Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Neurochem ; 127(1): 57-65, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23815307

RESUMEN

We reconstituted D2 like dopamine receptor (D2R) and the delta opioid receptor (DOR) coupling to G-protein gated inwardly rectifying potassium channels (K(ir)3) and directly compared the effects of co-expression of G-protein coupled receptor kinase (GRK) and arrestin on agonist-dependent desensitization of the receptor response. We found, as described previously, that co-expression of a GRK and an arrestin synergistically increased the rate of agonist-dependent desensitization of DOR. In contrast, only arrestin expression was required to produce desensitization of D2R responses. Furthermore, arrestin-dependent GRK-independent desensitization of D2R-K(ir)3 coupling could be transferred to DOR by substituting the third cytoplasmic loop of DOR with that of D2R. The arrestin-dependent GRK-independent desensitization of D2R desensitization was inhibited by staurosporine treatment, and blocked by alanine substitution of putative protein kinase C phosphorylation sites in the third cytoplasmic loop of D2R. Finally, the D2R construct in which putative protein kinase C phosphorylation sites were mutated did not undergo significant agonist-dependent desensitization even after GRK co-expression, suggesting that GRK phosphorylation of D2R does not play an important role in uncoupling of the receptor.


Asunto(s)
Arrestina/fisiología , Quinasas de Receptores Acoplados a Proteína-G/metabolismo , Receptores de Dopamina D2/metabolismo , Animales , Arrestinas/fisiología , Clonación Molecular , Citoplasma/metabolismo , ADN Complementario/biosíntesis , ADN Complementario/genética , Fenómenos Electrofisiológicos , Inhibidores Enzimáticos/farmacología , Femenino , Humanos , Oocitos/metabolismo , ARN Complementario/biosíntesis , ARN Complementario/genética , Estaurosporina/farmacología , Xenopus , beta-Arrestinas
2.
Cell Signal ; 23(3): 522-8, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20849951

RESUMEN

Defective insulin secretion is a feature of type 2 diabetes that results from inadequate compensatory increase in ß-cell mass, decreased ß-cell survival and impaired glucose-dependent insulin release. Pancreatic ß-cell proliferation, survival and secretion are thought to be regulated by signalling pathways linked to G-protein coupled receptors (GPCRs), such as the glucagon-like peptide-1 (GLP-1) and the pituitary adenylate cyclase-activating polypeptide (PACAP) receptors. ß-arrestin-1 serves as a multifunctional adaptor protein that mediates receptor desensitization, receptor internalization, and links GPCRs to downstream pathways such as tyrosine kinase Src, ERK1/2 or Akt/PKB. Importantly, recent studies found that ß-arrestin-1 mediates GLP-1 signalling to insulin secretion, GLP-1 antiapoptotic effect by phosphorylating the proapoptotic protein Bad through ERK1/2 activation, and PACAP potentiation of glucose-induced long-lasting ERK1/2 activation controlling IRS-2 expression. Together, these novel findings reveal an important functional role for ß-arrestin-1 in the regulation of insulin secretion and ß-cell survival by GPCRs.


Asunto(s)
Arrestinas/fisiología , Diabetes Mellitus/patología , Células Secretoras de Insulina/fisiología , Animales , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/metabolismo , Evaluación Preclínica de Medicamentos , Receptor del Péptido 1 Similar al Glucagón , Glucosa/fisiología , Humanos , Células Secretoras de Insulina/patología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Glucagón/metabolismo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Transducción de Señal , beta-Arrestina 1 , beta-Arrestinas
3.
Proc Natl Acad Sci U S A ; 106(51): 21918-23, 2009 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-19955404

RESUMEN

Beta-arrestins, key regulators of receptor signaling, are highly expressed in the central nervous system, but their roles in brain physiology are largely unknown. Here we show that beta-arrestin-2 is critically involved in the formation of associative fear memory and amygdalar synaptic plasticity. In response to fear conditioning, beta-arrestin-2 translocates to amygdalar membrane where it interacts with PDE-4, a cAMP-degrading enzyme, to inhibit PKA activation. Arrb2(-/-) mice exhibit impaired conditioned fear memory and long-term potentiation at the lateral amygdalar synapses. Moreover, expression of the beta-arrestin-2 in the lateral amygdala of Arrb2(-/-) mice, but not its mutant form that is incapable of binding PDE-4, restores basal PKA activity and rescues conditioned fear memory. Taken together, our data demonstrate that the feedback regulation of amygdalar PKA activation by beta-arrestin-2 and PDE-4 complex is critical for the formation of conditioned fear memory.


Asunto(s)
Amígdala del Cerebelo/enzimología , Arrestinas/fisiología , Condicionamiento Operante , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/fisiología , Miedo , Animales , Arrestinas/metabolismo , Biorretroalimentación Psicológica , Western Blotting , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Inmunoprecipitación , Ratones , Ratones Noqueados , Arrestina beta 2 , beta-Arrestinas
4.
Assay Drug Dev Technol ; 5(3): 425-51, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17638542

RESUMEN

Guanine nucleotide binding protein (G protein) coupled receptors (GPCRs) comprise one of the largest families of proteins in the human genome and are a target for 40% of all approved drugs. GPCRs have unique structural motifs that allow them to interact with a wide and diverse series of extracellular ligands, as well as intracellular proteins, G proteins, receptor activity-modifying proteins, arrestins, and indeed other receptors. This distinctive structure has led to numerous efforts to discover drugs against GPCRs with targeted therapeutic uses. Such "designer" drugs currently include allosteric regulators, inverse agonists, and drugs targeting hetero-oligomeric complexes. Moreover, the large family of orphan GPCRs provides a rich and novel field of targets to discover drugs with unique therapeutic properties. The numerous technologies to discover GPCR drugs have also greatly advanced over the years, facilitating compound screening against known and orphan GPCRs, as well as in the identification of unique designer GPCR drugs. Indeed, high throughput screening (HTS) technologies employing functional cell-based approaches are now widely used. These include measurement of second messenger accumulation such as cyclic AMP, calcium ions, and inositol phosphates, as well as mitogen-activated protein kinase activation, protein-protein interactions, and GPCR oligomerization. This review focuses on how the improved understanding of the molecular pharmacology of GPCRs, coupled with a plethora of novel HTS technologies, is leading to the discovery and development of an entirely new generation of GPCR-based therapeutics.


Asunto(s)
Diseño de Fármacos , Evaluación Preclínica de Medicamentos/métodos , Receptores Acoplados a Proteínas G/efectos de los fármacos , Receptores Acoplados a Proteínas G/fisiología , Animales , Arrestinas/fisiología , Sitios de Unión , Calcio/metabolismo , AMP Cíclico/fisiología , Quinasa 1 del Receptor Acoplado a Proteína-G/fisiología , Proteínas de Unión al GTP/fisiología , Humanos , Ligandos , Mutación , Receptores Acoplados a Proteínas G/química , beta-Arrestinas
5.
J Cell Sci ; 119(Pt 12): 2592-603, 2006 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-16735439

RESUMEN

Signal-mediated translocation of transient receptor potential (TRP) channels is a novel mechanism to fine tune a variety of signaling pathways including neuronal path finding and Drosophila photoreception. In Drosophila phototransduction the cation channels TRP and TRP-like (TRPL) are the targets of a prototypical G protein-coupled signaling pathway. We have recently found that the TRPL channel translocates between the rhabdomere and the cell body in a light-dependent manner. This translocation modifies the ion channel composition of the signaling membrane and induces long-term adaptation. However, the molecular mechanism underlying TRPL translocation remains unclear. Here we report that eGFP-tagged TRPL expressed in the photoreceptor cells formed functional ion channels with properties of the native channels, whereas TRPL-eGFP translocation could be directly visualized in intact eyes. TRPL-eGFP failed to translocate to the cell body in flies carrying severe mutations in essential phototransduction proteins, including rhodopsin, Galphaq, phospholipase Cbeta and the TRP ion channel, or in proteins required for TRP function. Our data, furthermore, show that the activation of a small fraction of rhodopsin and of residual amounts of the Gq protein is sufficient to trigger TRPL-eGFP internalization. In addition, we found that endocytosis of TRPL-eGFP occurs independently of dynamin, whereas a mutation of the unconventional myosin III, NINAC, hinders complete translocation of TRPL-eGFP to the cell body. Altogether, this study revealed that activation of the phototransduction cascade is mandatory for TRPL internalization, suggesting a critical role for the light induced conductance increase and the ensuing Ca2+ -influx in the translocation process. The critical role of Ca2+ influx was directly demonstrated when the light-induced TRPL-eGFP translocation was blocked by removing extracellular Ca2+.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Luz , Células Fotorreceptoras de Invertebrados/fisiología , Canales de Potencial de Receptor Transitorio/metabolismo , Visión Ocular/fisiología , Animales , Arrestinas/biosíntesis , Arrestinas/fisiología , Calcio/metabolismo , Calcio/efectos de la radiación , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/efectos de la radiación , Drosophila melanogaster/efectos de la radiación , Proteínas Fluorescentes Verdes/antagonistas & inhibidores , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/efectos de la radiación , Células Fotorreceptoras de Invertebrados/efectos de la radiación , Transporte de Proteínas/fisiología , Transporte de Proteínas/efectos de la radiación , Rodopsina/fisiología , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Canales de Potencial de Receptor Transitorio/antagonistas & inhibidores , Canales de Potencial de Receptor Transitorio/efectos de la radiación , Visión Ocular/efectos de la radiación
6.
J Biol Chem ; 281(16): 10856-64, 2006 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-16492667

RESUMEN

Parathyroid hormone (PTH) regulates calcium homeostasis via the type I PTH/PTH-related peptide (PTH/PTHrP) receptor (PTH1R). The purpose of the present study was to identify the contributions of distinct signaling mechanisms to PTH-stimulated activation of the mitogen-activated protein kinases (MAPK) ERK1/2. In Human embryonic kidney 293 (HEK293) cells transiently transfected with hPTH1R, PTH stimulated a robust increase in ERK activity. The time course of ERK1/2 activation was biphasic with an early peak at 10 min and a later sustained ERK1/2 activation persisting for greater than 60 min. Pretreatment of HEK293 cells with the PKA inhibitor H89 or the PKC inhibitor GF109203X, individually or in combination reduced the early component of PTH-stimulated ERK activity. However, these inhibitors of second messenger dependent kinases had little effect on the later phase of PTH-stimulated ERK1/2 phosphorylation. This later phase of ERK1/2 activation at 30-60 min was blocked by depletion of cellular beta-arrestin 2 and beta-arrestin 1 by small interfering RNA. Furthermore, stimulation of hPTH1R with PTH analogues, [Trp1]PTHrp-(1-36) and [d-Trp12,Tyr34]PTH-(7-34), selectively activated G(s)/PKA-mediated ERK1/2 activation or G protein-independent/beta-arrestin-dependent ERK1/2 activation, respectively. It is concluded that PTH stimulates ERK1/2 through several distinct signal transduction pathways: an early G protein-dependent pathway meditated by PKA and PKC and a late pathway independent of G proteins mediated through beta-arrestins. These findings imply the existence of distinct active conformations of the hPTH1R responsible for the two pathways, which can be stimulated by unique ligands. Such ligands may have distinct and valuable therapeutic properties.


Asunto(s)
Arrestinas/fisiología , Proteínas de Unión al GTP/fisiología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Receptor de Hormona Paratiroídea Tipo 1/metabolismo , Arrestinas/metabolismo , Línea Celular , Células Cultivadas , Medio de Cultivo Libre de Suero/farmacología , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , ADN/metabolismo , ADN Complementario/metabolismo , Proteínas de Unión al GTP/metabolismo , Humanos , Immunoblotting , Inmunoprecipitación , Indoles/farmacología , Isoquinolinas/farmacología , Ligandos , Sistema de Señalización de MAP Quinasas , Maleimidas/farmacología , Mutación , Fosforilación , Proteínas Quinasas/metabolismo , ARN Interferente Pequeño/metabolismo , Receptor de Hormona Paratiroídea Tipo 1/genética , Transducción de Señal , Sulfonamidas/farmacología , Factores de Tiempo , Transfección , beta-Arrestina 1 , Arrestina beta 2 , beta-Arrestinas
7.
J Biol Chem ; 280(46): 38346-54, 2005 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-16183993

RESUMEN

The G protein-coupled thyrotropin-releasing hormone (TRH) receptor is phosphorylated and binds to beta-arrestin after agonist exposure. To define the importance of receptor phosphorylation and beta-arrestin binding in desensitization, and to determine whether beta-arrestin binding and receptor endocytosis are required for receptor dephosphorylation, we expressed TRH receptors in fibroblasts from mice lacking beta-arrestin-1 and/or beta-arrestin-2. Apparent affinity for [(3)H]MeTRH was increased 8-fold in cells expressing beta-arrestins, including a beta-arrestin mutant that did not permit receptor internalization. TRH caused extensive receptor endocytosis in the presence of beta-arrestins, but receptors remained primarily on the plasma membrane without beta-arrestin. beta-Arrestins strongly inhibited inositol 1,4,5-trisphosphate production within 10 s. At 30 min, endogenous beta-arrestins reduced TRH-stimulated inositol phosphate production by 48% (beta-arrestin-1), 71% (beta-arrestin-2), and 84% (beta-arrestins-1 and -2). In contrast, receptor phosphorylation, detected by the mobility shift of deglycosylated receptor, was unaffected by beta-arrestins. Receptors were fully phosphorylated within 15 s of TRH addition. Receptor dephosphorylation was identical with or without beta-arrestins and almost complete 20 min after TRH withdrawal. Blocking endocytosis with hypertonic sucrose did not alter the rate of receptor phosphorylation or dephosphorylation. Expressing receptors in cells lacking Galpha(q) and Galpha(11) or inhibiting protein kinase C pharmacologically did not prevent receptor phosphorylation or dephosphorylation. Overexpression of dominant negative G protein-coupled receptor kinase-2 (GRK2), however, retarded receptor phosphorylation. Receptor activation caused translocation of endogenous GRK2 to the plasma membrane. The results show conclusively that receptor dephosphorylation can take place on the plasma membrane and that beta-arrestin binding is critical for desensitization and internalization.


Asunto(s)
Arrestinas/fisiología , Receptores de Hormona Liberadora de Tirotropina/fisiología , Fosfatasa Alcalina/metabolismo , Animales , Arrestinas/química , Arrestinas/metabolismo , Células CHO , Células COS , Canales de Calcio/metabolismo , Línea Celular , Membrana Celular/metabolismo , Chlorocebus aethiops , Cricetinae , ADN Complementario/metabolismo , Relación Dosis-Respuesta a Droga , Endocitosis , Fibroblastos/metabolismo , Quinasa 2 del Receptor Acoplado a Proteína-G , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Proteínas de Unión al GTP/metabolismo , Glicosilación , Proteínas Fluorescentes Verdes/metabolismo , Immunoblotting , Inmunoglobulina G/química , Inmunoprecipitación , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato , Fosfatos de Inositol/química , Fosfatos de Inositol/metabolismo , Cinética , Ratones , Ratones Noqueados , Mutación , Fosfatos/química , Fosforilación , Plásmidos/metabolismo , Unión Proteica , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Estructura Terciaria de Proteína , Transporte de Proteínas , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Hormona Liberadora de Tirotropina/química , Sacarosa/química , Sacarosa/farmacología , Factores de Tiempo , Transfección , Quinasas de Receptores Adrenérgicos beta/metabolismo , beta-Arrestina 1 , Arrestina beta 2 , beta-Arrestinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA