Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 553
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Clin Respir J ; 18(4): e13742, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38664220

RESUMEN

BACKGROUND: Allergic asthma is an important respiratory system problem characterized by airway inflammation, breathlessness, and bronchoconstriction. Allergic asthma and its outcomes are triggered by type 2 allergic immune responses. Tectorigenin is a methoxy-isoflavone with anti-inflammatory effects. In this study, we investigated the effects of tectorigenin on the pathophysiology of allergic asthma in an animal model. METHODS: Asthmatic mice were treated with tectorigenin. Then airway hyperresponsiveness (AHR), eosinophil percentage, levels of interleukin (IL)-33, IL-25, IL-13, IL-5, IL-4, total and ovalbumin (OVA)-specific immunoglobulin (Ig)E, and lung histopathology were evaluated. RESULT: Tectorigenin significantly (P 〈 0.05) reduced eosinophil infiltration (41 ± 7%) in the broncho-alveolar lavage fluid (BALF), serum IL-5 level (41 ± 5, pg/mL), and bronchial and vascular inflammation (scores of 1.3 ± 0.2 and 1.1 ± 0.3, respectively) but had no significant effects on AHR, serum levels of IL-33, -25, -13, and -4 (403 ± 24, 56 ± 7, 154 ± 11, and 89 ± 6 pg/mL, respectively), total and OVA-specific IgE (2684 ± 265 and 264 ± 19 ng/mL, respectively), goblet cell hyperplasia, and mucus production. CONCLUSION: Tectorigenin could control inflammation and the secretion of inflammatory mediators of asthma, so it can be regarded as a potential antiasthma treatment with the ability to control eosinophilia-related problems.


Asunto(s)
Antiinflamatorios , Antioxidantes , Asma , Modelos Animales de Enfermedad , Isoflavonas , Ratones Endogámicos BALB C , Ovalbúmina , Animales , Asma/tratamiento farmacológico , Asma/inducido químicamente , Asma/metabolismo , Asma/inmunología , Asma/patología , Ratones , Ovalbúmina/toxicidad , Ovalbúmina/efectos adversos , Isoflavonas/farmacología , Isoflavonas/uso terapéutico , Antioxidantes/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Inmunoglobulina E/sangre , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Femenino , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/inmunología , Citocinas/metabolismo
2.
J Cell Mol Med ; 28(8): e18356, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38668995

RESUMEN

Trichospira verticillata is an annual herb that belongs to the family Asteraceae. Trichospira verticillata extract (TVE) elicits anti-plasmodial activity; however, there has been no detailed report about its anti-inflammatory effects and molecular mechanisms. In addition, herbal plants exhibit anti-inflammatory effects by suppressing the NLRP3 inflammasome. Therefore, the primary goal of this study was to examine the effects of TVE on NLRP3 inflammasome activation by measuring interleukin-1ß (IL-1ß) secretion. We treated lipopolysaccharides (LPS)-primed J774A.1 and THP-1 cells with TVE, which attenuated NLRP3 inflammasome activation. Notably, TVE did not affect nuclear factor-kappa B (NF-κB) signalling or intracellular reactive oxygen species (ROS) production and potassium efflux, suggesting that it inactivates the NLRP3 inflammasome via other mechanisms. Moreover, TVE suppressed the formation of apoptosis-associated speck-like protein (ASC) speck and oligomerization. Immunoprecipitation data revealed that TVE reduced the binding of NLRP3 to NIMA-related kinase 7 (NEK7), resulting in reduced ASC oligomerization and speck formation. Moreover, TVE alleviated neutrophilic asthma (NA) symptoms in mice. This study demonstrates that TVE modulates the binding of NLPR3 to NEK7, thereby reporting novel insights into the mechanism by which TVE inhibits NLRP3 inflammasome. These findings suggest TVE as a potential therapeutic of NLRP3 inflammasome-mediated diseases, particularly NA.


Asunto(s)
Antiinflamatorios , Asma , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Neutrófilos , Especies Reactivas de Oxígeno , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Inflamasomas/metabolismo , Asma/metabolismo , Asma/tratamiento farmacológico , Asma/inmunología , Asma/patología , Ratones , Antiinflamatorios/farmacología , Humanos , Neutrófilos/metabolismo , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Especies Reactivas de Oxígeno/metabolismo , Lipopolisacáridos , Quinasas Relacionadas con NIMA/metabolismo , Interleucina-1beta/metabolismo , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Modelos Animales de Enfermedad , Extractos Vegetales/farmacología , Células THP-1
3.
BMC Pulm Med ; 24(1): 137, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500104

RESUMEN

BACKGROUND: Yanghe Pingchuan decoction (YPD) has been used for asthma treatment for many years in China. We sought to understand the mechanism of YPD, and find more potential targets for YPD-based treatment of asthma. METHODS: An ovalbumin-induced asthma model in rats was created. Staining (hematoxylin and eosin, Masson) was used to evaluate the treatment effect of YPD. RNA-sequencing was carried out to analyze global gene expression, and differentially expressed genes (DEGs) were identified. Analysis of the functional enrichment of genes was done using the Gene Ontology database (GO). Analysis of signaling-pathway enrichment of genes was done using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Real-time reverse transcription-quantitative polymerase chain reaction was undertaken to measure expression of DEGs. RESULTS: Pathology showed that YPD had an improvement effect on rats with asthma. RNA-sequencing showed that YPD led to upregulated and downregulated expression of many genes. The YPD-based control of asthma pathogenesis may be related to calcium ion (Ca2+) binding, inorganic cation transmembrane transporter activity, microtubule motor activity, and control of canonical signaling (e.g., peroxisome proliferator-activated receptor, calcium, cyclic adenosine monophosphate). Enrichment analyses suggested that asthma pathogenesis may be related to Ca2 + binding and contraction of vascular smooth muscle. A validation experiment showed that YPD could reduce the Ca2 + concentration by inhibiting the Angiopoietin-II (Ang-II)/Phospholipase (PLA)/calmodulin (CaM0 signaling axis. CONCLUSION: Control of asthma pathogenesis by YPD may be related to inhibition of the Ang-II/PLA/CaM signaling axis, reduction of the Ca2+ concentration, and relaxation of airway smooth muscle (ASM).


Asunto(s)
Asma , Calcio , Medicamentos Herbarios Chinos , Ratas , Animales , Calcio/efectos adversos , Asma/tratamiento farmacológico , Asma/genética , Asma/metabolismo , ARN/efectos adversos , Expresión Génica , Poliésteres/efectos adversos
4.
Zhongguo Zhen Jiu ; 44(3): 295-302, 2024 Mar 12.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38467504

RESUMEN

OBJECTIVES: To explore the effect and mechanism of acupuncture at "Feishu" (BL 13) and "Dingchuan" (EX-B 1), and "Kongzui" (LU 6) and "Yuji" (LU 10) for relaxing the airway smooth muscle in the rats during acute asthma attack and compare the effect among the two pairs of acupoints and the acupoints combination. METHODS: Forty SD male rats with SPF grade were randomly divided into a blank group, a model group, a pair-point A group (acupuncture at "Feishu" [BL 13] and "Dingchuan" [EX-B 1]), a pair-point B group (acupuncture at "Kongzui" [LU 6] and "Yuji" [LU 10]) and a point combination group (acupuncture at "Feishu" [BL 13] , "Dingchuan" [EX-B 1], "Kongzui" [LU 6] and "Yuji" [LU 10]), with 8 rats in each group. Except the rats in the blank group, the model of acute asthma attack was induced by ovalbumin (OVA) combined with aluminum hydroxide gel in the rest groups. Started on the 15th day of modeling, except in the blank group and the model group, acupuncture was delivered in the other groups, 30 min in each intervention, once daily, for 14 days. In each group, the latent period of asthma inducing was measured; the lung resistance (LR) and dynamic lung compliance (Cdyn) were determined using lung function detector; the levels of endothelin-1 (ET-1), tumor necrosis factor-α (TNF-α), cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) in serum and bronchoalveolar lavage fluid (BALF) were measured by ELISA; with Masson staining and electron microscopy adopted, the morphology and ultrastructure of airway smooth muscle of the rats were observed; the mRNA and protein expressions of ET-1 and beta-2 adrenergic receptor (ß2-AR) were detected by quantitative real-time fluorescence and Western blot, respectively. RESULTS: Compared with the blank group, the latent period of asthma inducing was shortened (P<0.05), RL increased and Cdyn decreased (P<0.05) with the different concentrations of methacholine (0.025 mg/kg, 0.05 mg/kg, 0.1 mg/kg, 0.2 mg/kg) in the model group. In the pair-point A group, the pair-point B group and the point combination group, the latent period of asthma inducing was prolonged (P<0.05), RL decreased and Cdyn increased (P<0.05) with different concentrations of methacholine when compared with those in the model group; and the latent period of asthma inducing in the point combination group was longer than that in the pair-point A group (P<0.05). Compared with the blank group, the levels of ET-1, TNF-α and cGMP in the serum and BALF were elevated (P<0.05), and those of cAMP reduced (P<0.05) in the model group. The levels of ET-1, TNF-α and cGMP in the serum and BALF were reduced (P<0.05), and those of cAMP elevated (P<0.05) in the pair-point A group, the pair-point B group and the point combination group when compared with those in the model group. In the blank group, the lung tissue was normal structurally. In the model group, the collagen fibers were proliferated increasingly, the smooth muscle was thickened, the mitochondria were swollen, and their cristae disrupted and reduced massively. In the pair-point B group, the collagen fibers were proliferated, the smooth muscle was thicker compared with that in the blank group, the mitochondria were mildly swollen and their cristae disrupted partially. In the pair-point A group and the point combination group, the lung tissue changes were obviously alleviated in comparison with the model group, the mitochondria were slightly swollen and their cristae disrupted occasionally. Compared with the blank group, the mRNA and protein expression of ET-1 increased and that of ß2-AR decreased in the lung tissue of the model group (P<0.05). In the pair-point A group, the pair-point B group and the point combination group, the mRNA and protein expression of ET-1 was reduced and that of ß2-AR elevated in the lung tissue when compared with those in the model group (P<0.05). In comparison with the pair-point A group, the mRNA expression of ß2-AR was elevated in the point combination group (P<0.05). When compared with the pair-point B group, the mRNA expression of ß2-AR increased, the protein expression of ET-1 decreased (P<0.05) in the point combination group. CONCLUSIONS: Acupuncture at "Feishu" (BL 13) and "Dingchuan" (EX-B 1), "Kongzui" (LU 6) and "Yuji" (LU 10), two pairs of acupoints relieves the airway smooth muscle spasm in the rats during acute asthma attack, which may be related to inhibiting the mRNA and protein expression of ET-1 to reduce the excretion of ET-1 and TNF-α; while enhancing the mRNA and protein expression of ß2-AR to balance the levels of cAMP and cGMP. The effect is optimal when acupuncture is delivered at two pairs of acupoints simultaneously.


Asunto(s)
Terapia por Acupuntura , Asma , Ratas , Masculino , Animales , Factor de Necrosis Tumoral alfa/metabolismo , Cloruro de Metacolina/metabolismo , Asma/terapia , Asma/metabolismo , Pulmón , ARN Mensajero/metabolismo , Colágeno/metabolismo
5.
Crit Rev Immunol ; 44(2): 77-87, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38305338

RESUMEN

Rhizoma Dioscoreae Nipponicae (RDN) is a traditional Chinese medicine that widely applied in the treatment of human diseases. This study aims to explore the therapeutic potential of RDN in asthma and the underlying mechanisms. A mouse model of asthma was established by the stimulation of ovalbumin (OVA). HE staining was performed to detect the pathological injuries of tracheal tissues. The protein expression of collagen I, FN1, α-SMA (airway remodeling markers), and p-p38 (a marker of the p38 MAPK pathway) were detected by Western blot. Eosinophils were then isolated from the model mice. Cell viability and ROS level were measured by CCK-8 and Flow cytometry, respectively. The mRNA expression of GPX4 and ACSL4 (ferroptosis markers) in eosinophils were measured by qRT-PCR. RDN significantly reduced the numbers of total cells and eosnophils in bronchoalveolar lavage fluid (BALF), inhibited inflammatory cell infiltration, and down-regulated remodeling markers (Collagen I, FN1, and α-SMA) in OVA-induced mice. The p38 MAPK pathway was blocked by the intervention of RDN in the model mice, and its blocking weakens the poor manifestations of OVA-induced asthma. In addition, RDN induced the ferroptosis of eosnophils both in vitro and in vivo. Blocking of the p38 MAPK pathway also enhanced the ferroptosis of eosnophils in vitro, evidenced by the decreased cell viability and GPX4 expression, and increased ROS level and ACSL4 expression. RDN induced the ferroptosis of eosinophils through inhibiting the p38 MAPK pathway, contributing to the remission of asthma.


Asunto(s)
Asma , Ferroptosis , Animales , Humanos , Ratones , Asma/metabolismo , Colágeno/metabolismo , Modelos Animales de Enfermedad , Eosinófilos/metabolismo , Pulmón/patología , Ovalbúmina/efectos adversos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
6.
Phytomedicine ; 126: 155470, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417242

RESUMEN

BACKGROUND: Asthma affects 3% of the global population, leading to over 0.25 million deaths. Due to its complexity, asthma is difficult to cure or prevent, and current therapies have limitations. This has led to a growing demand for alternative asthma treatments. We found rosmarinic acid (RosA) as a potential new drug candidate from natural medicine. However, RosA has poor bioavailability and remains mainly in the gastrointestinal tract after oral administration, suggesting the involvement of gut microbiota in its bioactivity. PURPOSE: To investigate the mechanism of RosA in alleviating allergic asthma by gut-lung axis. METHODS: We used 16S rRNA gene sequencing and metabolites analysis to investigate RosA's modulation of gut microbiota. Techniques of molecular biology and metabolomics were employed to study the pharmacological mechanism of RosA. Cohousing was used to confirm the involvement of gut microbiota in RosA-induced improvement of allergic asthma. RESULTS: RosA decreased cholate levels from spore-forming bacteria, leading to reduced 5-hydroxytryptamine (5-HT) synthesis, bronchoconstriction, vasodilation, and inflammatory cell infiltration. It also increased short-chain fatty acids (SCFAs) levels, facilitating the expression of intestinal tight junction proteins to promote intestinal integrity. SCFAs upregulated intestinal monocarboxylate transporters (MCTs), thereby improving their systemic delivery to reduce Th2/ILC2 mediated inflammatory response and suppress eosinophil influx and mucus production in lung. Additionally, RosA inhibited lipopolysaccharide (LPS) production and translocation, leading to reduced TLR4-NFκB mediated pulmonary inflammation and oxidative stress. CONCLUSIONS: The anti-asthmatic mechanism of oral RosA is primarily driven by modulation of gut microbiota-derived 5-HT, SCFAs, and LPS, achieving a combined synergistic effect. RosA is a safe, effective, and reliable drug candidate that could potentially replace glucocorticoids for asthma treatment.


Asunto(s)
Asma , Ácido Rosmarínico , Humanos , Inmunidad Innata , ARN Ribosómico 16S/genética , Lipopolisacáridos , Serotonina , Linfocitos , Asma/tratamiento farmacológico , Asma/metabolismo , Pulmón/metabolismo , Ácidos Grasos Volátiles/metabolismo
7.
Prostaglandins Other Lipid Mediat ; 170: 106803, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38040190

RESUMEN

Resolvin (Rv) and lipoxin (Lx) play important regulative roles in the development of several inflammation-related diseases. The dysregulation of their metabolic network is believed to be closely related to the occurrence and development of asthma. The Hyssopus Cuspidatus Boriss extract (SXCF) has long been used as a treatment for asthma, while the mechanism of anti-inflammatory and anti-asthma action targeting Rv and Lx has not been thoroughly investigated. In this study, we aimed to investigate the effects of SXCF on Rv, Lx in ovalbumin (OVA)-sensitized asthmatic mice. The changes of Rv, Lx before and after drug administration were analyzed based on high sensitivity chromatography-multiple response monitoring (UHPLC-MRM) analysis and multivariate statistics. The pathology exploration included behavioral changes of mice, IgE in serum, cytokines in BALF, and lung tissue sections stained with H&E. It was found that SXCF significantly modulated the metabolic disturbance of Rv, Lx due to asthma. Its modulation effect was significantly better than that of dexamethasone and rosmarinic acid which is the first-line clinical medicine and the main component of Hyssopus Cuspidatus Boriss, respectively. SXCF is demonstrated to be a potential anti-asthmatic drug with significant disease-modifying effects on OVA-induced asthma. The modulation of Rv and Lx is a possible underlying mechanism of the SXCF effects.


Asunto(s)
Antiasmáticos , Asma , Lipoxinas , Ratones , Animales , Lipoxinas/farmacología , Asma/inducido químicamente , Asma/tratamiento farmacológico , Asma/metabolismo , Antiasmáticos/efectos adversos , Pulmón/metabolismo , Citocinas/metabolismo , Extractos Vegetales/farmacología , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad
8.
Altern Ther Health Med ; 30(1): 270-277, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37793329

RESUMEN

Objective: Bronchial asthma is a prevalent respiratory disorder characterized by airway inflammation. This study aimed to investigate the protective effect of Pingchuanning decoction (PCN) on airway inflammation in bronchial asthma, focusing on the role of autophagy and its underlying molecular mechanism. Methods: Using an in vitro lipopolysaccharide (LPS)-induced inflammatory damage model of human airway epithelial cells (16HBE), we assessed the effect of PCN. Various experiments were performed to evaluate the expression of autophagy-related genes, autophagosome and vesicle counts, and reactive oxygen species (ROS) levels. Results: First, PCN reduced LPS-induced cellular inflammation. Second, PCN decreased the number of autophagosomes and autophagic vesicles. And third, PCN significantly reduced reactive oxygen species (ROS) levels. Most importantly, PCN also down-regulated LPS-induced expression of HMGB1, Beclin-1, and autophagy-related gene 5 (ATG5) while enhancing the expression of B-cell lymphoma 2 (Bcl-2), which further reduced the LC3II/I ratio. Conclusion: PCN reduces the 16HBE inflammatory response by inhibiting the overexpression of ROS/HMGB1/Beclin-1 mediated cell autophagy. Therefore, it may serve as a potential drug for treating bronchial asthma.


Asunto(s)
Asma , Proteína HMGB1 , Humanos , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/farmacología , Especies Reactivas de Oxígeno/uso terapéutico , Beclina-1/genética , Proteína HMGB1/genética , Proteína HMGB1/farmacología , Proteína HMGB1/uso terapéutico , Lipopolisacáridos , Asma/tratamiento farmacológico , Asma/metabolismo , Asma/patología , Autofagia/genética , Inflamación/tratamiento farmacológico
9.
J Ethnopharmacol ; 322: 117614, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38113990

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ephedra sinica Stapf (Mahuang) and Schisandra chinensis (Turcz.) Baill (Wuweizi) are commonly utilized in traditional Chinese medicine for the treatment of cough and asthma. The synergistic effect of Mahuang-Wuweizi herb pair enhances their efficacy in alleviating respiratory symptoms, making them extensively employed in the management of respiratory disorders. Although previous studies have demonstrated the therapeutic potential of Mahuang-Wuweizi in pulmonary fibrosis, the precise mechanism underlying their effectiveness against asthma remains elusive. AIM OF THE STUDY: The objective of this study is to investigate the mechanism underlying the preventive and therapeutic effects of Mahuang-Wuweizi herb pair on asthma progression, focusing on airway inflammation and airway remodeling. MATERIALS AND METHODS: The active constituents and potential mechanisms of Mahuang-Wuweizi in the management of asthma were elucidated through network pharmacology analysis. Liquid chromatography tandem mass spectrometry (LC-MS/MS) was used to detect the main components of Mahuang-Wuweizi decoction. A rat model of bronchial asthma was established, and the effects of Mahuang-Wuweizi were investigated using hematoxylin-eosin (HE) staining, immunohistochemistry (IHC) staining, enzyme-linked immunosorbent assay (ELISA), Western blotting (WB), and real-time reverse transcription polymerase chain reaction (RT-qPCR). RESULTS: The results of network pharmacological prediction showed that Mahuang had 22 active components and Wuweizi had 8 active components, with 225 potential targets. 1159 targets associated with asthma and 115 targets that overlap between drugs and diseases were identified. These include interleukin-6 (IL-6), tumor necrosis factor (TNF), Tumor Protein 53, interleukin-1ß (IL-1ß), as well as other essential targets. Additionally, there is a potential correlation between asthma and Phosphatidylinositol 3 kinase (PI3K)/Protein Kinase B (AKT) signaling pathway, calcium ion channels, nuclear factor-kappa B (NF-κB) signaling pathway, and other signaling pathways. The animal experiment results demonstrated that treatment with Mahuang and Wuweizi, in comparison to the model group, exhibited improvements in lung tissue pathological injury, reduction in collagen fiber accumulation around the airway and proliferation of airway smooth muscle, decrease in concentration levels of IL-6, TNF-α and IL-1ß in lung tissue, as well as alleviation of airway inflammation. Furthermore, Mahuang and Wuweizi suppressed the expression of phospholipase C (PLC), transient receptor potential channel 1 (TRPC1), myosin light chain kinase (MLCK), NF-κB P65 protein in ovalbumin (OVA)-sensitized rat lung tissue and downregulated the mRNA expression of PLC, TRPC1, PI3K, AKT, NF-κB P65 in asthmatic rats. These findings were consistent with network pharmacological analysis. CONCLUSION: The results show that the synergistic interaction between Mahuang and Wuweizi occur, and they can effectively reduce airway remodeling and airway inflammation induced by inhaling OVA in bronchial asthma rats by inhibiting the expression of PLC/TRPC1/PI3K/AKT/NF-κB signaling pathway. Therefore, Mahuang and Wuweizi may be potential drugs to treat asthma.


Asunto(s)
Asma , Ephedra sinica , Schisandra , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ephedra sinica/química , FN-kappa B/metabolismo , Interleucina-6 , Fosfatidilinositol 3-Quinasas , Cromatografía Liquida , Remodelación de las Vías Aéreas (Respiratorias) , Espectrometría de Masas en Tándem , Asma/metabolismo , Fosfatidilinositol 3-Quinasa , Inflamación , Factor de Necrosis Tumoral alfa
10.
J Ethnopharmacol ; 322: 117650, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38135230

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Shegan Mahuang Decoction (SMD) is a classic traditional Chinese medicine (TCM) formula for asthma treatment, but the anti-asthma mechanism of SMD is still not fully studied. AIMS OF THE STUDY: In this study, we established an ovalbumin (OVA)-induced asthma rat model and treated it with SMD to observe its anti-asthma effect and explore the related mechanism. MATERIALS AND METHODS: We evaluated the anti-inflammatory effect of SMD via testing the levels of immunoglobulin E (IgE), C-reactive protein (CRP), interleukin-4 (IL-4), interleukin-6 (IL-6) in serum and performing the hematoxylin-eosin (H&E) staining of lung tissue slices. We analyzed the variations of metabolites and proteins in the lung tissue of different groups using liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomics and TMT-based proteomics approaches. The metabolic biomarkers and differentially expressed proteins (DEPs) were picked, and the related signal transduction pathways were also investigated. In addition, the key proteins on the signaling pathway were validated through western blotting (WB) experiment to reveal the anti-asthma mechanism of SMD. RESULTS: The results showed that the SMD could significantly reduce the serum levels of IgE, CRP, IL-4, and IL-6 and attenuate the OVA-induced pathological changes in lung tissue. A total of 34 metabolic biomarkers and 84 DEPs were screened from rat lung tissue, which were mainly associated with lipid metabolism, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation, the excessive production of reactive oxygen species (ROS), and lysosome pathway. Besides, SMD could inhibit the myeloid differentiation factor 88 (MyD88)/inhibitor of kappa B kinase (IKK)/nuclear factor-kappa B (NF-κB) signaling pathway to exhibit anti-inflammatory activities. CONCLUSIONS: SMD exhibited a therapeutic effect on asthma, which possibly be exerted by inhibiting the MyD88/IKK/NF-κB signaling pathway.


Asunto(s)
Antiasmáticos , Asma , Medicamentos Herbarios Chinos , Ratas , Animales , Proteoma , Interleucina-4/metabolismo , FN-kappa B/metabolismo , Interleucina-6/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Multiómica , Asma/inducido químicamente , Asma/tratamiento farmacológico , Asma/metabolismo , Pulmón , Antiasmáticos/farmacología , Antiasmáticos/uso terapéutico , Antiinflamatorios/farmacología , Metaboloma , Biomarcadores/metabolismo , Inmunoglobulina E , Ovalbúmina/farmacología
11.
Food Funct ; 14(23): 10605-10616, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37961950

RESUMEN

Asthma, a chronic airway inflammatory disease, has a complicated pathogenesis and limited therapeutic treatment. Evidence shows that the intestinal microbiota exhibits crucial functional interaction with asthma syndrome. Liubao tea (LBT), a type of postfermented tea in China, positively modulates gut microbiota. However, the potential benefits of LBT extract (LBTE) for allergic asthma are still not understood. Herein, the anti-inflammatory effects of LBTE and its modulation of the gut microbiota of asthmatic mice induced by ovalbumin were explored. The results demonstrate that LBTE significantly inhibited airway hyper-responsiveness and restrained the proliferation of proinflammatory cytokines and inflammatory cells associated with allergic asthma. Additionally, LBTE suppressed inflammatory infiltration, mucus secretion, and excessive goblet cell production by downregulating the gene expression of inflammatory indicators. Interestingly, fecal microbiota transplantation results further implied that the modulation of LBTE on gut microbiota played an essential role in alleviating airway inflammatory symptoms of allergic asthma.


Asunto(s)
Asma , Microbioma Gastrointestinal , Animales , Ratones , Ovalbúmina/efectos adversos , Asma/metabolismo , Citocinas/metabolismo , Té/metabolismo , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad , Pulmón , Líquido del Lavado Bronquioalveolar
12.
Zhongguo Zhen Jiu ; 43(11): 1287-1292, 2023 Nov 12.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-37984923

RESUMEN

OBJECTIVES: To explore the possible mechanism of Shao's five-needle therapy pretreatment on relieving airway inflammatory response in asthmatic rats. METHODS: Forty SPF-grade SD rats were randomly divided into a blank group, a model group, an acupuncture group, and a medication group, with 10 rats in each group. Except the blank group, asthma model was established by aerosol inhalation of ovalbumin in the other 3 groups. The rats in the acupuncture group were treated with acupuncture at "Dazhui" (GV 14) and bilateral "Feishu" (BL 13) and "Fengmen" (BL 12), with each session lasting for 20 min. Acupuncture was given before each motivating, once daily for 7 consecutive days. The rats in the medication group were treated with intraperitoneal injection of dexamethasone sodium phosphate solution before each motivating, once daily for 7 days. General situation of the rats was observed in each group; ELISA method was used to detect the levels of inflammatory cytokines interleukin (IL)-1ß and IL-18 in serum; immunofluorescence staining method was performed to assess the expression of reactive oxygen species (ROS) in lung tissues; Western blot method was used to measure the protein expression of thioredoxin interacting protein (TXNIP), NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), and Caspase-1 in lung tissues. RESULTS: The rats in the blank group exhibited normal behavior, while those in the model group showed signs of respiratory distress, ear scratching, cheek rubbing, and dysphoria. Compared with the model group, the rats in the acupuncture group and the medication group showed stable respiration and relatively agile responses. Compared with those in the blank group, the serum levels of IL-18 and IL-1ß were elevated (P<0.01), the expression intensity of ROS was increased, and the protein expressions of TXNIP, NLRP3, ASC and Caspase-1 in lung tissues were increased (P<0.01) in the model group. Compared with those in the model group, the serum levels of IL-18 and IL-1ß were reduced (P<0.01), the expression intensity of ROS was lowered, and the protein expressions of TXNIP, NLRP3, ASC and Caspase-1 in lung tissues were reduced (P<0.01) in the acupuncture group and the medication group. Compared with the medication group, the protein expression of ASC in lung tissue was reduced in the acupuncture group (P<0.05). CONCLUSIONS: Pretreatment of Shao's five-needle therapy could alleviate airway inflammatory response in asthmatic rats by reducing ROS levels and decreasing the aggregation and activation of pathway-related proteins in the ROS/TXNIP/NLRP3 pathway, ultimately leading to decreased secretion of IL-1ß and IL-18. This mechanism may contribute to the effectiveness of Shao's five-needle therapy in preventing and treating asthma.


Asunto(s)
Asma , Proteína con Dominio Pirina 3 de la Familia NLR , Ratas , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Proteínas NLR , Ratas Sprague-Dawley , Asma/genética , Asma/terapia , Asma/metabolismo , Caspasas , Proteínas de Ciclo Celular
13.
Exp Biol Med (Maywood) ; 248(17): 1492-1499, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37837396

RESUMEN

Hyperoxia exposure of immature lungs contributes to lung injury and airway hyperreactivity. Up to now, treatments of airway hyperreactivity induced by hyperoxia exposure have been ineffective. The aim of this study was to investigate the effects of quercetin on hyperoxia-induced airway hyperreactivity, impaired relaxation, and lung inflammation. Newborn rats were exposed to hyperoxia (FiO2 > 95%) or ambient air (AA) for seven days. Subgroups were injected with quercetin (10 mg·kg-1·day-1). After exposures, tracheal cylinders were prepared for in vitro wire myography. Contraction to methacholine was measured in the presence or absence of organ bath quercetin and/or Nω-nitro-L-arginine methyl ester (L-NAME). Relaxation responses were evoked in preconstricted tissues using electrical field stimulation (EFS). Lung tumor necrosis factor-alpha (TNF-α) and interleukin-1ß (IL-1ß) levels were measured by enzyme-linked immunosorbent assay (ELISA). A P < 0.05 was considered statistically significant. Contractile responses of tracheal smooth muscle (TSM) of hyperoxic animals were significantly increased compared with AA animals (P < 0.001). Treatment with quercetin significantly reduced contraction in hyperoxic groups compared with hyperoxic control (P < 0.01), but did not have any effect in AA groups. In hyperoxic animals, relaxation of TSM was significantly reduced compared with AA animals (P < 0.001), while supplementation of quercetin restored the lost relaxation in hyperoxic groups. Incubation of preparations in L-NAME significantly reduced the quercetin effects on both contraction and relaxation (P < 0.01). Treatment of hyperoxic animals with quercetin significantly decreased the expression of TNF-α and IL-1ß compared with hyperoxic controls (P < 0.001 and P < 0.01, respectively).The findings of this study demonstrate the protective effect of quercetin on airway hyperreactivity and suggest that quercetin might serve as a novel therapy to prevent and treat neonatal hyperoxia-induced airway hyperreactivity and inflammation.


Asunto(s)
Asma , Hiperoxia , Ratas , Animales , Ratas Sprague-Dawley , Animales Recién Nacidos , Quercetina/farmacología , NG-Nitroarginina Metil Éster/farmacología , Hiperoxia/complicaciones , Hiperoxia/patología , Factor de Necrosis Tumoral alfa/metabolismo , Pulmón/patología , Asma/metabolismo , Suplementos Dietéticos
14.
J Pharm Biomed Anal ; 236: 115728, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37793314

RESUMEN

BACKGROUND: Pingchuan formula is a traditional Chinese herbal prescription for asthma, but its components and underlying mechanisms remain unclear. Here, we evaluated its anti-asthmatic actvity and regulatory effects on the gut microbiota in mice based on the traditional Chinese medicine Zang-Fu theory, which proposed the exterior-interior relationship between the lung and the large intestine. METHODS: Mouse model withovalbumin (OVA)-induced asthma was used to assess the protective effect of the water extract of Pingchuan formula (PC). The chemical compounds of PC and mouse serum metabolites were identified by Ultraperformance liquid chromatography-Q Exactive HF-X spectrometry. Gut microbiota was evaluated by 16 S rRNA gene sequencing. The gut microbiota was depleted with a broad-spectrum antibiotic mixture (Abx) to explore whether it plays a role in the protective effects of PC. RESULTS: PC mainly contains phenols, flavonoids, alkaloids, carboxylic acids, and their derivatives. PC attenuated OVA-induced asthma in mice by alleviating inflammatory infiltration, indicated by decreased levels of IL-18, IL-6, IL-4, and Eotaxin in lung tissues. PC treatment altered the serum metabolites and affected the pyrimidine pathway. In addition, our results showed that acacetin and abscisic acid were the key serum metabolites PC treatment changed the composition of gut microbiota by increasing the relative abundance of Clostridia_UCG_014 and Akkermansia while decreasing Blautia, Barnesiella, and Clostridium_Ⅲ at the genus level. Importantly, the Abx treatment partly abolished the anti-asthmatic effect of PC. CONCLUSION: We demonstrated that PC could alleviate OVA-induced asthma in mice and protect against inflammatory infiltration in lungs via modulating the serum metabolites and gut microbiota, thereby providing a new reference for the therapeutic effect of PC.


Asunto(s)
Antiasmáticos , Asma , Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Ratones , Animales , Ovalbúmina , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Asma/inducido químicamente , Asma/tratamiento farmacológico , Asma/metabolismo , Antiasmáticos/farmacología , Antiasmáticos/uso terapéutico
15.
Zhongguo Zhen Jiu ; 43(8): 937-43, 2023 Aug 12.
Artículo en Chino | MEDLINE | ID: mdl-37577892

RESUMEN

OBJECTIVE: To observe the effects of acupuncture at "Kongzui" (LU 6) and "Yuji" (LU 10) on the latent period of inducing asthma, pulmonary function and the expression of endothelin-1 (ET-1) and metallothionein-2 (MT-2) in asthma rats, and to explore the possible mechanism of acupuncture in alleviating airway smooth muscle spasm and improving the acute attack of asthma. METHODS: A total of 40 male SD rats of SPF-grade were randomly divided into a normal group, a model group, a medication group and an acupuncture group, 10 rats in each group. Except for the normal group, ovalbumin sensitization method was used to establish the asthma model in the other 3 groups. Salbutamol nebulization was adopted in the medication group, while acupuncture was applied at bilateral "Kongzui" (LU 6) and "Yuji" (LU 10) in the acupuncture group. The intervention was given once a day for 14 days in the two groups. The latent period of inducing asthma and pulmonary function were observed, the levels of ET-1 and tumor necrosis factor (TNF)-α in serum and bronchoalveolar lavage fluid (BALF) were detected by ELISA method, the morphology of the airway was observed by Masson staining, the ultrastructure of the airway smooth muscle was observed by transmission electron microscopy, the mRNA and protein expression of ET-1 and MT-2 in lung tissue was detected by real-time PCR and Western blot methods. RESULTS: Compared with the normal group, in the model group, the latent period of inducing asthma was shortened (P<0.01); the airway resistance (RL) was increased while the dynamic compliance (Cdyn) was decreased (P<0.01, P<0.05); the levels of ET-1 and TNF-α in serum and BALF were increased (P<0.01); collagen fibers and collagen depositions were found around the bronchi, airway smooth muscle was thickened, the cell damage was severe and mitochondria were swollen; the mRNA and protein expression of ET-1 was increased while the mRNA and protein expression of MT-2 was decreased (P<0.01). Compared with the model group, in the acupuncture group, the latent period of inducing asthma was prolonged (P<0.05), the RL was decreased while the Cdyn was increased (P<0.01, P<0.05). Compared with the model group, in the medication group and the acupuncture group, the levels of ET-1 and TNF-α in serum and BALF were decreased (P<0.01, P<0.05); collagen fibers and collagen depositions around the bronchi were reduced, the thickened airway smooth muscle was lightened, the cell damage was improved; the mRNA and protein expression of ET-1 was decreased while the mRNA and protein expression of MT-2 was increased (P<0.01). Compared with the medication group, the mRNA expression of MT-2 was increased in the acupuncture group (P<0.05). CONCLUSION: Acupuncture at "Kongzui" (LU 6) and "Yuji" (LU 10) can improve the pulmonary function and alleviate the airway smooth muscle spasm in rats with asthma. Its mechanism may be related to the down-regulation of ET-1 expression and up-regulation of MT-2 expression.


Asunto(s)
Terapia por Acupuntura , Asma , Ratas , Masculino , Animales , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Ratas Sprague-Dawley , Pulmón , Asma/genética , Asma/terapia , Asma/metabolismo , Espasmo , ARN Mensajero/metabolismo
16.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37569348

RESUMEN

Asthma is a chronic inflammatory lung disease that causes respiratory difficulties. Black ginseng extract (BGE) has preventative effects on respiratory inflammatory diseases such as asthma. However, the pharmacological mechanisms behind the anti-asthmatic activity of BGE remain unknown. To investigate the anti-asthmatic mechanism of BGE, phorbol 12-myristate 13-acetate plus ionomycin (PMA/Iono)-stimulated mouse EL4 cells and ovalbumin (OVA)-induced mice with allergic airway inflammation were used. Immune cells (eosinophils/macrophages), interleukin (IL)-4, -5, -13, and serum immunoglobulin E (IgE) levels were measured using an enzyme-linked immunosorbent assay. Inflammatory cell recruitment and mucus secretion in the lung tissue were estimated. Protein expression was analyzed via Western blotting, including that of inducible nitric oxide synthase (iNOS) and the activation of protein kinase C theta (PKCθ) and its downstream signaling molecules. BGE decreased T helper (Th)2 cytokines, serum IgE, mucus secretion, and iNOS expression in mice with allergic airway inflammation, thereby providing a protective effect. Moreover, BGE and its major ginsenosides inhibited the production of Th2 cytokines in PMA/Iono-stimulated EL4 cells. In EL4 cells, these outcomes were accompanied by the inactivation of PKCθ and its downstream transcription factors, such as nuclear factor of activated T cells (NFAT), nuclear factor kappa B (NF-κB), activator of transcription 6 (STAT6), and GATA binding protein 3 (GATA3), which are involved in allergic airway inflammation. BGE also inhibited the activation of PKCθ and the abovementioned transcriptional factors in the lung tissue of mice with allergic airway inflammation. These results highlight the potential of BGE as a useful therapeutic and preventative agent for allergic airway inflammatory diseases such as allergic asthma.


Asunto(s)
Antiasmáticos , Asma , Hipersensibilidad , Panax , Animales , Ratones , Antiasmáticos/farmacología , Antiasmáticos/uso terapéutico , Interleucina-4/metabolismo , Asma/metabolismo , Pulmón/metabolismo , Citocinas/metabolismo , Hipersensibilidad/metabolismo , Transducción de Señal , Inflamación/metabolismo , Inmunoglobulina E , Panax/metabolismo , Ovalbúmina , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad
17.
Int J Mol Sci ; 24(15)2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37569890

RESUMEN

Fallopia japonica (Asian knotweed) is a medicinal herb traditionally used to treat inflammation, among other conditions. However, the effects of F. japonica root extract (FJE) on airway inflammation associated with combined allergic rhinitis and asthma (CARAS) and the related mechanisms have not been investigated. This study examined the effect of FJE against CARAS in an ovalbumin (OVA)-induced CARAS mouse model. Six-week-old male BALB/c mice were randomly segregated into six groups. Mice were sensitized intraperitoneally with OVA on days 1, 8, and 15, and administered saline, Dexamethasone (1.5 mg/kg), or FJE (50, 100, or 200 mg/kg) once a day for 16 days. Nasal symptoms, inflammatory cells, OVA-specific immunoglobulins, cytokine production, mast cell activation, and nasal histopathology were assessed. Administration of FJE down-regulated OVA-specific IgE and up-regulated OVA-specific IgG2a in serum. FJE reduced the production of T helper (Th) type 2 cytokines, and the Th1 cytokine levels were enhanced in nasal and bronchoalveolar lavage fluid. Moreover, FJE positively regulated allergic responses by reducing the accumulation of inflammatory cells, improving nasal and lung histopathological characteristics, and inhibiting inflammation-associated cytokines. FJE positively modulated the IL-33/TSLP/NF-B signaling pathway, which is involved in regulating inflammatory cells, immunoglobulin levels, and pro-inflammatory cytokines at the molecular level.


Asunto(s)
Asma , Fallopia japonica , Rinitis Alérgica , Animales , Masculino , Ratones , Asma/inducido químicamente , Asma/tratamiento farmacológico , Asma/metabolismo , Líquido del Lavado Bronquioalveolar , Citocinas/metabolismo , Modelos Animales de Enfermedad , Fallopia japonica/química , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Interleucina-33/farmacología , Ratones Endogámicos BALB C , FN-kappa B/metabolismo , Ovalbúmina , Rinitis Alérgica/metabolismo , Transducción de Señal
18.
Phytomedicine ; 118: 154941, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37451150

RESUMEN

BACKGROUND: Asthma is a chronic inflammatory disorder in airways with typical pathologic features of airflow limitation, airway inflammation and remodeling. Icariside II (IS), derived from herbal medicine Herba Epimedii, exerts an anti-inflammatory property. However, underlying mechanisms with specifically targeted molecular expression by IS in asthma have not been fully understood, and whether IS could inhibit remodeling and EMT still remains unclear. PURPOSE: The study aimed to clarify therapeutic efficacy of IS for attenuating airway inflammation and remodeling in asthma, and illustrate IS-regulated specific pathway and target proteins through TMT-based quantitative proteomics. STUDY DESIGN AND METHODS: Murine model of chronic asthma was constructed with ovalbumin (OVA) sensitization and then challenge for 8 weeks. Pulmonary function, leukocyte count in bronchoalveolar lavage fluid (BALF), lung histopathology, inflammatory and fibrotic cytokines, and markers of epithelial-mesenchymal transition (EMT) were evaluated. TMT-based quantitative proteomics were performed on lung tissues to explore IS-regulated proteins. RESULTS: IS contributed to alleviative airway hyperresponsiveness (AHR) evidenced by declined RL and increased Cdyn. After IS treatment, we observed a remarked down-regulation of leukocyte count, inflammatory cytokines in BALF, and peribronchial inflammation infiltration. Goblet cell hyperplasia, mucus secretion and peribronchial collagen deposition were attenuated, with the level of TGF-ß and MMP-9 in BALF declined. Furthermore, IS induced a rise of Occludin and E-cadherin and a decline of N-cadherin and α-SMA in lung tissues. These results proved the protective property of IS against airway inflammation, remodeling and EMT. To further investigate underlying mechanisms of IS in asthma treatment, TMT-based quantitative proteomics were performed and 102 overlapped DEPs regulated by IS were identified. KEGG enrichment exhibited these DEPs were enriched in lysosome, phagosome and autophagy, in which LAMP2, CTSD and CTSS were common DEPs. WB, q-PCR and IHC results proofed expressional alteration of these proteins. Besides, IS could decrease Beclin-1 and LC3B expression with increasing p62 expression thus inhibiting autophagy. CONCLUSIONS: The study demonstrated IS could ameliorate AHR, airway inflammation, remodeling and EMT in OVA-induced chronic asthma mice. Our research was the first to reveal that inhibition of LAMP2, CTSD and CTSS expression in autophagy contributed to the therapeutic efficacy of IS to asthma.


Asunto(s)
Asma , Proteómica , Ratones , Animales , Ovalbúmina , Asma/tratamiento farmacológico , Asma/metabolismo , Pulmón/patología , Inflamación/metabolismo , Líquido del Lavado Bronquioalveolar , Citocinas , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C
19.
J Ethnopharmacol ; 317: 116719, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37268260

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Pi-Pa-Run-Fei-Tang (PPRFT) is an empirical TCM prescription for treating asthma. However, the underlying mechanisms of PPRFT in asthma treatment have yet to be elucidated. Recent advances have revealed that some natural components could ameliorate asthma injury by affecting host metabolism. Untargeted metabolomics can be used to better understand the biological mechanisms underlying asthma development and identify early biomarkers that can help advance treatment. AIM OF THE STUDY: The aim of this study was to verification the efficacy of PPRFT in the treatment of asthma and to preliminarily explore its mechanism. MATERIALS AND METHODS: A mouse asthma model was built by OVA induction. Inflammatory cell in BALF was counted. The level of IL-6, IL-1ß, and TNF-α in BALF were measured. The levels of IgE in the serum and EPO, NO, SOD, GSH-Px, and MDA in the lung tissue were measured. Furthermore, pathological damage to the lung tissues was detected to evaluate the protective effects of PPRFT. The serum metabolomic profiles of PPRFT in asthmatic mice were determined by GC-MS. The regulatory effects on mechanism pathways of PPRFT in asthmatic mice were explored via immunohistochemical staining and western blotting analysis. RESULTS: PPRFT displayed lung-protective effects through decreasing oxidative stress, airway inflammation, and lung tissue damage in OVA-induced mice, which was demonstrated by decreasing inflammatory cell levels, IL-6, IL-1ß, and TNF-α levels in BALF, and IgE levels in serum, decreasing EPO, NO, and MDA levels in lung tissue, elevating SOD and GSH-Px levels in lung tissue and lung histopathological changes. In addition, PPRFT could regulate the imbalance in Th17/Treg cell ratios, suppress RORγt, and increase the expression of IL-10 and Foxp3 in the lung. Moreover, PPRFT treatment led to decreased expression of IL-6, p-JAK2/Jak2, p-STAT3/STAT3, IL-17, NF-κB, p-AKT/AKT, and p-PI3K/PI3K. Serum metabolomics analysis revealed that 35 metabolites were significantly different among different groups. Pathway enrichment analysis indicated that 31 pathways were involved. Moreover, correlation analysis and metabolic pathway analysis identified three key metabolic pathways: galactose metabolism; tricarboxylic acid cycle; and glycine, serine, and threonine metabolism. CONCLUSION: This research indicated that PPRFT treatment not only attenuates the clinical symptoms of asthma but is also involved in regulating serum metabolism. The anti-asthmatic activity of PPRFT may be associated with the regulatory effects of IL-6/JAK2/STAT3/IL-17 and PI3K/AKT/NF-κB mechanistic pathways.


Asunto(s)
Asma , Lesión Pulmonar , Ratones , Animales , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ovalbúmina/toxicidad , Interleucina-6/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-17/metabolismo , Linfocitos T Reguladores , Modelos Animales de Enfermedad , Citocinas/metabolismo , Asma/inducido químicamente , Asma/tratamiento farmacológico , Asma/metabolismo , Transducción de Señal , Pulmón , Inmunoglobulina E , Superóxido Dismutasa/metabolismo , Ratones Endogámicos BALB C
20.
J Ethnopharmacol ; 314: 116637, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37187363

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cough-variant asthma (CVA) is one of the most common causes of chronic cough. Its pathogenesis is closely related to chronic airway inflammation and airway hyperresponsiveness. CVA belongs to the category of "wind cough" in Traditional Chinese medicine (TCM). Zi-Su-Zi decoction (ZSD) is a Chinese herbal formula that is clinically used for the treatment of cough and asthma, especially CVA. However, the mechanism of action remains unclear. AIM OF THE STUDY: In this study, we aimed to explore the potential mechanism by which ZSD improves CVA airway hyperresponsiveness. MATERIALS AND METHODS: The targets of ZSD in CVA were studied using a Network pharmacology. The main chemical components of ZSD were detected and analyzed using ultra-high-pressure liquid chromatography (UHPLC-MS/MS). In animal experiments, the rat model of CVA was established using Ovalbumin (OVA)/Aluminum hydroxide (AL(OH)3) sensitization. Moreover, the experiment also evaluated cough symptoms, percentage of eosinophils (EOS%), pulmonary function tests, histopathological sections, blood cytokine levels, mRNA and protein levels. RESULTS: The results showed that Network pharmacology suggested 276 targets of ZSD and CVA and found that ZSD treatment with CVA was closely related to the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. UHPLC-MS/MS revealed that ZSD contained 52 main chemical components. Compared with the model group, the cough symptoms of the rats in the different ZSD concentration groups were relieved, the EOS% index was lowered, and body weight was increased. HE staining showed that ZSD reduced airway inflammation, edema and hyperplasia, thereby improving the pathological structure of lung tissue, and the effect of high-dose ZSD was especially significant. Our most important finding was that ZSD blocked the entry of hypoxia-inducible factor-1α (HIF-1α), signal transducer and activator of transcription-3 (STAT3) and nuclear factor kappa-B (NF-κB) into the nucleus by interfering with PI3K/AKT1/mechanistic target of rapamycin (mTOR), and janus kinase 2 (JAK2) signaling factors. Consequently, inhibiting the release of cytokines and immunoglobulin-E, thereby reducing airway hyperresponsiveness (AHR) and partially reverses airway remodeling. CONCLUSIONS: This study showed that ZSD can improve airway hyperresponsiveness and partially reverse airway remodeling by inhibiting the PI3K/AKT1/mTOR, JAK2/STAT3 and HIF-1α/NF-κB signaling pathways. Therefore, ZSD is an effective prescription for the treatment of CVA.


Asunto(s)
Asma , FN-kappa B , Ratas , Animales , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Tos/tratamiento farmacológico , Janus Quinasa 2/metabolismo , Remodelación de las Vías Aéreas (Respiratorias) , Espectrometría de Masas en Tándem , Asma/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Citocinas/metabolismo , Inflamación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA