Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Biochemistry ; 56(6): 824-832, 2017 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-28121423

RESUMEN

Nicotinamide N-methyltransferase (NNMT) is an important biotransforming enzyme that catalyzes the transfer of a labile methyl group from the ubiquitous cofactor S-5'-adenosyl-l-methionine (SAM) to endogenous and exogenous small molecules to form methylated end products. NNMT has been implicated in a number of chronic disease conditions, including metabolic disorders, cardiovascular disease, cancer, osteoarthritis, kidney disease, and Parkinson's disease. We have developed a novel noncoupled fluorescence-based methyltransferase assay that allows direct ultrasensitive real-time detection of the NNMT reaction product 1-methylquinolinium. This is the first assay reported to date to utilize fluorescence spectroscopy to directly monitor NNMT product formation and activity in real time. This assay provided accurate kinetic data that allowed detailed comparative analysis of the NNMT reaction mechanism and kinetic parameters. A reaction model based on a random bireactant mechanism produced global curve fits that were most consistent with steady-state initial velocity data collected across an array of substrate concentrations. On the basis of the reaction mechanism, each substrate could independently bind to the NNMT apoenzyme; however, both substrates bound to the complementary binary complexes with an affinity ∼20-fold stronger compared to their binding to the apoenzyme. This reaction mechanism implies either substrate-induced conformational changes or bireactant intermolecular interactions may stabilize the binding of the substrate to the binary complex and formation of the ternary complex. Importantly, this assay could rapidly generate concentration response curves for known NNMT inhibitors, suggesting its applicability for high-throughput screening of chemical libraries to identify novel NNMT inhibitors. Furthermore, our novel assay potentially offers a robust detection technology for use in SAM substrate competition assays for the discovery and development of SAM-dependent methyltransferase inhibitors.


Asunto(s)
Modelos Moleculares , Nicotinamida N-Metiltransferasa/metabolismo , Apoenzimas/antagonistas & inhibidores , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Biocatálisis/efectos de los fármacos , Calibración , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento , Humanos , Límite de Detección , Metilación/efectos de los fármacos , Nicotinamida N-Metiltransferasa/antagonistas & inhibidores , Nicotinamida N-Metiltransferasa/química , Nicotinamida N-Metiltransferasa/genética , Conformación Proteica , Replegamiento Proteico/efectos de los fármacos , Compuestos de Quinolinio/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Reproducibilidad de los Resultados , S-Adenosilmetionina/metabolismo , Espectrometría de Fluorescencia
2.
FEBS J ; 282(16): 3126-35, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25627402

RESUMEN

UNLABELLED: The release of SO2 from petroleum products derived from crude oil, which contains sulfur compounds such as dibenzothiophene (DBT), leads to air pollution. The '4S' metabolic pathway catalyzes the sequential conversion of DBT to 2-hydroxybiphenyl via three enzymes encoded by the dsz operon in several bacterial species. DszC (DBT monooxygenase), from Rhodococcus erythropolis D-1 is involved in the first two steps of the '4S' pathway. Here, we determined the first crystal structure of FMN-bound DszC, and found that two distinct conformations occur in the loop region (residues 131-142) adjacent to the active site. On the basis of the DszC-FMN structure and the previously reported apo structures of DszC homologs, the binding site for DBT and DBT sulfoxide is proposed. DATABASE: The atomic coordinates and structure factors for apo-DszC (PDB code: 3X0X) and DszC-FMN (PDB code: 3X0Y) have been deposited in the Protein Data Bank (http://www.rcsb.org).


Asunto(s)
Proteínas Bacterianas/química , Oxidorreductasas/química , Rhodococcus/enzimología , Contaminantes Atmosféricos/metabolismo , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biodegradación Ambiental , Dominio Catalítico , Cristalografía por Rayos X , Mononucleótido de Flavina/metabolismo , Genes Bacterianos , Redes y Vías Metabólicas , Modelos Moleculares , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Petróleo/metabolismo , Conformación Proteica , Rhodococcus/genética , Electricidad Estática , Especificidad por Sustrato , Dióxido de Azufre/metabolismo , Tiofenos/metabolismo
3.
Biochemistry ; 52(51): 9104-19, 2013 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-24279989

RESUMEN

Cysteine dioxygenase (CDO) is a non-heme iron enzyme that catalyzes the O2-dependent oxidation of l-cysteine (l-Cys) to produce cysteinesulfinic acid (CSA). Adjacent to the Fe site of CDO is a covalently cross-linked cysteine-tyrosine pair (C93-Y157). While several theories have been proposed for the function of the C93-Y157 pair, the role of this post-translational modification remains unclear. In this work, the steady-state kinetics and O2/CSA coupling efficiency were measured for wild-type CDO and selected active site variants (Y157F, C93A, and H155A) to probe the influence of second-sphere enzyme-substrate interactions on catalysis. In these experiments, it was observed that both kcat and the O2/CSA coupling efficiency were highly sensitive to the presence of the C93-Y157 cross-link and its proximity to the substrate carboxylate group. Complementary electron paramagnetic resonance (EPR) experiments were performed to obtain a more detailed understanding of the second-sphere interactions identified in O2/CSA coupling experiments. Samples of the catalytically inactive substrate-bound Fe(III)-CDO species were treated with cyanide, resulting in a low-spin (S = ¹/2) ternary complex. Remarkably, both the presence of the C93-Y157 pair and interactions with the Cys carboxylate group could be readily identified by perturbations to the rhombic EPR signal. Spectroscopically validated active site quantum mechanics/molecular mechanics and density functional theory computational models are provided to suggest a potential role for Y157 in the positioning of the substrate Cys in the active site and to verify the orientation of the g-tensor relative to the CDO Fe site molecular axis.


Asunto(s)
Cisteína-Dioxigenasa/metabolismo , Hierro/metabolismo , Modelos Moleculares , Oxígeno/metabolismo , Procesamiento Proteico-Postraduccional , Sustitución de Aminoácidos , Animales , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Sitios de Unión , Biocatálisis/efectos de los fármacos , Dominio Catalítico , Cisteína/análogos & derivados , Cisteína/química , Cisteína/metabolismo , Cisteína-Dioxigenasa/antagonistas & inhibidores , Cisteína-Dioxigenasa/química , Cisteína-Dioxigenasa/genética , Inhibidores Enzimáticos/farmacología , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Cinética , Ratones , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oxidación-Reducción/efectos de los fármacos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Tirosina/química , Tirosina/metabolismo
4.
J Mol Biol ; 375(3): 782-92, 2008 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-18036614

RESUMEN

Human maltase-glucoamylase (MGAM) is one of the two enzymes responsible for catalyzing the last glucose-releasing step in starch digestion. MGAM is anchored to the small-intestinal brush-border epithelial cells and contains two homologous glycosyl hydrolase family 31 catalytic subunits: an N-terminal subunit (NtMGAM) found near the membrane-bound end and a C-terminal luminal subunit (CtMGAM). In this study, we report the crystal structure of the human NtMGAM subunit in its apo form (to 2.0 A) and in complex with acarbose (to 1.9 A). Structural analysis of the NtMGAM-acarbose complex reveals that acarbose is bound to the NtMGAM active site primarily through side-chain interactions with its acarvosine unit, and almost no interactions are made with its glycone rings. These observations, along with results from kinetic studies, suggest that the NtMGAM active site contains two primary sugar subsites and that NtMGAM and CtMGAM differ in their substrate specificities despite their structural relationship. Additional sequence analysis of the CtMGAM subunit suggests several features that could explain the higher affinity of the CtMGAM subunit for longer maltose oligosaccharides. The results provide a structural basis for the complementary roles of these glycosyl hydrolase family 31 subunits in the bioprocessing of complex starch structures into glucose.


Asunto(s)
Inhibidores Enzimáticos/metabolismo , Mucosa Intestinal/enzimología , Intestinos/enzimología , Subunidades de Proteína/química , alfa-Glucosidasas/química , Acarbosa/química , Acarbosa/metabolismo , Secuencia de Aminoácidos , Apoenzimas/química , Apoenzimas/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Cisteína/química , Disulfuros/química , Humanos , Enlace de Hidrógeno , Cinética , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Peso Molecular , Mutación , Unión Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , alfa-Glucosidasas/genética , alfa-Glucosidasas/metabolismo
5.
J Mol Biol ; 366(2): 611-25, 2007 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-17174334

RESUMEN

Alliinase (alliin lyase EC 4.4.1.4), a PLP-dependent alpha, beta-eliminating lyase, constitutes one of the major protein components of garlic (Alliium sativum L.) bulbs. The enzyme is a homodimeric glycoprotein and catalyzes the conversion of a specific non-protein sulfur-containing amino acid alliin ((+S)-allyl-L-cysteine sulfoxide) to allicin (diallyl thiosulfinate, the well known biologically active component of freshly crushed garlic), pyruvate and ammonia. The enzyme was crystallized in the presence of (+S)-allyl-L-cysteine, forming dendrite-like monoclinic crystals. In addition, intentionally produced apo-enzyme was crystallized in tetragonal form. These structures of alliinase with associated glycans were resolved to 1.4 A and 1.61 A by molecular replacement. Branched hexasaccharide chains N-linked to Asn146 and trisaccharide chains N-linked to Asn328 are seen. The structure of hexasaccharide was found similar to "short chain complex vacuole type" oligosaccharide most commonly seen in plant glycoproteins. An unexpected state of the enzyme active site has been observed in the present structure. The electron density in the region of the cofactor made it possible to identify the cofactor moiety as aminoacrylate intermediate covalently bound to the PLP cofactor. It was found in the present structure to be stabilized by large number of interactions with surrounding protein residues. Moreover, the existence of the expected internal aldimine bond between the epsilon-amino group of Lys251 and the aldehyde of the PLP is ruled out on the basis of a distinct separation of electron density of Lys251. The structure of the active site cavity in the apo-form is nearly identical to that seen in the holo-form, with two sulfate ions, an acetate and several water molecules from crystallization conditions that replace and mimic the PLP cofactor.


Asunto(s)
Apoenzimas/química , Liasas de Carbono-Azufre/química , Ajo/enzimología , Estructura Terciaria de Proteína , Sitios de Unión , Liasas de Carbono-Azufre/metabolismo , Dimerización , Ajo/química , Glicosilación , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Plantas Medicinales/química , Plantas Medicinales/enzimología , Relación Estructura-Actividad
6.
J Biomol NMR ; 32(3): 209-18, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16132821

RESUMEN

Protection against reactive oxygen species is provided by the copper containing enzyme superoxide dismutase 1 (SOD1). The copper chaperone CCS is responsible for copper insertion into apo-SOD1. This role is impaired by an interaction between the second PDZ domain (PDZ2alpha) of the neuronal adaptor protein X11alpha and the third domain of CCS (McLoughlin et al. (2001) J. Biol. Chem., 276, 9303-9307). The solution structure of the PDZ2alpha domain has been determined and the interaction with peptides derived from CCS has been explored. PDZ2alpha binds to the last four amino acids of the CCS protein (PAHL) with a dissociation constant of 91 +/- 2 microM. Peptide variants have been used to map the interaction areas on PDZ2alpha for each amino acid, showing an important role for the C-terminal leucine, in line with canonical PDZ-peptide interactions.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Cobre/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Proteínas del Tejido Nervioso/química , Superóxido Dismutasa/química , Superóxido Dismutasa/metabolismo , Secuencia de Aminoácidos , Apoenzimas/química , Apoenzimas/metabolismo , Sitios de Unión , Encéfalo/enzimología , Clonación Molecular , ADN Complementario/genética , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Unión Proteica , Conformación Proteica , Soluciones , Superóxido Dismutasa-1
7.
J Biol Chem ; 277(25): 22670-6, 2002 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-11927587

RESUMEN

S-Adenosylhomocysteine hydrolase (AdoHcyase) catalyzes the hydrolysis of S-adenosylhomocysteine to form adenosine and homocysteine. On the bases of crystal structures of the wild type enzyme and the D244E mutated enzyme complexed with 3'-keto-adenosine (D244E.Ado*), we have identified the important amino acid residues, Asp-130, Lys-185, Asp-189, and Asn-190, for the catalytic reaction and have proposed a catalytic mechanism (Komoto, J., Huang, Y., Gomi, T., Ogawa, H., Takata, Y., Fujioka, M., and Takusagawa, F. (2000) J. Biol. Chem. 275, 32147-32156). To confirm the proposed catalytic mechanism, we have made the D130N, K185N, D189N, and N190S mutated enzymes and measured the catalytic activities. The catalytic rates (k(cat)) of D130N, K185N, D189N, and N190S mutated enzymes are reduced to 0.7%, 0.5%, 0.1%, and 0.5%, respectively, in comparison with the wild type enzyme, indicating that Asp-130, Lys-185, Asp-189, and Asn-190 are involved in the catalytic reaction. K(m) values of the mutated enzymes are increased significantly, except for the N190S mutation, suggesting that Asp-130, Lys-185, and Asp-189 participate in the substrate binding. To interpret the kinetic data, the oxidation states of the bound NAD molecules of the wild type and mutated enzymes were measured during the catalytic reaction by monitoring the absorbance at 340 nm. The crystal structures of the WT and D244E.Ado*, containing four subunits in the crystallographic asymmetric unit, were re-refined to have the same subunit structures. A detailed catalytic mechanism of AdoHcyase has been revealed based on the oxidation states of the bound NAD and the re-refined crystal structures of WT and D244E.Ado*. Lys-185 and Asp-130 abstract hydrogen atoms from 3'-OH and 4'-CH, respectively. Asp-189 removes a proton from Lys-185 and produces the neutral N zeta (-NH(2)), and Asn-190 facilitates formation of the neutral Lys-185. His-54 and His-300 hold and polarize a water molecule, which nucleophilically attacks the C5'- of 3'-keto-4',5'-dehydroadenosine to produce 3'-keto-Ado.


Asunto(s)
Asparagina/química , Ácido Aspártico/química , Hidrolasas/química , Lisina/química , Adenosilhomocisteinasa , Animales , Apoenzimas/química , Sitios de Unión , Catálisis , Bovinos , Dicroismo Circular , Cristalografía por Rayos X , ADN Complementario/metabolismo , Escherichia coli/metabolismo , Holoenzimas/química , Hidrólisis , Cinética , Hígado/enzimología , Modelos Químicos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , NAD/metabolismo , NADP/metabolismo , Unión Proteica , Ratas , Factores de Tiempo , Rayos Ultravioleta
8.
Biochemistry ; 39(35): 10702-10, 2000 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-10978154

RESUMEN

The crystal structures of gyceraldehyde 3-phosphate dehydrogenase (GAPDH) from Escherichia coli have been determined in three different enzymatic states, NAD(+)-free, NAD(+)-bound, and hemiacetal intermediate. The NAD(+)-free structure reported here has been determined from monoclinic and tetragonal crystal forms. The conformational changes in GAPDH induced by cofactor binding are limited to the residues that bind the adenine moiety of NAD(+). Glyceraldehyde 3-phosphate (GAP), the substrate of GAPDH, binds to the enzyme with its C3 phosphate in a hydrophilic pocket, called the "new P(i)" site, which is different from the originally proposed binding site for inorganic phosphate. This observed location of the C3 phosphate is consistent with the flip-flop model proposed for the enzyme mechanism [Skarzynski, T., Moody, P. C., and Wonacott, A. J. (1987) J. Mol. Biol. 193, 171-187]. Via incorporation of the new P(i) site in this model, it is now proposed that the C3 phosphate of GAP initially binds at the new P(i) site and then flips to the P(s) site before hydride transfer. A superposition of NAD(+)-bound and hemiacetal intermediate structures reveals an interaction between the hydroxyl oxygen at the hemiacetal C1 of GAP and the nicotinamide ring. This finding suggests that the cofactor NAD(+) may stabilize the transition state oxyanion of the hemiacetal intermediate in support of the flip-flop model for GAP binding.


Asunto(s)
Escherichia coli/enzimología , Gliceraldehído-3-Fosfato Deshidrogenasas/química , NAD/química , Animales , Apoenzimas/química , Apoenzimas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Simulación por Computador , Cristalografía por Rayos X , Gliceraldehído 3-Fosfato/química , Gliceraldehído 3-Fosfato/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Holoenzimas/química , Holoenzimas/metabolismo , Humanos , Modelos Moleculares , NAD/metabolismo , Nephropidae , Conformación Proteica , Relación Estructura-Actividad , Especificidad por Sustrato
9.
Eur J Biochem ; 267(14): 4346-54, 2000 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-10880957

RESUMEN

The involvement of rat liver mitochondria in the flavinylation of the mitochondrial matrix flavoenzyme dimethylglycine dehydrogenase (Me2GlyDH) has been investigated. Me2GlyDH was synthesized as an apoenzyme in the rabbit reticulocyte lysate (RL) transcription/translation system and its flavinylation was monitored by virtue of the trypsin resistance of the holoenzyme. The rate of holoenzyme formation in the presence of FAD was stimulated with increasing efficiency by the addition of solubilized mitoplasts, mitochondrial matrix and DEAE-purified matrix fraction. Apo-Me2GlyDH was also converted into holoenzyme when the solubilized mitoplasts were supplemented with FMN and ATP. This observation is consistent with the existence of a mitochondrial FAD synthetase generating the FAD needed for holoenzyme formation from its precursors. Holoenzyme formation in the presence of FAD increased linearly with the concentration of matrix protein in the assay, and depended on the amount of externally added Me2GlyDH with saturation characteristics. These findings suggest the presence of a protein factor in the mitochondrial matrix which stimulates Me2GlyDH flavinylation. This factor was different from both mitochondrial heat shock protein (Hsp)70, as shown by immunodepletion experiments, and mitochondrial Hsp60, as demonstrated by the capability of a DEAE-purified matrix fraction devoid of Hsp60 to accelerate flavinylation of both RL translated and purified Me2GlyDH.


Asunto(s)
Mitocondrias Hepáticas/química , Oxidorreductasas N-Desmetilantes/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Apoenzimas/química , Western Blotting , Chaperonina 60/metabolismo , Cromatografía de Afinidad , Dimetilglicina-Deshidrogenasa , Mononucleótido de Flavina/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Flavinas/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Masculino , Mitocondrias Hepáticas/enzimología , Proteínas Mitocondriales , Plásmidos , Biosíntesis de Proteínas , Conejos , Ratas , Ratas Wistar , Reticulocitos/enzimología , Factores de Tiempo , Transcripción Genética
10.
J Struct Biol ; 130(1): 1-9, 2000 May.
Artículo en Inglés | MEDLINE | ID: mdl-10806086

RESUMEN

d-Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) shows cooperative properties for binding coenzymes. The structure of apo-GAPDH from Palinurus versicolor has been solved at 2.0 A resolution by X-ray crystallography. The final model gives a crystallographic R factor of 0.178 in the resolution range 8 to 2 A. The structural comparison with holo-GAPDH from the same species reveals a conformational change induced by coenzyme binding similar to that observed in Bacillus stearothermophilus GAPDH but to a lesser extent. The differences in magnitude during the apo-holo transition between these two enzymes were analyzed with respect to the change of the amino acid composition in the coenzyme binding pocket. In the crystalline state of apo-GAPDH, the overall structures of the subunits are similar to each other; however, significant differences in temperature factors and minor differences in domain rotation upon coenzyme binding were observed for different subunits. These structural features are discussed in relation to the environmental asymmetry of crystallographically independent subunits.


Asunto(s)
Gliceraldehído-3-Fosfato Deshidrogenasas/química , Nephropidae/enzimología , Animales , Apoenzimas/química , Cristalografía por Rayos X , Holoenzimas/química , Modelos Moleculares , Conformación Proteica , Estructura Cuaternaria de Proteína , Electricidad Estática
11.
Plant J ; 21(3): 239-48, 2000 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-10758475

RESUMEN

Dihydrodipicolinate synthase (DHDPS; EC4.2.1.52) catalyses the first reaction of lysine biosynthesis in plants and bacteria. Plant DHDPS enzymes are strongly inhibited by lysine (I0.5 approximately 10 microM), whereas the bacterial enzymes are less (50-fold) or insensitive to lysine inhibition. We found that plant dhdps sequences expressing lysine-sensitive DHDPS enzymes are unable to complement a bacterial auxotroph, although a functional plant DHDPS enzyme is formed. As a consequence of this, plant dhdps cDNA clones which have been isolated through functional complementation using the DHDPS-deficient Escherichia coli strain encode mutated DHDPS enzymes impaired in lysine inhibition. The experiments outlined in this article emphasize that heterologous complementation can select for mutant clones when altered protein properties are requisite for functional rescue. In addition, the mutants rescued by heterologous complementation revealed a new critical amino acid substitution which renders lysine insensitivity to the plant DHDPS enzyme. An interpretation is given for the impaired inhibition mechanism of the mutant DHDPS enzyme by integrating the identified amino acid substitution in the DHDPS protein structure.


Asunto(s)
Arabidopsis/enzimología , Escherichia coli/genética , Hidroliasas/genética , Hidroliasas/metabolismo , Secuencia de Aminoácidos , Apoenzimas/química , Arabidopsis/genética , Clonación Molecular , ADN Complementario , Escherichia coli/enzimología , Escherichia coli/crecimiento & desarrollo , Metanosulfonato de Etilo/farmacología , Retroalimentación , Biblioteca de Genes , Hidroliasas/química , Cinética , Lisina/farmacología , Datos de Secuencia Molecular , Mutagénesis , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
12.
J Mol Biol ; 271(4): 656-68, 1997 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-9281432

RESUMEN

Poisson-Boltzmann calculations were used to determine the pKa of protein functional groups in the unliganded dihydrofolate reductase enzyme, and the pKa of protein and ligand groups in methotrexate-enzyme complexes. The results reported here are in conflict with two fundamental tenets of dihydrofolate reductase inhibition by methotrexate: (1) Asp27 is not expected to be protonated near pH 6.5 in the apoenzyme as previously proposed based on fitting of empirical equations to binding data, and (2) the calculated pKa for the pteridine N1 of the inhibitor while bound to the protein is significantly lower than that estimated for this group from interpretation of NMR data (>10). In fact, the electrostatic calculations and complementary quantum chemical calculations indicate that Asp27 is likely protonated when methotrexate is bound, resulting in a neutral dipole-dipole interaction rather than a salt-bridge between the enzyme and the inhibitor. Reasons for this discrepancy with the experimental data are discussed. Furthermore, His45 and Glu17 in the Escherichia coli enzyme are proposed to be in part responsible for the pH dependence of the conformational degeneracy in the inhibitor-enzyme complex.


Asunto(s)
Inhibidores Enzimáticos/química , Antagonistas del Ácido Fólico/química , Metotrexato/farmacología , Tetrahidrofolato Deshidrogenasa/química , Ácido 4-Aminobenzoico/química , Ácido Acético/química , Apoenzimas/química , Ácido Aspártico , Sitios de Unión , Concentración de Iones de Hidrógeno , Ligandos , Desnaturalización Proteica , Estructura Terciaria de Proteína , Electricidad Estática , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA