Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Plant Microbe Interact ; 32(3): 286-295, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30133338

RESUMEN

We identified a protein spot showing downregulation in the presence of Cryphonectria hypovirus 1 and tannic acid supplementation as a septin subunit with the highest homology to the Aspergillus nidulans aspA gene, an ortholog of the Saccharomyces cerevisiae Cdc11 gene. To analyze the functional role of this septin component (CpSep1), we constructed its null mutant and obtained a total of eight CpSep1-null mutants from 137 transformants. All CpSep1-null mutants showed retarded growth, with fewer aerial mycelia and intense pigmentation on plates of potato dextrose agar supplemented with L-methionine and biotin. When the marginal hyphae were examined, hyperbranching was observed in contrast to the wild type. The inhibition of colonial growth was partially recovered when the CpSep1-null mutants were cultured in the presence of the osmostabilizing sorbitol. Conidia production of the CpSep1-null mutants was significantly increased by at least 10-fold more. Interestingly, the conidial morphology of the CpSep1-null mutants changed to circular in contrast to the typical rod-shaped spores of the wild type, indicating a role of septin in the spore morphology of Cryphonectria parasitica. However, no differences in the germination process were observed. Virulence assays using excised chestnut bark, stromal pustule formation on chestnut stems, and apple inoculation indicated that the CpSep1 gene is important in pathogenicity.


Asunto(s)
Ascomicetos , Virus ARN , Septinas , Ascomicetos/genética , Ascomicetos/patogenicidad , Ascomicetos/virología , Regulación hacia Abajo , Mutación , Virus ARN/metabolismo , Septinas/genética , Esporas Fúngicas/genética , Virulencia/genética
2.
PLoS One ; 8(9): e73483, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24039956

RESUMEN

Proline dehydrogenase (Prodh) and Δ(1)-pyrroline-5-carboxylate dehydrogenase (P5Cdh) are two key enzymes in the cellular biogenesis of glutamate. Recombinant Prodh and P5Cdh proteins of the chestnut blight fungus Cryphonectria parasitica were investigated and showed activity in in vitro assays. Additionally, the C. parasitica Prodh and P5Cdh genes were able to complement the Saccharomyces cerevisiae put1 and put2 null mutants, respectively, to allow these proline auxotrophic yeast mutants to grow on media with proline as the sole source of nitrogen. Deletion of the Prodh gene in C. parasitica resulted in hypovirulence and a lower level of sporulation, whereas deletion of P5Cdh resulted in hypovirulence though no effect on sporulation; both Δprodh and Δp5cdh mutants were unable to grow on minimal medium with proline as the sole nitrogen source. In a wild-type strain, the intracellular level of proline and the activity of Prodh and P5Cdh increased after supplementation of exogenous proline, though the intracellular Δ(1)-pyrroline-5-carboxylate (P5C) content remained unchanged. Prodh and P5Cdh were both transcriptionally down-regulated in cells infected with hypovirus. The disruption of other genes with products involved in the conversion of arginine to ornithine, ornithine and glutamate to P5C, and P5C to proline in the cytosol did not appear to affect virulence; however, asexual sporulation was reduced in the Δpro1 and Δpro2 mutants. Taken together, our results showed that Prodh, P5Cdh and related mitochondrial functions are essential for virulence and that proline/glutamate pathway components may represent down-stream targets of hypovirus regulation in C. parasitica.


Asunto(s)
Ascomicetos/fisiología , Ascomicetos/patogenicidad , Eleocharis/parasitología , Ácido Glutámico/metabolismo , Pirroles/metabolismo , 1-Pirrolina-5-Carboxilato Deshidrogenasa/genética , 1-Pirrolina-5-Carboxilato Deshidrogenasa/metabolismo , Ascomicetos/genética , Ascomicetos/virología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Filogenia , Prolina Oxidasa/genética , Prolina Oxidasa/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Esporas Fúngicas/genética , Esporas Fúngicas/metabolismo , Virulencia
3.
Biochem Biophys Res Commun ; 401(2): 225-30, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20849822

RESUMEN

The fungus Curvularia protuberata carries a dsRNA virus, Curvularia thermal tolerance virus, and develops a three-way symbiotic relationship with plants to enable their survival in extreme soil temperatures. To learn about the genome of C. protuberata and possible mechanisms of heat tolerance a collection of expressed sequence tags (ESTs) were developed from two subtracted cDNA libraries from mycelial cultures grown under control and heat stress conditions. We analyzed 4207 ESTs that were assembled into 1926 unique transcripts. Of the unique transcripts, 1347 (70%) had sequence similarity with GenBank entries using BLASTX while the rest represented unknown proteins with no matches in the databases. The majority of ESTs with known similarities were homologues to fungal genes. The EST collection presents a rich source of heat stress and viral induced genes of a fungal endophyte that is involved in a symbiotic relationship with plants. Expression profile analyses of some candidate genes suggest possible involvement of osmoprotectants such as trehalose, glycine betaine, and taurine in the heat stress response. The fungal pigment melanin, and heat shock proteins also may be involved in the thermotolerance of C. protuberata in culture. The results assist in understanding the molecular basis of thermotolerance of the three-way symbiosis. Further studies will confirm or refute the involvement of these pathways in stress tolerance.


Asunto(s)
Ascomicetos/fisiología , Ascomicetos/virología , Respuesta al Choque Térmico/genética , Poaceae/microbiología , Simbiosis/genética , Ascomicetos/genética , Betaína/metabolismo , Catalasa/genética , ADN Complementario/genética , ADN de Hongos/genética , Etiquetas de Secuencia Expresada , Perfilación de la Expresión Génica , Glutatión Transferasa/genética , Proteínas de Choque Térmico/genética , Melaninas/genética , Taurina/genética , Trehalosa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA