Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 298(8): 102243, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35810787

RESUMEN

Like many other apicomplexan parasites, Toxoplasma gondii contains a plastid harboring key metabolic pathways, including the sulfur utilization factor (SUF) pathway that is involved in the biosynthesis of iron-sulfur clusters. These cofactors are crucial for a variety of proteins involved in important metabolic reactions, potentially including plastidic pathways for the synthesis of isoprenoid and fatty acids. It was shown previously that impairing the NFS2 cysteine desulfurase, involved in the first step of the SUF pathway, leads to an irreversible killing of intracellular parasites. However, the metabolic impact of disrupting the pathway remained unexplored. Here, we generated another mutant of this pathway, deficient in the SUFC ATPase, and investigated in details the phenotypic consequences of TgNFS2 and TgSUFC depletion on the parasites. Our analysis confirms that Toxoplasma SUF mutants are severely and irreversibly impacted in division and membrane homeostasis, and suggests a defect in apicoplast-generated fatty acids. However, we show that increased scavenging from the host or supplementation with exogenous fatty acids do not fully restore parasite growth, suggesting that this is not the primary cause for the demise of the parasites and that other important cellular functions were affected. For instance, we also show that the SUF pathway is key for generating the isoprenoid-derived precursors necessary for the proper targeting of GPI-anchored proteins and for parasite motility. Thus, we conclude plastid-generated iron-sulfur clusters support the functions of proteins involved in several vital downstream cellular pathways, which implies the SUF machinery may be explored for new potential anti-Toxoplasma targets.


Asunto(s)
Apicoplastos , Proteínas Hierro-Azufre , Proteínas Protozoarias , Toxoplasma , Apicoplastos/genética , Apicoplastos/metabolismo , Ácidos Grasos/metabolismo , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Plastidios/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Terpenos/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismo
2.
J Biol Chem ; 295(22): 7743-7752, 2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32341123

RESUMEN

Toxoplasma gondii is a common protozoan parasite that infects a wide range of hosts, including livestock and humans. Previous studies have suggested that the type 2 fatty acid synthesis (FAS2) pathway, located in the apicoplast (a nonphotosynthetic plastid relict), is crucial for the parasite's survival. Here we examined the physiological relevance of fatty acid synthesis in T. gondii by focusing on the pyruvate dehydrogenase complex and malonyl-CoA-[acyl carrier protein] transacylase (FabD), which are located in the apicoplast to drive de novo fatty acid biosynthesis. Our results disclosed unexpected metabolic resilience of T. gondii tachyzoites, revealing that they can tolerate CRISPR/Cas9-assisted genetic deletions of three pyruvate dehydrogenase subunits or FabD. All mutants were fully viable in prolonged cultures, albeit with impaired growth and concurrent loss of the apicoplast. Even more surprisingly, these mutants displayed normal virulence in mice, suggesting an expendable role of the FAS2 pathway in vivo Metabolic labeling of the Δpdh-e1α mutant showed reduced incorporation of glucose-derived carbon into fatty acids with medium chain lengths (C14:0 and C16:0), revealing that FAS2 activity was indeed compromised. Moreover, supplementation of exogenous C14:0 or C16:0 significantly reversed the growth defect in the Δpdh-e1α mutant, indicating salvage of these fatty acids. Together, these results demonstrate that the FAS2 pathway is dispensable during the lytic cycle of Toxoplasma because of its remarkable flexibility in acquiring fatty acids. Our findings question the long-held assumption that targeting this pathway has significant therapeutic potential for managing Toxoplasma infections.


Asunto(s)
Apicoplastos/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos/farmacología , Toxoplasma/metabolismo , S-Maloniltransferasa de la Proteína Transportadora de Grupos Acilo/genética , S-Maloniltransferasa de la Proteína Transportadora de Grupos Acilo/metabolismo , Apicoplastos/genética , Ácidos Grasos/genética , Eliminación de Gen , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Toxoplasma/genética
3.
Artículo en Inglés | MEDLINE | ID: mdl-29311075

RESUMEN

Many organisms undergo dormancy as a stress response to survive under unfavorable conditions that might impede development. This is observed in seeds and buds of plants and has been proposed as a mechanism of drug evasion and resistance formation in Plasmodium falciparum We explored the effects of the phytohormones abscisic acid (ABA) and gibberellic acid (GA) on dihydroartemisinin (DHA)-induced dormant erythrocytic stages of P. falciparum parasites. Dormant ring stages exposed to ABA and GA recovered from dormancy up to 48 h earlier than parasites exposed to DHA alone. Conversely, fluridone, an herbicide inhibitor of ABA synthesis, blocked emergence from dormancy. Additionally, the role of the apicoplast was assessed in dormant parasite recovery. Apicoplast-deficient P. falciparum remained viable for up to 8 days without the organelle and recrudesced only when supplemented with isopentyl pyrophosphate (IPP). IPP was not required for survival in the dormant state. Fosmidomycin inhibition of isoprenoid biosynthesis did not prevent dormancy release from occurring in parasites with an intact apicoplast, but IPP or geranylgeranyl pyrophosphate was needed for complete recrudescence. In addition, the apicoplast and specifically the isoprenoids it produces are essential for recovery of dormant parasites. In summary, ABA and GA have significant effects on dormant parasites, and the phenotypes produced by these phytohormones and the herbicide fluridone also provide a means to explore the mechanism(s) underlying dormancy and the regulatory network that promotes cell cycle arrest in P. falciparum.


Asunto(s)
Apicoplastos/metabolismo , Artemisininas/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Plasmodium falciparum/efectos de los fármacos , Terpenos/farmacología , Ácido Abscísico/farmacología , Giberelinas/farmacología
4.
Drug Discov Today ; 23(1): 134-140, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28987288

RESUMEN

The alignment of the evolutionary history of parasites with that of plants provides a different panorama in the drug development process. The housing of different metabolic processes, essential for parasite survival, adds to the indispensability of the apicoplast. The different pathways responsible for fueling the apicoplast and parasite offer a myriad of proteins responsible for the apicoplast function. The studies emphasizing the target-based approaches might help in the discovery of antimalarials. The different putative drug targets and their roles are highlighted. In addition, the origin of the apicoplast and metabolic processes are reviewed and the different drugs acting upon the enzymes of the apicoplast are discussed.


Asunto(s)
Antimaláricos/uso terapéutico , Apicoplastos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Antimaláricos/farmacología , Ácidos Grasos/metabolismo , Flujo Génico , Hemo/metabolismo , Plasmodium falciparum/genética , Terpenos/metabolismo
5.
PLoS Pathog ; 9(9): e1003655, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24086138

RESUMEN

The apicoplast organelle of the malaria parasite Plasmodium falciparum contains metabolic pathways critical for liver-stage and blood-stage development. During the blood stages, parasites lacking an apicoplast can grow in the presence of isopentenyl pyrophosphate (IPP), demonstrating that isoprenoids are the only metabolites produced in the apicoplast which are needed outside of the organelle. Two of the isoprenoid biosynthesis enzymes are predicted to rely on iron-sulfur (FeS) cluster cofactors, however, little is known about FeS cluster synthesis in the parasite or the roles that FeS cluster proteins play in parasite biology. We investigated two putative FeS cluster synthesis pathways (Isc and Suf) focusing on the initial step of sulfur acquisition. In other eukaryotes, these proteins can be located in multiple subcellular compartments, raising the possibility of cross-talk between the pathways or redundant functions. In P. falciparum, SufS and its partner SufE were found exclusively the apicoplast and SufS was shown to have cysteine desulfurase activity in a complementation assay. IscS and its effector Isd11 were solely mitochondrial, suggesting that the Isc pathway cannot contribute to apicoplast FeS cluster synthesis. The Suf pathway was disrupted with a dominant negative mutant resulting in parasites that were only viable when supplemented with IPP. These parasites lacked the apicoplast organelle and its organellar genome--a phenotype not observed when isoprenoid biosynthesis was specifically inhibited with fosmidomycin. Taken together, these results demonstrate that the Suf pathway is essential for parasite survival and has a fundamental role in maintaining the apicoplast organelle in addition to any role in isoprenoid biosynthesis.


Asunto(s)
Apicoplastos/metabolismo , Liasas de Carbono-Azufre/metabolismo , Proteínas Hierro-Azufre/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Apicoplastos/genética , Liasas de Carbono-Azufre/genética , Humanos , Proteínas Hierro-Azufre/genética , Plasmodium falciparum/citología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Terpenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA