Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34479994

RESUMEN

Patterned degeneration of Purkinje cells (PCs) can be observed in a wide range of neuropathologies, but mechanisms behind nonrandom cerebellar neurodegeneration remain unclear. Sphingolipid metabolism dyshomeostasis typically leads to PC neurodegeneration; hence, we questioned whether local sphingolipid balance underlies regional sensitivity to pathological insults. Here, we investigated the regional compartmentalization of sphingolipids and their related enzymes in the cerebellar cortex in healthy and pathological conditions. Analysis in wild-type animals revealed higher sphingosine kinase 1 (Sphk1) levels in the flocculonodular cerebellum, while sphingosine-1-phosphate (S1P) levels were higher in the anterior cerebellum. Next, we investigated a model for spinocerebellar ataxia type 1 (SCA1) driven by the transgenic expression of the expanded Ataxin 1 protein with 82 glutamine (82Q), exhibiting severe PC degeneration in the anterior cerebellum while the flocculonodular region is preserved. In Atxn1[82Q]/+ mice, we found that levels of Sphk1 and Sphk2 were region-specific decreased and S1P levels increased, particularly in the anterior cerebellum. To determine if there is a causal link between sphingolipid levels and neurodegeneration, we deleted the Sphk1 gene in Atxn1[82Q]/+ mice. Analysis of Atxn1[82Q]/+; Sphk1-/- mice confirmed a neuroprotective effect, rescuing a subset of PCs in the anterior cerebellum, in domains reminiscent of the modules defined by AldolaseC expression. Finally, we showed that Sphk1 deletion acts on the ATXN1[82Q] protein expression and prevents PC degeneration. Taken together, our results demonstrate that there are regional differences in sphingolipid metabolism and that this metabolism is directly involved in PC degeneration in Atxn1[82Q]/+ mice.


Asunto(s)
Ataxina-1/metabolismo , Células de Purkinje/metabolismo , Esfingolípidos/metabolismo , Animales , Ataxina-1/genética , Encéfalo/metabolismo , Enfermedades Cerebelosas/fisiopatología , Cerebelo/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neurodegenerativas/fisiopatología , Proteínas Nucleares/metabolismo , Ataxias Espinocerebelosas/genética
2.
Nat Commun ; 8(1): 1864, 2017 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-29192206

RESUMEN

YAP and its neuronal isoform YAPdeltaC are implicated in various cellular functions. We found that expression of YAPdeltaC during development, but not adulthood, rescued neurodegeneration phenotypes of mutant ataxin-1 knock-in (Atxn1-KI) mice. YAP/YAPdeltaC interacted with RORα via the second WW domain and served as co-activators of its transcriptional activity. YAP/YAPdeltaC formed a transcriptional complex with RORα on cis-elements of target genes and regulated their expression. Both normal and mutant Atxn1 interacted with YAP/YAPdeltaC, but only mutant Atxn1 depleted YAP/YAPdeltaC from the RORα complex to suppress transcription on short timescales. Over longer periods, mutant Atxn1 also decreased RORα in vivo. Genetic supplementation of YAPdeltaC restored the RORα and YAP/YAPdeltaC levels, recovered YAP/YAPdeltaC in the RORα complex and normalized target gene transcription in Atxn1-KI mice in vivo. Collectively, our data suggest that functional impairment of YAP/YAPdeltaC by mutant Atxn1 during development determines the adult pathology of SCA1 by suppressing RORα-mediated transcription.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ataxina-1/genética , Cerebelo/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Neuronas/metabolismo , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Fosfoproteínas/metabolismo , Ataxias Espinocerebelosas/genética , Animales , Proteínas de Ciclo Celular , Cerebelo/citología , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Masculino , Ratones , Fenotipo , Isoformas de Proteínas , Prueba de Desempeño de Rotación con Aceleración Constante , Ataxias Espinocerebelosas/fisiopatología , Proteínas Señalizadoras YAP
3.
Hum Mol Genet ; 25(18): 4021-4040, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27466200

RESUMEN

A polyglutamine expansion within the ataxin-1 protein (ATXN1) underlies spinocerebellar ataxia type-1 (SCA1), a neurological disorder mainly characterized by ataxia and cerebellar deficits. In SCA1, both loss and gain of ATXN1 biological functions contribute to cerebellar pathogenesis. However, the critical ATXN1 functions and pathways involved remain unclear. To further investigate the early signalling pathways regulated by ATXN1, we performed an unbiased proteomic study of the Atxn1-KO 5-week-old mice cerebellum. Here, we show that lack of ATXN1 expression induces early alterations in proteins involved in glycolysis [pyruvate kinase, muscle, isoform 1 protein (PKM-i1), citrate synthase (CS), glycerol-3-phosphate dehydrogenase 2 (GPD2), glucose-6-phosphate isomerase (GPI), alpha -: enolase (ENO1)], ATP synthesis [CS, Succinate dehydrogenase complex,subunit A (SDHA), ATP synthase subunit d, mitochondrial (ATP5H)] and oxidative stress [peroxiredoxin-6 (PRDX6), aldehyde dehydrogenase family 1, subfamily A1, 10-formyltetrahydrofolate dehydrogenase]. In the SCA1 mice, several of these proteins (PKM-i1, ATP5H, PRDX6, proteome subunit A6) were down-regulated and ATP levels decreased. The underlying mechanism does not involve modulation of mitochondrial biogenesis, but dysregulation of the activity of the metabolic regulators glycogen synthase kinase 3B (GSK3ß), decreased in Atxn1-KO and increased in SCA1 mice, and mechanistic target of rapamycin (serine/threonine kinase) (mTOR), unchanged in the Atxn1-KO and decreased in SCA1 mice cerebellum before the onset of ataxic symptoms. Pharmacological inhibition of GSK3ß and activation of mTOR in a SCA1 cell model ameliorated identified ATXN1-regulated metabolic proteome and ATP alterations. Taken together, these results point to an early role of ATXN1 in the regulation of bioenergetics homeostasis in the mouse cerebellum. Moreover, data suggest GSK3ß and mTOR pathways modulate this ATXN1 function in SCA1 pathogenesis that could be targeted therapeutically prior to the onset of disease symptoms in SCA1 and other pathologies involving dysregulation of ATXN1 functions.


Asunto(s)
Ataxina-1/genética , Glucógeno Sintasa Quinasa 3 beta/genética , Ataxias Espinocerebelosas/genética , Serina-Treonina Quinasas TOR/genética , Adenosina Trifosfato/metabolismo , Animales , Ataxina-1/biosíntesis , Cerebelo/metabolismo , Cerebelo/patología , Regulación de la Expresión Génica , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta/biosíntesis , Glucólisis/genética , Humanos , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/patología , Péptidos/genética , Proteoma/biosíntesis , Proteoma/genética , Transducción de Señal , Ataxias Espinocerebelosas/tratamiento farmacológico , Ataxias Espinocerebelosas/patología , Serina-Treonina Quinasas TOR/biosíntesis
4.
Org Biomol Chem ; 14(29): 6979-84, 2016 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-27349676

RESUMEN

Seleno-substituted model peptides of copper metallochaperone proteins were analyzed for the metal affinity and in vitro anti-oxidative reactivity. An acyclic MTCXXC (X is any amino acid) reference peptide previously analyzed as a potent inhibitor of ROS production underwent substitution of the cysteine residues with selenocysteine to give two singly substituted derivatives C3U and C6U and the doubly substituted analogue C3U/C6U. Presumably due to the softer nature of Se vs. S, all selenocysteine containing peptides demonstrated high affinity to Cu(i), higher than that of the reference peptide, and in the same order of magnitude as that measured for the native protein, Atox1. A stronger impact of residue 3 confirmed previous findings on its more dominant role in metal coordination. In vitro studies on the HT-29 human colon cancer cell line, MEF mice embryonic fibroblasts, and MEF with the knocked-out Atox1 gene (Atox1-/-) consistently identified C3U/C6U as the most potent inhibitor of ROS cellular production based on the 2',7'-dichlorodihydrofluorescin diacetate (H2DCF-DA) assay, also in comparison with known drugs employed in the clinic for Wilson's disease. The selenocysteine containing peptides are thus promising drug candidates for chelation therapy of Wilson's disease and related conditions relevant to excessive copper levels.


Asunto(s)
Ataxina-1/química , Cobre/farmacología , Péptidos/farmacología , Selenocisteína/farmacología , Animales , Ataxina-1/deficiencia , Ataxina-1/genética , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Fibroblastos/efectos de los fármacos , Humanos , Iones/antagonistas & inhibidores , Iones/farmacología , Ratones , Ratones Noqueados , Péptidos/química , Selenocisteína/análogos & derivados , Selenocisteína/química , Relación Estructura-Actividad
5.
Brain ; 138(Pt 12): 3555-66, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26490326

RESUMEN

Spinocerebellar ataxia type 1 is one of nine polyglutamine expansion diseases and is characterized by cerebellar ataxia and neuronal degeneration in the cerebellum and brainstem. Currently, there are no effective therapies for this disease. Previously, we have shown that RNA interference mediated silencing of ATXN1 mRNA provides therapeutic benefit in mouse models of the disease. Adeno-associated viral delivery of an engineered microRNA targeting ATXN1 to the cerebella of well-established mouse models improved motor phenotypes, neuropathy, and transcriptional changes. Here, we test the translatability of this approach in adult rhesus cerebella. Nine adult male and three adult female rhesus macaque were unilaterally injected with our therapeutic vector, a recombinant adeno-associated virus type 1 (rAAV1) expressing our RNAi trigger (miS1) and co-expressing enhanced green fluorescent protein (rAAV1.miS1eGFP) into the deep cerebellar nuclei using magnetic resonance imaging guided techniques combined with a Stealth Navigation system (Medtronics Inc.). Transduction was evident in the deep cerebellar nuclei, cerebellar Purkinje cells, the brainstem and the ventral lateral thalamus. Reduction of endogenous ATXN1 messenger RNA levels were ≥30% in the deep cerebellar nuclei, the cerebellar cortex, inferior olive, and thalamus relative to the uninjected hemisphere. There were no clinical complications, and quantitative and qualitative analyses suggest that this therapeutic intervention strategy and subsequent reduction of ATXN1 is well tolerated. Collectively the data illustrate the biodistribution and tolerability of rAAV1.miS1eGFP administration to the adult rhesus cerebellum and are supportive of clinical application for spinocerebellar ataxia type 1.


Asunto(s)
Ataxina-1/deficiencia , Núcleos Cerebelosos/metabolismo , Terapia Genética/métodos , Interferencia de ARN , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/terapia , Animales , Ataxina-1/genética , Tronco Encefálico/metabolismo , Dependovirus , Femenino , Macaca mulatta , Masculino , Células de Purkinje/metabolismo , Tálamo/metabolismo , Transducción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA