Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 134, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38478101

RESUMEN

The functions of human Apolipoproteins L (APOLs) are poorly understood, but involve diverse activities like lysis of bloodstream trypanosomes and intracellular bacteria, modulation of viral infection and induction of apoptosis, autophagy, and chronic kidney disease. Based on recent work, I propose that the basic function of APOLs is the control of membrane dynamics, at least in the Golgi and mitochondrion. Together with neuronal calcium sensor-1 (NCS1) and calneuron-1 (CALN1), APOL3 controls the activity of phosphatidylinositol-4-kinase-IIIB (PI4KB), involved in both Golgi and mitochondrion membrane fission. Whereas secreted APOL1 induces African trypanosome lysis through membrane permeabilization of the parasite mitochondrion, intracellular APOL1 conditions non-muscular myosin-2A (NM2A)-mediated transfer of PI4KB and APOL3 from the Golgi to the mitochondrion under conditions interfering with PI4KB-APOL3 interaction, such as APOL1 C-terminal variant expression or virus-induced inflammatory signalling. APOL3 controls mitophagy through complementary interactions with the membrane fission factor PI4KB and the membrane fusion factor vesicle-associated membrane protein-8 (VAMP8). In mice, the basic APOL1 and APOL3 activities could be exerted by mAPOL9 and mAPOL8, respectively. Perspectives regarding the mechanism and treatment of APOL1-related kidney disease are discussed, as well as speculations on additional APOLs functions, such as APOL6 involvement in adipocyte membrane dynamics through interaction with myosin-10 (MYH10).


Asunto(s)
Apolipoproteína L1 , Insuficiencia Renal Crónica , Humanos , Ratones , Animales , Apolipoproteínas L , Apolipoproteína L1/genética , Apolipoproteínas/genética , Apolipoproteínas/metabolismo , Miosinas
2.
Curr Opin Nephrol Hypertens ; 28(1): 87-96, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30451737

RESUMEN

PURPOSE OF REVIEW: Chronic kidney disease (CKD) can cluster in geographic locations or in people of particular genetic ancestries. We explore APOL1 nephropathy and Balkan nephropathy as examples of CKD clustering that illustrate genetics and environment conspiring to cause high rates of kidney disease. Unexplained hotspots of kidney disease in Asia and Central America are then considered from the perspective of potential gene × environment interactions. RECENT FINDINGS: We report on evidence supporting both genes and environment in these CKD hotspots. Differing genetic susceptibility between populations and within populations may explain why causal environmental risk factors have been so hard to identify conclusively. Similarly, one cannot explain why these epidemics of kidney disease are happening now without invoking environmental changes. SUMMARY: Approaches to these CKD hotspots are of necessity becoming more holistic. Genetic studies may help us identify the environmental triggers by teaching us about disease biology and may empower environmental risk factor studies by allowing for stratification of study participants by genetic susceptibility.


Asunto(s)
Insuficiencia Renal Crónica/etiología , Apolipoproteína L1/genética , Nefropatía de los Balcanes/etiología , Ambiente , Predisposición Genética a la Enfermedad , Humanos , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/genética , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA