Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
J Sci Food Agric ; 104(10): 6311-6321, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38482895

RESUMEN

BACKGROUND: As a result of the ineffectiveness of existing control methods against Verticillium dahliae, the causal agent of verticillium wilt of olive (Olea europaea; VWO), it is necessary to search for sustainable and environmentally friendly alternatives, such as bioprotection by products based on plant extracts and other naturally synthesized compounds. Therefore, present study aimed to evaluate the effects of seven natural-based commercial products on the inhibition of mycelial growth, the germination of V. dahliae conidia and microsclerotia, and disease progression in olive plants (cv. Picual). Aluminium lignosulfonate and a copper phosphonate salt (copper phosphite) were included for comparative purposes. RESULTS: The seaweed and willow extracts and copper phosphite inhibited V. dahliae mycelial growth by more than 50% at the high doses tested. Most of the products inhibited conidial germination by up to 90% compared to the control at the high doses tested. However, none of the products showed efficacy above 50% in inhibiting microsclerotia germination. The willow extract was the most effective at reducing disease severity and progression in olive plants, with no significant differences compared to the non-inoculated negative control. CONCLUSION: The results of the present study suggest that the use of natural-based products (i.e. seaweed and willow extracts) is a potential sustainable alternative in an integrated VWO control strategy. © 2024 Society of Chemical Industry.


Asunto(s)
Olea , Enfermedades de las Plantas , Olea/microbiología , Olea/química , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Algas Marinas/microbiología , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Ascomicetos/efectos de los fármacos , Ascomicetos/crecimiento & desarrollo , Productos Biológicos/farmacología , Productos Biológicos/química , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/crecimiento & desarrollo , Verticillium
2.
Mar Drugs ; 20(3)2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35323512

RESUMEN

Four new dimeric sorbicillinoids (1-3 and 5) and a new monomeric sorbicillinoid (4) as well as six known analogs (6-11) were purified from the fungal strain Hypocrea jecorina H8, which was obtained from mangrove sediment, and showed potent inhibitory activity against the tea pathogenic fungus Pestalotiopsis theae (P. theae). The planar structures of 1-5 were assigned by analyses of their UV, IR, HR-ESI-MS, and NMR spectroscopic data. All the compounds were evaluated for growth inhibition of tea pathogenic fungus P. theae. Compounds 5, 6, 8, 9, and 10 exhibited more potent inhibitory activities compared with the positive control hexaconazole with an ED50 of 24.25 ± 1.57 µg/mL. The ED50 values of compounds 5, 6, 8, 9, and 10 were 9.13 ± 1.25, 2.04 ± 1.24, 18.22 ± 1.29, 1.83 ± 1.37, and 4.68 ± 1.44 µg/mL, respectively. Additionally, the effects of these compounds on zebrafish embryo development were also evaluated. Except for compounds 5 and 8, which imparted toxic effects on zebrafish even at 0.625 µM, the other isolated compounds did not exhibit significant toxicity to zebrafish eggs, embryos, or larvae. Taken together, sorbicillinoid derivatives (6, 9, and 10) from H. jecorina H8 displayed low toxicity and high anti-tea pathogenic fungus potential.


Asunto(s)
Ascomicetos/efectos de los fármacos , Agentes de Control Biológico , Hypocreales/química , Policétidos , Animales , Ascomicetos/crecimiento & desarrollo , Agentes de Control Biológico/química , Agentes de Control Biológico/aislamiento & purificación , Agentes de Control Biológico/farmacología , Agentes de Control Biológico/toxicidad , Camellia sinensis/microbiología , Embrión no Mamífero , Estructura Molecular , Policétidos/química , Policétidos/aislamiento & purificación , Policétidos/farmacología , Policétidos/toxicidad , Pez Cebra
3.
PLoS Negl Trop Dis ; 16(2): e0010159, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35120131

RESUMEN

Eumycetoma is a chronic subcutaneous neglected tropical disease that can be caused by more than 40 different fungal causative agents. The most common causative agents produce black grains and belong to the fungal orders Sordariales and Pleosporales. The current antifungal agents used to treat eumycetoma are itraconazole or terbinafine, however, their cure rates are low. To find novel drugs for eumycetoma, we screened 400 diverse drug-like molecules from the Pandemic Response Box against common eumycetoma causative agents as part of the Open Source Mycetoma initiative (MycetOS). 26 compounds were able to inhibit the growth of Madurella mycetomatis, Madurella pseudomycetomatis and Madurella tropicana, 26 compounds inhibited Falciformispora senegalensis and seven inhibited growth of Medicopsis romeroi in vitro. Four compounds were able to inhibit the growth of all five species of fungi tested. They are the benzimidazole carbamates fenbendazole and carbendazim, the 8-aminoquinolone derivative tafenoquine and MMV1578570. Minimal inhibitory concentrations were then determined for the compounds active against M. mycetomatis. Compounds showing potent activity in vitro were further tested in vivo. Fenbendazole, MMV1782387, ravuconazole and olorofim were able to significantly prolong Galleria mellonella larvae survival and are promising candidates to explore in mycetoma treatment and to also serve as scaffolds for medicinal chemistry optimisation in the search for novel antifungals to treat eumycetoma.


Asunto(s)
Antifúngicos/farmacología , Evaluación Preclínica de Medicamentos , Micetoma/tratamiento farmacológico , Acetamidas/farmacología , Animales , Ascomicetos/efectos de los fármacos , Descubrimiento de Drogas , Fenbendazol/farmacología , Madurella/efectos de los fármacos , Mariposas Nocturnas/microbiología , Enfermedades Desatendidas , Piperazinas/farmacología , Pirimidinas/farmacología , Pirroles/farmacología , Tiazoles/farmacología , Triazoles/farmacología
4.
Eur J Med Chem ; 227: 113937, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34710744

RESUMEN

Evodiamine and rutaecarpine are two alkaloids isolated from traditional Chinese herbal medicine Evodia rutaecarpa, which have been reported to have various biological activities in past decades. To explore the potential applications for evodiamine and rutaecarpine alkaloids and their derivatives, various kinds of evodiamine and rutaecarpine derivatives were designed and synthesized. Their antifungal profile against six phytopathogenic fungi Rhizoctonia solani, Botrytis cinerea, Fusarium graminearum, Fusarium oxysporum, Sclerotinia sclerotiorum, and Magnaporthe oryzae were evaluated for the first time. Furthermore, a series of modified imidazole derivatives of rutaecarpine were synthesized to investigate the structure-activity relationship. The results of antifungal activities in vitro showed that imidazole derivative of rutaecarpine A1 exhibited broad-spectrum inhibitory activities against R. solani, B. cinerea, F. oxysporum, S. sclerotiorum, M. oryzae and F. graminearum with EC50 values of 1.97, 5.97, 12.72, 2.87 and 16.58 µg/mL, respectively. Preliminary mechanistic studies showed that compound A1 might cause mycelial abnormalities of S. sclerotiorum, mitochondrial distortion and swelling, and inhibition of sclerotia formation and germination. Moreover, the curative effects of compound A1 were 94.7%, 81.5%, 80.8%, 65.0% at 400, 200, 100, 50 µg/mL in vivo experiments, which was far more effective than the positive control azoxystrobin. Significantly, no phytotoxicity of compound A1 on oilseed rape leaves was observed obviously even at a high concentration of 400 µg/mL. Therefore, compound A1 is expected to be a novel leading structure for the development of new antifungal agents.


Asunto(s)
Antifúngicos/farmacología , Diseño de Fármacos , Alcaloides Indólicos/farmacología , Quinazolinas/farmacología , Antifúngicos/síntesis química , Antifúngicos/química , Ascomicetos/efectos de los fármacos , Botrytis/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Fusarium/efectos de los fármacos , Alcaloides Indólicos/síntesis química , Alcaloides Indólicos/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Quinazolinas/síntesis química , Quinazolinas/química , Rhizoctonia/efectos de los fármacos , Relación Estructura-Actividad
5.
Chem Biodivers ; 19(1): e202100608, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34786852

RESUMEN

A new globoscinic acid derivative, aspertubin A (1) along with four known compounds, were obtained from the co-culture of Aspergillus tubingensis S1120 with red ginseng. The chemical structures of compounds were characterized by using spectroscopic methods, the calculated and experimental electronic circular dichroism. Panaxytriol (2) from red ginseng, and asperic acid (4) showed significant antifeedant effect with the antifeedant rates of 75 % and 80 % at the concentrations of 50 µg/cm2 . Monomeric carviolin (3) and asperazine (5) displayed weak attractant activity on silkworm. All compounds were assayed for antifungal activities against phytopathogens A. tubingensis, Nigrospora oryzae and Phoma herbarum and the results indicated that autotoxic aspertubin A (1) and panaxytriol (2) possessed selective inhibition against A. tubingensis with MIC values at 8 µg/mL. The co-culture extract showed higher antifeedant and antifungal activities against P. herbarum than those of monoculture of A. tubingensis in ordinary medium. So the medicinal plant and endophyte showed synergistic effect on the plant disease resistance by active compounds from the coculture of A. tubingensis S1120 and red ginseng.


Asunto(s)
Antifúngicos/química , Aspergillus/química , Repelentes de Insectos/química , Panax/química , Animales , Antifúngicos/aislamiento & purificación , Antifúngicos/farmacología , Ascomicetos/efectos de los fármacos , Aspergillus/crecimiento & desarrollo , Aspergillus/metabolismo , Bombyx/efectos de los fármacos , Bombyx/crecimiento & desarrollo , Enediinos/química , Enediinos/aislamiento & purificación , Enediinos/farmacología , Alcoholes Grasos/química , Alcoholes Grasos/aislamiento & purificación , Alcoholes Grasos/farmacología , Repelentes de Insectos/aislamiento & purificación , Repelentes de Insectos/farmacología , Pruebas de Sensibilidad Microbiana , Conformación Molecular , Panax/crecimiento & desarrollo , Panax/metabolismo , Phoma/efectos de los fármacos , Plantas Medicinales/química , Plantas Medicinales/crecimiento & desarrollo , Plantas Medicinales/metabolismo
6.
Nucleosides Nucleotides Nucleic Acids ; 40(12): 1159-1197, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34612797

RESUMEN

Novel and synthetically essential flavonoids compounds containing the organosulfur moiety from Schiff bases, as well as their copper complexes, were synthesized from chrysin and 2-(phenylthio)aniline. These complexes were characterized using elemental analysis, mass spectrometry, electronic absorption spectroscopy, IR, 1H, and 13C NMR spectroscopy techniques. All the Cu(II) complexes exhibit square planar geometry. The in vitro antimicrobial activities of the investigated compounds were tested against the bacterial species, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus epidermidis, and Klebsiella pneumoniae and fungal species, Aspergillus niger, Fusarium solani, Culvularia lunata, Rhizoctonia bataicola, and Candida albicans by serial dilution method. The DNA binding and DNA cleavage properties of copper complexes were studied. Free radical scavenging, superoxide dismutase, glutathione peroxidase, and antioxidant activities of the copper complexes have also been studied. In addition, using the egg albumin process, the in vitro anti-inflammatory efficacy of metal chelates was examined. Anti-tuberculosis and α-glucosidase inhibition activity were carried out from the prepared metal complexes. The flavonoid compounds containing the organosulfur moiety of Cu(II) complexes (1-8) exhibited better therapeutic agent.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Antioxidantes/farmacología , Complejos de Coordinación/farmacología , ADN/efectos de los fármacos , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Antifúngicos/síntesis química , Antifúngicos/química , Antioxidantes/síntesis química , Antioxidantes/química , Ascomicetos/efectos de los fármacos , Aspergillus niger/efectos de los fármacos , Compuestos de Bifenilo/antagonistas & inhibidores , Candida albicans/efectos de los fármacos , Bovinos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Cobre/química , Cobre/farmacología , División del ADN/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Flavonoides/química , Flavonoides/farmacología , Fusarium/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Picratos/antagonistas & inhibidores , Pseudomonas aeruginosa/efectos de los fármacos , Rhizoctonia/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus epidermidis/efectos de los fármacos
7.
Int J Mol Sci ; 22(20)2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34681623

RESUMEN

Glycyrrhiza glabra (Licorice) belongs to the Fabaceae family and its extracts have exhibited significant fungicidal activity against phytopathogenic fungi, which has mainly been attributed to the presence of phenolic compounds such as flavonoids, isoflavonoids and chalcones. In this study, a series of licorice flavonoids, isoflavonoids and chalcones were evaluated for their fungicidal activity against phytopathogenic fungi. Among them, glabridin exhibited significant fungicidal activity against ten kinds of phytopathogenic fungi. Notably, glabridin displayed the most active against Sclerotinia sclerotiorum with an EC50 value of 6.78 µg/mL and was 8-fold more potent than azoxystrobin (EC50, 57.39 µg/mL). Moreover, the in vivo bioassay also demonstrated that glabridin could effectively control S. sclerotiorum. The mechanism studies revealed that glabridin could induce reactive oxygen species accumulation, the loss of mitochondrial membrane potential and cell membrane destruction through effecting the expression levels of phosphatidylserine decarboxylase that exerted its fungicidal activity. These findings indicated that glabridin exhibited pronounced fungicidal activities against S. sclerotiorum and could be served as a potential fungicidal candidate.


Asunto(s)
Antifúngicos/química , Glycyrrhiza/química , Isoflavonas/química , Fenoles/química , Antifúngicos/aislamiento & purificación , Antifúngicos/farmacología , Ascomicetos/efectos de los fármacos , Carboxiliasas/genética , Carboxiliasas/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Chalconas/química , Chalconas/aislamiento & purificación , Chalconas/farmacología , Flavonoides/química , Flavonoides/aislamiento & purificación , Flavonoides/farmacología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glycyrrhiza/metabolismo , Isoflavonas/aislamiento & purificación , Isoflavonas/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Fenoles/aislamiento & purificación , Fenoles/farmacología , Extractos Vegetales/química , Especies Reactivas de Oxígeno/metabolismo
8.
Biomed Res Int ; 2021: 9930210, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34395628

RESUMEN

The present study was aimed at isolating endophytic fungi from the Asian culinary and medicinal plant Lilium davidii and analyzing its antifungal and plant growth-promoting effects. In this study, the fungal endophyte Acremonium sp. Ld-03 was isolated from the bulbs of L. davidii and identified through morphological and molecular analysis. The molecular and morphological analysis confirmed the endophytic fungal strain as Acremonium sp. Ld-03. Antifungal effects of Ld-03 were observed against Fusarium oxysporum, Botrytis cinerea, Botryosphaeria dothidea, and Fusarium fujikuroi. The highest growth inhibition, i.e., 78.39 ± 4.21%, was observed for B. dothidea followed by 56.68 ± 4.38%, 43.62 ± 3.81%, and 20.12 ± 2.45% for B. cinerea, F. fujikuroi, and F. oxysporum, respectively. Analysis of the ethyl acetate fraction through UHPLC-LTQ-IT-MS/MS revealed putative secondary metabolites which included xanthurenic acid, valyl aspartic acid, gancidin W, peptides, and cyclic dipeptides such as valylarginine, cyclo-[L-(4-hydroxy-Pro)-L-leu], cyclo(Pro-Phe), and (3S,6S)-3-benzyl-6-(4-hydroxybenzyl)piperazine-2,5-dione. Other metabolites included (S)-3-(4-hydroxyphenyl)-2-((S)-pyrrolidine-2-carboxamido)propanoic acid, dibutyl phthalate (DBP), 9-octadecenamide, D-erythro-C18-Sphingosine, N-palmitoyl sphinganine, and hydroxypalmitoyl sphinganine. The strain Ld-03 showed indole acetic acid (IAA) production with or without the application of exogenous tryptophan. The IAA ranged from 53.12 ± 3.20 µg ml-1 to 167.71 ± 7.12 µg ml-1 under different tryptophan concentrations. The strain was able to produce siderophore, and its production was significantly decreased with increasing Fe(III) citrate concentrations in the medium. The endophytic fungal strain also showed production of organic acids and phosphate solubilization activity. Plant growth-promoting effects of the strain were evaluated on in vitro seedling growth of Allium tuberosum. Application of 40% culture dilution resulted in a significant increase in root and shoot length, i.e., 24.03 ± 2.71 mm and 37.27 ± 1.86 mm, respectively, compared to nontreated control plants. The fungal endophyte Ld-03 demonstrated the potential of conferring disease resistance and plant growth promotion. Therefore, we conclude that the isolated Acremonium sp. Ld-03 should be further investigated before utilization as a biocontrol agent and plant growth stimulator.


Asunto(s)
Acremonium/química , Antifúngicos/farmacología , Ascomicetos/crecimiento & desarrollo , Botrytis/crecimiento & desarrollo , Fusarium/crecimiento & desarrollo , Lilium/microbiología , Reguladores del Crecimiento de las Plantas/farmacología , Acetatos/química , Acetatos/farmacología , Acremonium/aislamiento & purificación , Acremonium/fisiología , Antifúngicos/química , Ascomicetos/efectos de los fármacos , Botrytis/efectos de los fármacos , Cebollino/efectos de los fármacos , Cebollino/crecimiento & desarrollo , Cromatografía Líquida de Alta Presión , Resistencia a la Enfermedad , Endófitos/aislamiento & purificación , Endófitos/fisiología , Fusarium/efectos de los fármacos , Ácidos Indolacéticos/química , Ácidos Indolacéticos/aislamiento & purificación , Ácidos Indolacéticos/farmacología , Metabolómica/métodos , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas/química , Reguladores del Crecimiento de las Plantas/aislamiento & purificación , Raíces de Plantas/microbiología , Metabolismo Secundario , Espectrometría de Masas en Tándem
9.
Molecules ; 26(13)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201482

RESUMEN

Fusarium wilt of potato is one of the most common diseases of potato in China, and is becoming a serious threat in potato production. It has been reported that osthole from Cnidium monnieri (L.) Cusson can inhibit plant pathogens. Here, we test the anti-fungal activity of C. monnieri osthole against Fusarium oxysporum in potatoes. The results showed that at a concentration of 5 mg/mL, osthole was able to obviously inhibit mycelial growth of F. oxysporum. We found that osthole caused changes of mycelial morphology, notably hyphal swelling and darkening. Osthole significantly reduced the spore germination of Fusarium by 57.40%. In addition, osthole also inhibited the growth of other pathogens such as Fusarium moniliforme J. Sheld, Thanatephorus cucumeris Donk, and Alternaria alternata (Fr.) Keissl, but not Alternaria solani Jonesetgrout and Valsa mali Miyabe and G. Yamada. Our results suggest that osthole has considerable potential as an agent for the prevention and treatment of potato Fusarium wilt.


Asunto(s)
Cnidium/química , Cumarinas/administración & dosificación , Fusarium/efectos de los fármacos , Micelio/efectos de los fármacos , Solanum tuberosum/efectos de los fármacos , Alternaria/efectos de los fármacos , Ascomicetos/efectos de los fármacos , Basidiomycota/efectos de los fármacos , Micelio/citología , Solanum tuberosum/microbiología
10.
Fungal Biol ; 125(7): 519-531, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34140148

RESUMEN

The formation of propagules is the critical stage for transmission of the pathogenic fungus Stemphylium eturmiunum. However, how the development of these propagules is regulated remains to be fully understood. Here, we show that nitric oxide (NO) is necessary for reproduction in S. eturmiunum.Application of NO scavenger carboxy-CPTIO (cPTIO) or soluble guanylate cyclase (sGC) inhibitor NS-2028 abolishes propagules formation, which was increased by a supplement of sodium nitroprusside (SNP). SNP supplement also triggered increased biosynthesis of melanin, which can be inhibited upon the addition of arbutin or tricyclazole, the specific inhibitors for DOPA and DHN synthetic pathway, respectively. Intriguingly, enhanced melanin biosynthesis corelates with an increased propagules formation; The SNP-induced increment propagules formation can be also compromised upon the supplement of cPTIO or NS-2028. RT-PCR analysis showed that SNP promoted transcription of brlA, abA and wetA at 0.2 mmol/L, but inhibited at 2 mmol/L. In contrast, SNP increased transcription of mat1, and mat2, and the synthetic genes for DHN and DOPA melanins at 2 mmol/L. However, the increased transcription of these genes is down-regulated upon the supplement of cPTIO or NS-2028. Thus, NO regulates reproduction and melanin synthesis in S. eturmiunum possibly through the NO-sGC-GMP signaling pathway.


Asunto(s)
Ascomicetos , Melaninas , Óxido Nítrico , Ascomicetos/efectos de los fármacos , Melaninas/biosíntesis , Óxido Nítrico/farmacología , Cebollas/microbiología , Reproducción/efectos de los fármacos
11.
mSphere ; 6(3): e0042721, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34077259

RESUMEN

Phenazine-producing Pseudomonas spp. are effective biocontrol agents that aggressively colonize the rhizosphere and suppress numerous plant diseases. In this study, we compared the ability of 63 plant-beneficial phenazine-producing Pseudomonas strains representative of the worldwide diversity to inhibit the growth of three major potato pathogens: the oomycete Phytophthora infestans, the Gram-positive bacterium Streptomyces scabies, and the ascomycete Verticillium dahliae. The 63 Pseudomonas strains are distributed among four different subgroups within the P. fluorescens species complex and produce different phenazine compounds, namely, phenazine-1-carboxylic acid (PCA), phenazine-1-carboxamide (PCN), 2-hydroxyphenazine-1-carboxylic acid, and 2-hydroxphenazine. Overall, the 63 strains exhibited contrasted levels of pathogen inhibition. Strains from the P. chlororaphis subgroup inhibited the growth of P. infestans more effectively than strains from the P. fluorescens subgroup. Higher inhibition was not associated with differential levels of phenazine production nor with specific phenazine compounds. The presence of additional biocontrol-related traits found in P. chlororaphis was instead associated with higher P. infestans inhibition. Inhibition of S. scabies by the 63 strains was more variable, with no clear taxonomic segregation pattern. Inhibition values did not correlate with phenazine production nor with specific phenazine compounds. No additional synergistic biocontrol-related traits were found. Against V. dahliae, PCN producers from the P. chlororaphis subgroup and PCA producers from the P. fluorescens subgroup exhibited greater inhibition. Additional biocontrol-related traits potentially involved in V. dahliae inhibition were identified. This study represents a first step toward harnessing the vast genomic diversity of phenazine-producing Pseudomonas spp. to achieve better biological control of potato pathogens. IMPORTANCE Plant-beneficial phenazine-producing Pseudomonas spp. are effective biocontrol agents, thanks to the broad-spectrum antibiotic activity of the phenazine antibiotics they produce. These bacteria have received considerable attention over the last 20 years, but most studies have focused only on the ability of a few genotypes to inhibit the growth of a limited number of plant pathogens. In this study, we investigated the ability of 63 phenazine-producing strains, isolated from a wide diversity of host plants on four continents, to inhibit the growth of three major potato pathogens: Phytophthora infestans, Streptomyces scabies, and Verticillium dahliae. We found that the 63 strains differentially inhibited the three potato pathogens. These differences are in part associated with the nature and the quantity of the phenazine compounds being produced but also with the presence of additional biocontrol-related traits. These results will facilitate the selection of versatile biocontrol agents against pathogens.


Asunto(s)
Bacterias/efectos de los fármacos , Fenazinas/farmacología , Pseudomonas/química , Pseudomonas/genética , Solanum tuberosum/microbiología , Ascomicetos/efectos de los fármacos , Ascomicetos/crecimiento & desarrollo , Bacterias/clasificación , Bacterias/patogenicidad , Agentes de Control Biológico/química , Agentes de Control Biológico/metabolismo , Variación Genética , Genoma Bacteriano , Fenazinas/química , Fenazinas/metabolismo , Phytophthora infestans/efectos de los fármacos , Phytophthora infestans/crecimiento & desarrollo , Pseudomonas/clasificación , Streptomyces/efectos de los fármacos , Streptomyces/crecimiento & desarrollo
12.
Chem Biodivers ; 18(5): e2100079, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33821531

RESUMEN

Eight natural biphenyl-type phytoalexins exhibiting antifungal effect were isolated from the leaves of Sorbus pohuashanensis, which invaded by Alternaria tenuissi, and their growth inhibition rate towards A. tenuissi were 50.3 %, 54.0 %, 66.4 %, 58.8 %, 48.5 %, 51.0 %, 33.3 %, and 37.0 %, respectively. In vivo activity assay verified the protective effect of these natural biphenyls on tobacco leaves. The observation of mycelial morphology revealed that these compounds possessed adverse effects on mycelial growth of A. tenuissi. Subsequently, the most potent active compounds, 3',4',5'-trimethoxy[1,1'-biphenyl]-4-ol (3) and 3,4,4',5-tetramethoxy-1,1'-biphenyl (4), were conducted to the further antifungal evaluation and showed significant activity against the other four crop pathogens, Fusarium graminearum, Helminthosporium maydis, Sclerotinia sclerotiorum, and Exserohilum turcicum. Further, the structure-activity relationships and biosynthesis of these compounds were speculated in this work.


Asunto(s)
Alternaria/efectos de los fármacos , Antifúngicos/farmacología , Compuestos de Bifenilo/farmacología , Sorbus/química , Alternaria/crecimiento & desarrollo , Alternaria/patogenicidad , Antifúngicos/química , Antifúngicos/aislamiento & purificación , Ascomicetos/efectos de los fármacos , Ascomicetos/patogenicidad , Compuestos de Bifenilo/química , Compuestos de Bifenilo/aislamiento & purificación , Bipolaris/efectos de los fármacos , Bipolaris/patogenicidad , Fusarium/efectos de los fármacos , Fusarium/patogenicidad , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Extractos Vegetales , Hojas de la Planta/química
13.
Sci Rep ; 11(1): 8417, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33875698

RESUMEN

Antifungal activity of Monotheca buxifolia methanolic extract and its various fractions were assessed against Macrophomina phaseolina, a soil-borne fungal pathogen of more than 500 vegetal species as well as rare and emerging opportunistic human pathogen. Different concentrations of methanolic extract (3.125 to 200 mg mL-1) inhibited fungal biomass by 39-45%. Isolated n-hexane, chloroform and ethyl acetate fractions suppressed fungal biomass by 32-52%, 29-50% and 29-35%, respectively. Triterpenes lupeol and lupeol acetate (1, 2) were isolated from n-hexane while betulin, ß-sitosterol, ß-amyrin, oleanolic acid (3-6) were isolated from chloroform fraction. Vanillic acid, protocatechuic acid, kaempferol and quercetin (7-10) were isolated from the ethyl acetate fraction and identified using various spectroscopic techniques namely mass spectroscopy and NMR. Antifungal activity of different concentrations (0.0312 to 2 mg mL-1) of the isolated compounds was evaluated and compared with the activity of a broad spectrum fungicide mancozeb. Different concentrations of mencozeb reduced fungal biomass by 83-85%. Among the isolated compounds lupeol acetate (2) was found the highest antifungal against M. phaseolina followed by betulin (3), vanillic acid (7), protocatechuic acid (8), ß-amyrin (5) and oleanolic acid (6) resulting in 79-81%, 77-79%, 74-79%, 67-72%, 68-71% and 68-71%, respectively. Rest of the compounds also showed considerable antifungal activity and reduced M. phaseolina biomass by 41-64%.


Asunto(s)
Ascomicetos/efectos de los fármacos , Micosis/tratamiento farmacológico , Triterpenos Pentacíclicos/farmacología , Antifúngicos/farmacología , Humanos , Maneb/farmacología , Infecciones Oportunistas/tratamiento farmacológico , Extractos Vegetales/farmacología , Zineb/farmacología
14.
Fungal Biol ; 125(2): 143-152, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33518204

RESUMEN

There is a growing interest in finding safe and natural anti-microbial compounds as a valid alternative to conventional chemical treatments for managing post-harvest fruit diseases. This study investigated the anti-fungal capacity of orange peel polyphenolic extract (OPE) against three relevant post-harvest fungal pathogens, Monilinia fructicola, Botrytis cinerea and Alternaria alternata. OPE extract at 1.5 g/L inhibited (100%) the mycelial growth and conidial germination of the three target fungi. At lower concentration, the effect varied, depending on the dose applied and target fungi. When the anti-fungal activity of the main phenolic compounds in sweet orange peel, namely, the flavonoids (naringin, hesperidin and neohesperidin) and phenolic acids (ferulic and p-coumaric), were evaluated, ferulic acid and p-coumaric acid displayed significantly higher inhibitory capacity in synthetic medium, while the activity of flavonoids was limited. Synergism between compounds was not detected, and the inhibitory activity of OPE may be attributed to an additive effect of phenolic acids. Interestingly, in peach-based medium, ferulic acid remained active against M. fructicola and A. alternata and was more efficient than p-coumaric to control B. cinerea. These results highlight peel orange waste as an excellent source of anti-fungal compounds, suggesting the possibility of using ferulic acid or ferulic acid-rich extracts, either alone or in combination with other post-harvest treatment, as a natural alternative to reduce post-harvest losses and, also, enhance the shelf-life of fruit.


Asunto(s)
Citrus sinensis , Microbiología de Alimentos , Frutas , Hongos , Extractos Vegetales , Alternaria/efectos de los fármacos , Ascomicetos/efectos de los fármacos , Botrytis/efectos de los fármacos , Citrus sinensis/química , Frutas/química , Frutas/microbiología , Hongos/efectos de los fármacos , Fenol/química , Extractos Vegetales/farmacología
15.
Sci Rep ; 11(1): 2365, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33504905

RESUMEN

Shiraia bambusicola has been used as a traditional Chinese medicine for a long history. Its major medicinal active metabolites are perylenequinones, including hypocrellin A, elsinochrome A and so on. At present, the fermentation yield of perylenequinones is low, and its complex biosynthesis and regulatory pathways are still unclear. In this study, nitric oxide, as a downstream signal molecule of hydrogen peroxide, regulates the biosynthesis of perylenequinones. Exogenous addition of 0.01 mM sodium nitroprusside (nitric oxide donor) can promote perylenequinones production by 156% compared with the control. Further research found that hydrogen peroxide and nitric oxide increased the transcriptional level of the biosynthetic genes of hypocrellin A. The results showed that nitric oxide is involved in the biosynthesis and regulation of perylenequinones in Shiraia bambusicola as a signal molecule. In the future, the yield of perylenequinones can be increased by adding exogenous nitric oxide in fermentation.


Asunto(s)
Ascomicetos/efectos de los fármacos , Ascomicetos/metabolismo , Peróxido de Hidrógeno/farmacología , Óxido Nítrico/farmacología , Perileno/análogos & derivados , Quinonas/metabolismo , Perileno/metabolismo , Fenol/metabolismo
16.
Fitoterapia ; 148: 104781, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33259889

RESUMEN

Five new tremulane sesquiterpenoids were isolated from co-culture of endophyte Irpex lacteus, phytopathogen Nigrospora oryzae, and entomopathogen Beauveria bassiana. All compounds showed obvious antifeedant activities against silkworm with inhibition percentages of 73-99%, at concentrations of 50 µg/cm2. Compound 11 indicated notable antifeedant activity with inhibition percentage of 93% at concentration of 6.25 µg/cm2 among them. Compounds 2, 3, 4, 8, 9, 15 and 16 indicated anti-fungal activities against I. lacteus with MIC values ≤8 µg/mL, compounds 11, 12, 16-18 showed significant anti-fungal activity against N. oryzae with MICs ≤ 4 µg/mL, and compounds 2, 5, 12 and 18 indicated significant anti-fungal activity against B. bassiana with MICs ≤ 8 µg/mL. In addition, the I. lacteus should unite B. bassiana to inhibit the production of phytotoxins from N. oryzae in the ternary culture.


Asunto(s)
Ascomicetos/química , Beauveria/química , Bombyx/efectos de los fármacos , Fungicidas Industriales/farmacología , Polyporales/química , Sesquiterpenos/farmacología , Animales , Ascomicetos/efectos de los fármacos , China , Técnicas de Cocultivo , Dendrobium/microbiología , Endófitos/química , Fermentación , Fungicidas Industriales/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Polyporales/efectos de los fármacos , Semillas/microbiología , Sesquiterpenos/aislamiento & purificación
17.
Med Mycol ; 59(2): 189-196, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33313821

RESUMEN

Treatment options for Exserohilum rostratum meningoencephalitis and other causes of phaeohyphomycosis of the central nervous system (CNS) are limited, while mortality and morbidity remain high. We therefore evaluated isavuconazole, a new antifungal triazole in comparison to liposomal amphotericin B (LAMB), in vitro and in the rabbit model of Exserohilum rostratum meningoencephalitis. We hypothesized that isavuconazole alone or in combination with LAMB or micafungin may be alternative options for treatment of CNS phaeohyphomycosis. We therefore investigated the in vitro antifungal activity of isavuconazole alone or in combination with amphotericin B deoxycholate (DAMB) or micafungin and efficacy of treatment with isavuconazole and LAMB in a rabbit model of experimental E. rostratum meningoencephalitis. Combination checkerboard plates were used to determine the minimum inhibitory concentrations, minimal lethal concentrations, fractional inhibitory concentration indices, and Bliss surface analysis of isavuconazole and amphotericin B deoxycholate (DAMB), either alone or in combination. As there were no in vitro synergistic or antagonistic interactions for either combination of antifungal agents against the E. rostratum isolates, in vivo studies were conducted with isavuconazole and LAMB as monotherapies. Rabbits were divided in following groups: treated with isavuconazole at 60 mg/kg/d (ISAV60), LAMB at 5.0 (LAMB5), 7.5 (LAMB7.5), and 10 mg/kg/d (LAMB10), and untreated controls (UC). In ISAV60-, LAMB5-, LAMB7.5-, and LAMB10-treated rabbits, significant reductions of fungal burden of E. rostratum in cerebral, cerebellar, and spinal cord tissues (P < 0.01) were demonstrated in comparison to those of UC. These antifungal effects correlated with significant reduction of CSF (1→3)-ß-D-glucan levels vs UC (P < 0.05). These data establish new translational insights into treatment of CNS phaeohyphomycosis.


Asunto(s)
Anfotericina B/uso terapéutico , Antifúngicos/uso terapéutico , Ascomicetos/efectos de los fármacos , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Nitrilos/uso terapéutico , Feohifomicosis/tratamiento farmacológico , Piridinas/uso terapéutico , Triazoles/uso terapéutico , Anfotericina B/farmacología , Animales , Antifúngicos/farmacología , Ascomicetos/patogenicidad , Enfermedades del Sistema Nervioso Central/microbiología , Manejo de la Enfermedad , Modelos Animales de Enfermedad , Quimioterapia Combinada , Femenino , Humanos , Pruebas de Sensibilidad Microbiana , Nitrilos/farmacología , Piridinas/farmacología , Conejos , Triazoles/farmacología
18.
Pharm Res ; 37(12): 246, 2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33215292

RESUMEN

PURPOSE: The present study made an attempt to develop copper nanoparticles (Cu-NP) with antifungal property using green synthesis method. Copper oxide nanoparticles (CuO-NPs) botanically synthesized using Neem leaf extract (Azadirachta indica A. Juss) were characterized by using different techniques like; UV-visible spectrophotometry, FTIR, XRD, SEM and TEM. METHODS: Materials were chosen the disease free and fresh Azadirachta indica A. Juss were collected and identified at Center of Biodiversity and Taxonomy. The plant samples were vigorously washed with distilled water then shade dried followed by sterilization with 0.1% mercuric chloride for 20 s and again it was washed with distilled water. 15 g powder form of plant material was added to 200 ml double distilled, CO2 free and deionized water and kept in shaker at 80°C and 1500 rpm for six hours. After agitation, the extract was separated by regular centrifugation at 10,000 rpm followed by filtration by using whatmann filter paper. The final volume of 100 ml of supernatant was collected as pure extract and stored in cool place for further use. RESULTS: The final results confirm a significant inhibition of CuO-NPs for the test fungi. Additionally, CuO-NPs demonstrated an enhanced effect when combined with Neem leaf extract. A total of 20-30% improvement in activity was noticed after combination, which correlates with commonly used synthetic fungicides. The toxicity results reveal that A. indica extract and their combined fractions with CuO-NP were less toxic to the test seeds of experimental plant while as bulk Cu followed by biosynthesized CuO-NPs influenced the germination rate as compared to control pots. CONCLUSIONS: The study drops a concern of research and offers a promising route of developing Copper based green fungicides that can help to combat with modern issues of synthetic fungicides. An average size of 80 ± 15 nm monoclinic cupric oxide (CuO) and cubic cuprous oxides (Cu2O) nanocrystals that existed in mixed form were successfully developed.


Asunto(s)
Azadirachta/metabolismo , Cobre/metabolismo , Frutas/microbiología , Fungicidas Industriales/metabolismo , Tecnología Química Verde , Malus/microbiología , Nanopartículas del Metal , Extractos Vegetales/metabolismo , Alternaria/efectos de los fármacos , Alternaria/crecimiento & desarrollo , Ascomicetos/efectos de los fármacos , Ascomicetos/crecimiento & desarrollo , Cobre/farmacología , Fungicidas Industriales/farmacología , Hojas de la Planta/metabolismo
19.
J Agric Food Chem ; 68(43): 11939-11945, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33059450

RESUMEN

Three novel dimeric bithiophenes, echinbithiophenedimers A-C (1-3), along with two known thiophenes, 4 and 5, were obtained from Echinops latifolius, and their structures were identified through extensive spectroscopic analysis and electronic circular dichroism calculations. Compounds 1-3 possessed new carbon skeletons; they are dimeric bithiophenes with 1 and 2 featuring an unprecedented 1,3-dioxolane ring system and 3 featuring an unusual 1,4-dioxane ring. These compounds are the first examples of bithiophene dimers furnished by different cyclic diethers. Dimeric bithiophenes 1-3 had good antifungal activities against five phytopathogenic fungi, and compound 3 showed excellent activity against Alternaria alternate and Pyricularia oryzae, with a minimal inhibitory concentration value of 8 µg/mL, which was close to or higher than that of carbendazim. Moreover, its effect on the mycelial morphology was observed by scanning electron microscopy. Compounds 1-3, which were demonstrated to be nonphototoxic thiophenes, exhibited better nematicidal activity than the commercial nematicide ethoprophos against Meloidogyne incognita. This study revealed that dimeric bithiophenes containing 1,3-dioxolane or 1,4-dioxane rings could be used as novel antifungal and nematicidal agents for controlling plant fungal and nematode pathogens.


Asunto(s)
Antifúngicos/farmacología , Antinematodos/farmacología , Echinops (Planta)/química , Extractos Vegetales/farmacología , Tiofenos/farmacología , Alternaria/efectos de los fármacos , Animales , Antifúngicos/química , Antinematodos/química , Ascomicetos/efectos de los fármacos , Dimerización , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Extractos Vegetales/química , Tiofenos/química , Tylenchoidea/efectos de los fármacos
20.
Appl Environ Microbiol ; 86(24)2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33036992

RESUMEN

Gaeumannomyces graminis var. tritici is a soilborne pathogen that causes "take-all" disease, affecting cereal roots. In wheat, G. graminis var. tritici is the most important biotic factor, causing around 30 to 50% losses of yield. Chemical control of this fungal disease is difficult because G. graminis var. tritici is able to reside for a long time in soils. Therefore, the development of environmentally friendly biotechnological strategies to diminish the incidence of soilborne diseases is highly desirable. Natural products are a promising strategy for biocontrol of plant pathogens. A special emphasis is on medicinal plants due to their reported fungitoxic effects. Drimys winteri (canelo) is a medicinal plant that is widely used by the Mapuche ethnic group from Chile due to its anti-inflammatory activity. In addition, inhibitory effects of canelo against phytopathogenic fungi and pest insects have been reported. In this study, we isolated, purified, and identified six drimane sesquiterpenoid compounds from canelo (drimenin, drimenol, polygodial, isodrimeninol, valdiviolide, and drimendiol). Then, we evaluated their antimicrobial effects against G. graminis var. tritici. Compounds were identified by comparing Fourier-transform infrared spectroscopy (FTIR) data and the retention time in thin-layer chromatography (TLC) with those of pure standards. The putative antagonistic effects were confirmed by assessing hyphal cell wall damage using confocal microscopy and lipid peroxidation. Here, we reported the high potential of drimane sesquiterpenoids as natural antifungals against G. graminis var. tritici. Polygodial and isodrimeninol were the most effective, with 50% lethal concentrations (LC50s) between 7 and 10 µg ml-1 and higher levels of fungal lipid peroxidation seen. Accordingly, natural sesquiterpenoids purified from canelo are biologically active against G. graminis var. tritici and could be used as natural biofungicides for sustainable agriculture.IMPORTANCE More than two billion tons of pesticides are used every year worldwide. An interesting sustainable alternative to control plant pathogens is the use of natural products obtained from plants, mainly medicinal plants that offer secondary metabolites important to human/animal health. In this study, we isolated and identified six pure drimane sesquiterpenoids obtained from the bark of Drimys winteri Additionally, we evaluated their antifungal activities against Gaeumannomyces graminis (the main biotic factor affecting cereal production, especially wheat) by assessing fungal cell wall damage and lipid peroxidation. The compounds obtained showed important antifungal properties against G. graminis var. tritici, mainly isodrimenol, which was the second-most-active compound after polygodial, with an LC50 against G. graminis var. tritici of around 9.5 µg ml-1 This information could be useful for the development of new natural or hemisynthetic antifungal agents against soilborne phytopathogens that could be used in green agriculture.


Asunto(s)
Antifúngicos/farmacología , Ascomicetos/efectos de los fármacos , Drimys/química , Corteza de la Planta/química , Sesquiterpenos/farmacología , Pared Celular/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Sesquiterpenos Policíclicos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA