, B1, B2, C) as well as bioactive compounds (inulin, sesquiterpene lactones, coumarin derivatives, cichoric acid, phenolic acids), which exert potent pro-health effects on the human organism. It displays choleretic and digestion-promoting, as well as appetite-increasing, anti-inflammatory and antibacterial action, all owing to its varied phytochemical composition. Hence, chicory is used most often to treat gastrointestinal disorders. Chicory was among the plants with potential against SARS-CoV-2, too. To this and other ends, roots, herb, flowers and leaves are used. Apart from its phytochemical applications, chicory is also used in gastronomy as a coffee substitute, food or drink additive. The aim of this paper is to present, in the light of the recent literature, the chemical composition and properties of chicory.


Asunto(s)
Cichorium intybus/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Antifúngicos/química , Antifúngicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Antiparasitarios/química , Antiparasitarios/farmacología , Antivirales/química , Antivirales/farmacología , Cichorium intybus/fisiología , Culinaria , Hipersensibilidad a los Alimentos/etiología , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Plantas Medicinales/química , Tratamiento Farmacológico de COVID-19
10.
Molecules ; 26(4)2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33567639

RESUMEN

BACKGROUND: Today, the present protoscolicidals used to minimize the serious risks during hydatid cyst surgery are not completely safe and have various adverse side effects. The present study aimed to evaluate the chemical composition and apoptotic activity of Ferula macrecolea essential oil (FMEO) as well as its in vitro and ex vivo protoscolicidal effects against hydatid cyst protoscoleces. METHODS: Gas chromatography/mass spectrometry (GC/MS) analysis was performed to determine the chemical composition of FMEO. Protoscoleces of hydatid cysts were collected from liver fertile hydatid cysts of infected sheep and were then treated with various concentrations of the essential oil (75, 150, and 300 µL/mL) for 5-60 min in vitro and ex vivo. Then, by using the eosin exclusion test, the viability of the protoscoleces was studied. The caspase-3-like activity of the FMEO-treated protoscoleces was also evaluated through the colorimetric protease assay Sigma Kit based on the manufacturer's instructions. RESULTS: According to GC/MS, the main constituents of the essential oil were terpinolene (77.72%), n-nonanal (4.47%), and linalool (4.35%), respectively. In vitro, the maximum protoscolicidal activity of FMEO was observed at the concentrations of 150 and 300 µL/mL, such that 100% of the protoscoleces were killed after 30 and 20 min of exposure, respectively. Based on the obtained findings, the results demonstrate that FMEO required a longer time to kill protoscoleces ex vivo; after 12 min of exposure to FMEO, only 13.4% of the protoscoleces remained alive. After 48 h of the treatment of protoscoleces, FMEO, in a dose-dependent manner and at doses of 75, 150, and 300 µL/mL, induced the activation of the caspase enzyme by 24.3, 35.3, and 48.3%, respectively. CONCLUSIONS: Our findings demonstrate the potent protoscolicidal effects of FMEO in vitro and ex vivo; however, further studies are required to assess the safety and the efficiency of FMEO as a promising scolicidal agent in a preclinical model and clinical setting.


Asunto(s)
Antiparasitarios/química , Antiparasitarios/farmacología , Apoptosis/efectos de los fármacos , Echinococcus granulosus/efectos de los fármacos , Ferula/química , Aceites Volátiles/química , Aceites Volátiles/farmacología , Animales
11.
Molecules ; 26(2)2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33477743

RESUMEN

Marine aquaculture development is recently impeded by parasitic leech Zeylanicobdella arugamensis (Hirudinea, Piscicolidae) in Sabah, Malaysia. The parasitic leech infests a variety of cultured fishes in aquaculture facilities. In this study, we evaluated the antiparasitic activity of the chromatographic fractions of the medicinal plant Nephrolepis biserrata methanol extract against Z. arugamensis and highlighted the potential metabolites responsible for the antiparasitic properties through liquid chromatography (LC)-quadrupole time-of-flight (QTOF)-mass spectrometry (MS) analysis. Out of seven fractions obtained through flash column chromatography techniques, three fractions demonstrated antiparasitic properties. Significant parasitic mortality was indicated by fraction 3 at a concentration of 2.50 mg/mL, all the leeches were killed in a time limit of 1.92 ± 0.59 min. followed by fraction 4 (14 mg/mL) in 34.57 ± 3.39 and fraction 5 (15.3 mg/mL) in 36.82 ± 4.53 min. LC-QTOF-MS analysis indicated the presence of secondary metabolites including phytosphingosine (6), pyrethrosin (1), haplophytine (9), ivalin (2), warburganal (3), isodomedin (4) and pheophorbide a (16), representing sphingoid, alkaloid, terpenoid, phenolic and flavonoid groups. Thus, our study indicated that the chromatographic fractions of N. biserrata demonstrated significant antiparasitic activity against the marine parasitic leeches due to the presence of potent antiparasitic bioactive compounds.


Asunto(s)
Antiparasitarios/química , Antiparasitarios/farmacología , Cromatografía Liquida , Espectrometría de Masas , Extractos Vegetales/química , Extractos Vegetales/farmacología , Tracheophyta/química
12.
Molecules ; 25(24)2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33302377

RESUMEN

Due to the emergence of multidrug-resistant pathogens, it is necessary to develop options to fight infections caused by these agents. Lactoferrin (Lf) is a cationic nonheme multifunctional glycoprotein of the innate immune system of mammals that provides numerous benefits. Lf is bacteriostatic and/or bactericidal, can stimulate cell proliferation and differentiation, facilitate iron absorption, improve neural development and cognition, promote bone growth, prevent cancer and exert anti-inflammatory and immunoregulatory effects. Lactoferrin is present in colostrum and milk and is also produced by the secondary granules of polymorphonuclear leukocytes, which store this glycoprotein and release it at sites of infection. Lf is also present in many fluids and exocrine secretions, on the surfaces of the digestive, respiratory and reproductive systems that are commonly exposed to pathogens. Apo-Lf (an iron-free molecule) can be microbiostatic due to its ability to capture ferric iron, blocking the availability of host iron to pathogens. However, apo-Lf is mostly microbicidal via its interaction with the microbial surface, causing membrane damage and altering its permeability function. Lf can inhibit viral entry by binding to cell receptors or viral particles. Lf is also able to counter different important mechanisms evolved by microbial pathogens to infect and invade the host, such as adherence, colonization, invasion, production of biofilms and production of virulence factors such as proteases and toxins. Lf can also cause mitochondrial and caspase-dependent regulated cell death and apoptosis-like in pathogenic yeasts. All of these mechanisms are important targets for treatment with Lf. Holo-Lf (the iron-saturated molecule) can contain up to two ferric ions and can also be microbicidal against some pathogens. On the other hand, lactoferricins (Lfcins) are peptides derived from the N-terminus of Lf that are produced by proteolysis with pepsin under acidic conditions, and they cause similar effects on pathogens to those caused by the parental Lf. Synthetic analog peptides comprising the N-terminus Lf region similarly exhibit potent antimicrobial properties. Importantly, there are no reported pathogens that are resistant to Lf and Lfcins; in addition, Lf and Lfcins have shown a synergistic effect with antimicrobial and antiviral drugs. Due to the Lf properties being microbiostatic, microbicidal, anti-inflammatory and an immune modulator, it represents an excellent natural alternative either alone or as adjuvant in the combat to antibiotic multidrug-resistant bacteria and other pathogens. This review aimed to evaluate the data that appeared in the literature about the effects of Lf and its derived peptides on pathogenic bacteria, protozoa, fungi and viruses and how Lf and Lfcins inhibit the mechanisms developed by these pathogens to cause disease.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Lactoferrina/química , Lactoferrina/farmacología , Péptidos/química , Péptidos/farmacología , Animales , Antiinfecciosos/síntesis química , Antiparasitarios/síntesis química , Antiparasitarios/química , Antiparasitarios/farmacología , Bacterias/efectos de los fármacos , Adhesión Bacteriana/efectos de los fármacos , Pared Celular/efectos de los fármacos , Técnicas de Química Sintética , Hongos/efectos de los fármacos , Interacciones Huésped-Patógeno , Humanos , Péptidos/síntesis química , Proteolisis/efectos de los fármacos , Relación Estructura-Actividad , Virulencia/efectos de los fármacos , Factores de Virulencia , Virus/efectos de los fármacos
13.
Sci Rep ; 10(1): 22091, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33328532

RESUMEN

Marine leech Zeylanicobdella arugamensis (Piscicolidae), an economically important parasite is infesting predominantly cultured groupers, hybrid groupers and other fish in Southeast Asian countries. In this study, we tested the anti-parasitic potential of a medicinal plant Nephrolepis biserrata found in Sabah, East Malaysia against Z. arugamensis. Various concentrations of methanol extracts of the plant were tested experimentally against Z. arugamensis and disinfestation of the leech from its primary host hybrid groupers. The composition of methanol extract of N. biserrata was determined through LC-QTOF analysis. The significant anti-parasitic activity of 100% mortality of leeches was observed with the exposure of N. biserrata extracts. The average time to kill the leeches at concentrations of 25, 50 and 100 mg/ml was 25.11 ± 3.26, 11.91 ± 0.99, and 4.88 ± 0.50 min., respectively. Further, at various low concentrations of N. biserrata 2.5, 5 and 10 mg/ml, hybrid groupers were disinfested in an average time of 108.33 ± 12.65, 65.83 ± 9.70 and 29.16 ± 5.85 min., respectively. The tandem mass spectrometry data from LC-QTOF indicated some hits on useful bioactive compounds such as terpenoids (ivalin, isovelleral, brassinolide, and eschscholtzxanthin), flavonoids (alnustin, kaempferol 7,4'-dimethyl ether, and pachypodol), phenolics (piscidic acid, chlorogenic acid, and ankorine), and aromatic (3-hydroxycoumarin). Thus N. biserrata can act as a potential biocontrol agent.


Asunto(s)
Infestaciones Ectoparasitarias/tratamiento farmacológico , Sanguijuelas/efectos de los fármacos , Parásitos/efectos de los fármacos , Extractos Vegetales/farmacología , Plantas Medicinales/química , Animales , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antiparasitarios/química , Antiparasitarios/farmacología , Infestaciones Ectoparasitarias/parasitología , Infestaciones Ectoparasitarias/patología , Peces/parasitología , Sanguijuelas/patogenicidad , Malasia , Metanol/química , Parásitos/patogenicidad , Extractos Vegetales/química
14.
Parasitology ; 147(14): 1689-1699, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32958090

RESUMEN

New treatment strategies for schistosomiasis should be evaluated, since resistant strains to the only available drug, Praziquantel, have already been described. Thus, we demonstrated antiparasitic effects of ethanolic extracts of Jatropha gossypiifolia and Piper arboreum on cercariae and adult worms of Schistosoma mansoni. The bioassays were performed at 0-10 000 µg mL-1 concentration for 0-72 h. Adult worms were stained with carmine to assess external and internal damage. The chemical screening was performed using high-performance liquid chromatography. P. arboreum displayed the best cercaricidal effect, with a 100% reduction in viability in just 60 min. The extract of J. gossypiifolia was more effective against adult worms, with 100% viability reduction of male and female worms after 12 and 24 h, respectively. P. arboreum and J. gossypiifolia were equally effective in inhibiting the oviposition of S. mansoni (93% reduction) and causing damage to internal and external structures in adult worms. Flavonoids were identified in both the extracts and phenolic compounds and amides only in P. arboreum. Thus, for the first time, it was proven that ethanolic extracts of P. arboreum and J. gossypiifolia leaves are biologically active against cercariae and adult worms of S. mansoni in vitro.


Asunto(s)
Antiparasitarios/farmacología , Cercarias/efectos de los fármacos , Jatropha/química , Piper/química , Extractos Vegetales/farmacología , Schistosoma mansoni/efectos de los fármacos , Animales , Antiparasitarios/química , Femenino , Masculino , Extractos Vegetales/química , Hojas de la Planta/química
15.
J Nat Prod ; 83(9): 2631-2640, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32902988

RESUMEN

Direct halogenation of phenolic compounds present in the CH2Cl2 extract of the roots of Arrabidaea brachypoda was investigated to enhance chemodiversity. The approach is based on eco-friendly reactions using NaBr, NaI, and NaCl in aqueous media to generate multiple "unnatural" halogenated natural products from crude extracts. The halogenation reactions, monitored by UHPLC-PDA-ELSD-MS, were optimized to generate mono-, di-, or trihalogenated derivatives. To isolate these compounds, the reactions were scaled up and the halogenated analogues were isolated by semipreparative HPLC-UV and fully characterized by NMR and HR-MS data. All of the original 16 halogenated derivatives were evaluated for their antiparasitic activities against the parasites Leishmania amazonensis and Trypanosoma cruzi. Compounds presenting selective antiparasitic activities against one or both parasites with IC50 values comparable to the reference were identified.


Asunto(s)
Antiparasitarios/química , Antiparasitarios/farmacología , Bignoniaceae/química , Extractos Vegetales/farmacología , Animales , Cromatografía Líquida de Alta Presión , Halogenación , Leishmania mexicana , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/parasitología , Espectroscopía de Resonancia Magnética , Ratones , Estructura Molecular , Extractos Vegetales/química , Raíces de Plantas/química , Espectrofotometría Ultravioleta , Tripanocidas/química , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos
16.
Biochem Biophys Res Commun ; 529(1): 23-27, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32560814

RESUMEN

BACKGROUND: Our previous reports demonstrated the prospects of a new series of imidazoles as a source of alternative anti-parasite treatments, thus warranting further studies that include toxicity profiling. OBJECTIVE: In this study, we evaluated three imidazoles: bis-imidazole (compound 1), phenyl-substituted 1H-imidazole (compound 2), and thiopene-imidazole (compound 3) for cellular toxicity and possible mechanisms. METHODS: The three (3) compounds were assessed for in vitro cytotoxic action. Additionally, we probed likely mechanistic actions of these imidazoles. Findings showed dose-dependent cellular toxicity by these imidazoles. RESULTS: In the presence of antioxidant (Trolox), cytotoxicity was improved for compounds 2 and 3 but not for compound 1. Meantime, compound 7 promoted reactive oxygen species (ROS) production, which was abated in the presence of a standard antioxidant (Trolox). Additionally, the three (3) imidazoles impaired mitochondrial membrane potential (MMP). While MMP was not restored after treatment removal, the addition of antioxidant (Trolox) improved MMP for compounds 2 and 3 treatment. Additionally, compound 1 elevated expression of hypoxia-inducing factor 1-alpha (HIF-1α). This may not be unconnected with the capacity of compound 1 to cause oxidative stress. CONCLUSION: We show evidence that supports the cytotoxic action of imidazoles involves likely impairment to redox balance and mitochondrial membrane potential. The findings help our understanding of the mechanistic action of these imidazoles in living cells, and altogether may boost their prospects as new and alternative anti-protozoans.


Asunto(s)
Antiparasitarios/toxicidad , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Imidazoles/toxicidad , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Antiparasitarios/química , Antiparasitarios/farmacología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Evaluación Preclínica de Medicamentos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Imidazoles/química , Imidazoles/farmacología , Oxidación-Reducción/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad
17.
Comb Chem High Throughput Screen ; 23(7): 624-648, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32297572

RESUMEN

BACKGROUND: The Arisaema (Araceae) is a genus of approximately 180 perennial herbs widely distributed in the evergreen and deciduous forests. This genus (Arisaema) has been used as a medicinal agent since ancient times. Experimental investigations have shown a promising positive correlation with its folklore claim and this encourages us to report updated medicinal review (genus Arisaema) for future research. OBJECTIVE: This review aimed to summarize the ethnobotany, folklore uses, chemistry and biological activities. CONCLUSION: The comprehensive literature on genus Arisaema indicates the presence of terpenoids, flavonoids, and glycosphingolipids as the principal chemical constituents. Additionally, phytosterols, alkaloids, carboline derivatives and miscellaneous compounds were documented in plants of genus Arisaema. Biological investigations led to the credentials of antioxidant, anticancer, insecticidal, antimicrobial, anthelmintic and hepatoprotective activities. Following, several plant species are promising candidates for the treatment of cancer, parasitic diseases and microbial infection complications. Though, a lot of facets of this genus like phytoconstituents identification, mechanistic profile, adverse effects and clinical studies are still quite limited. Thus, this systematic review may act as a powerful tool in future studies for promoting health benefits against various health hazards.


Asunto(s)
Antiinfecciosos/farmacología , Antineoplásicos Fitogénicos/farmacología , Antiparasitarios/farmacología , Arisaema/química , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Antiinfecciosos/química , Antineoplásicos Fitogénicos/química , Antiparasitarios/química , Humanos , Fitoquímicos/química , Extractos Vegetales/química , Plantas Medicinales
18.
Colloids Surf B Biointerfaces ; 189: 110823, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32036331

RESUMEN

The aim of this work was to develop microemulsions and microemulsion gels which can be used as vehicles for the topical delivery of ivermectin. Tea tree oil and ethyl butanoate were found to be suitable for ivermectin-loaded microemulsion formulations due to the higher solubility of ivermectin in these two oils than other tested oils. The pseudo-ternary phase diagrams were constructed based on these selected oils and combination of different surfactant/co-surfactant at different ratios. Ivermectin-loaded stable microemulsions and microemulsion gels were successfully formulated based on the selected compositions from the phase diagrams. Ivermectin-loaded microemulsions showed spherical nano-droplets dispersed in the continuous phase (via cryogenic field emission scanning electron microscope image) and the particle size was less than 100 nm (via dynamic light scattering measurement). Ethyl butanoate based microemulsion appeared to be the best microemulsion formulation considering the stability and permeation profiles while tea tree oil based microemulsion showed the best stability profile. Overall, microemulsion gel formulations exhibited better stability profiles than their microemulsion counterparts. All microemulsion gel formulations demonstrated significantly faster in vitro membrane permeation (release) rate of ivermectin than Soolantra cream (reference marketed product by Galderma, USA).The developed microemulsion and microemulsion gel formulations appear to be promising vehicles for topical delivery of ivermectin.


Asunto(s)
Antiparasitarios/química , Butiratos/química , Ivermectina/química , Aceite de Árbol de Té/química , Composición de Medicamentos , Sistemas de Liberación de Medicamentos , Emulsiones/química , Tamaño de la Partícula , Solubilidad , Propiedades de Superficie
19.
Comb Chem High Throughput Screen ; 23(6): 477-503, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32067612

RESUMEN

BACKGROUND: The parasitic protozoal infections leishmaniasis, human African trypanosomiasis, and Chagas disease are neglected tropical diseases that pose serious health risks for much of the world's population. Current treatment options suffer from limitations, but plantderived natural products may provide economically advantageous therapeutic alternatives. Several germacranolide sesquiterpenoids have shown promising antiparasitic activities, but the mechanisms of activity have not been clearly established. OBJECTIVE: The objective is to use in silico screening of known antiparasitic germacranolides against recognized protozoal protein targets in order to provide insight into the molecular mechanisms of activity of these natural products. METHODS: Conformational analyses of the germacranolides were carried out using density functional theory, followed by molecular docking. A total of 88 Leishmania protein structures, 86 T. brucei protein structures, and 50 T. cruzi protein structures were screened against 27 antiparasitic germacranolides. RESULTS: The in-silico screening has revealed which of the protein targets of Leishmania spp., Trypanosoma brucei, and Trypanosoma cruzi are preferred by the sesquiterpenoid ligands.


Asunto(s)
Antiparasitarios/farmacología , Productos Biológicos/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Sesquiterpenos de Germacrano/farmacología , Antiparasitarios/química , Productos Biológicos/química , Teoría Funcional de la Densidad , Evaluación Preclínica de Medicamentos , Leishmania/química , Leishmania/efectos de los fármacos , Ligandos , Sustancias Macromoleculares/química , Sustancias Macromoleculares/farmacología , Conformación Molecular , Simulación del Acoplamiento Molecular , Sesquiterpenos de Germacrano/química , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma cruzi/química , Trypanosoma cruzi/efectos de los fármacos
20.
Biol Trace Elem Res ; 195(1): 82-94, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31309447

RESUMEN

Biogenic silver nanoparticles (AgNPs) continue captivating researchers in biomedicine field of research. Dicoma anomala Sond. plant, locally known as hloenya, hlonya, maagbossie, inyongwana, is widely recommended by South African traditional health practitioners (THPs) to treat against different health issues. The antiplasmodial effects of novel sesquiterpene molecules (C30H36O7; MW: 509.25) isolated from D. anomala Sond. have been reported by us (Patent US 8,586,112 B2). The aim of the study was to determine the anticancer activity of AgNPs synthesized using D. anomala plant root extract and the antiparasitic potency of AgNP-conjugated sesquiterpene. Nanoparticles have been characterized using different methods. Anticancer activity of AgNPs was evaluated against the MCF-7. This study also revealed that the AgNP-conjugated sesquiterpene has shown better antiparasitic activity against Plasmodium falciparum NF54 strain. One-pot synthesized AgNPs using Dicoma anomala Sond. root extract caused oxidative damage in breast cancer cells. These findings indicate the need for more in-depth research in the use of the AgNPs and sesquiterpene for development into potential leads as an antimalarial candidates and to improve the bioavailability of these sesquiterpenes.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Antiparasitarios/farmacología , Asteraceae/química , Nanopartículas del Metal/química , Extractos Vegetales/farmacología , Sesquiterpenos/farmacología , Plata/farmacología , Células 3T3 , Animales , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Antiparasitarios/química , Antiparasitarios/aislamiento & purificación , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Células MCF-7 , Ratones , Pruebas de Sensibilidad Parasitaria , Tamaño de la Partícula , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Raíces de Plantas/química , Plasmodium falciparum/efectos de los fármacos , Sesquiterpenos/química , Sesquiterpenos/aislamiento & purificación , Plata/química , Propiedades de Superficie , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA