Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 755
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
J Ethnopharmacol ; 330: 118209, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38663779

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Dan-shen Yin (DSY), a traditional prescription, has been demonstrated to be effective in decreasing hyperlipidemia and preventing atherosclerosis (AS), but its mechanism remains unknown. We hypothesized that DSY activates farnesoid X receptor (FXR) to promote bile acid metabolism and excretion, thereby alleviating AS. AIM OF THE STUDY: This study was designed to explore whether DSY reduces liver lipid accumulation and prevents AS by activating FXR and increasing cholesterol metabolism and bile acid excretion. MATERIALS AND METHODS: The comprehensive chemical characterization of DSY was analyzed by UHPLC-MS/MS. The AS models of ApoE-/- mice and SD rats was established by high-fat diet and high-fat diet combined with intraperitoneal injection of vitamin D3, respectively. The aortic plaque and pathological changes were used to evaluate AS. Lipid levels, H&E staining and oil red O staining were used to evaluate liver lipid accumulation. The cholesterol metabolism and bile acid excretion were evaluated by enzyme-linked immunosorbent assay, UPLC-QQQ/MS. In vitro, the lipid and FXR/bile salt export pump (BSEP) levels were evaluated by oil red O staining, real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting. RESULTS: A total of 36 ingredients in DSY were identified by UPLC-MS/MS analysis. In vivo, high-dose DSY significantly inhibited aortic intimal thickening, improved arrangement disorder, tortuosity, and rupture of elastic fibers, decreased lipid levels, and reduced the number of fat vacuoles and lipid droplets in liver tissue in SD rats and ApoE-/- mice. Further studies found that high-dose DSY significantly reduced liver lipid and total bile acids levels, increased liver ursodeoxycholic acid (UDCA) and other non-conjugated bile acids levels, increased fecal total cholesterol (TC) levels, and augmented FXR, BSEP, cholesterol 7-alpha hydroxylase (CYP7A1), ATP binding cassette subfamily G5/G8 (ABCG5/8) expression levels, while decreasing ASBT expression levels. In vitro studies showed that DSY significantly reduced TC and TG levels, as well as lipid droplets, while also increasing the expression of ABCG5/8, FXR, and BSEP in both HepG2 and Nr1h4 knockdown HepG2 cells. CONCLUSION: This study demonstrated that DSY promotes bile acid metabolism and excretion to prevent AS by activating FXR. For the prevent of AS and drug discovery provided experimental basis.


Asunto(s)
Aterosclerosis , Ácidos y Sales Biliares , Medicamentos Herbarios Chinos , Ratas Sprague-Dawley , Receptores Citoplasmáticos y Nucleares , Transducción de Señal , Animales , Ácidos y Sales Biliares/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Masculino , Medicamentos Herbarios Chinos/farmacología , Transducción de Señal/efectos de los fármacos , Aterosclerosis/prevención & control , Aterosclerosis/metabolismo , Aterosclerosis/tratamiento farmacológico , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP/metabolismo , Ratones , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Metabolismo de los Lípidos/efectos de los fármacos , Ratones Noqueados para ApoE , Ratas , Humanos
2.
Zhen Ci Yan Jiu ; 49(4): 376-383, 2024 Apr 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38649205

RESUMEN

OBJECTIVES: To observe the effects of moxibustion on blood lipid metabolism, pathological morphology of thoracic aorta, and the expression of silent information regulator 1 (SIRT1) and forkhead box transcription factor O3a (FOXO3a) in ApoE-/- atherosclerosis (AS) mice, so as to explore the potential mechanism of moxibustion in preventing and treating AS. METHODS: Ten C57BL/6J mice were fed a normal diet as the control group, and 30 ApoE-/- mice were fed a high-fat diet to establish the AS model, which were randomly divided into the model group, simvastatin group, and moxibustion group, with 10 mice in each group. From the first day of modeling, mice in the moxibustion group received mild moxibustion treatment at "Shenque"(CV8), "Yinlingquan"(SP9), bilateral "Neiguan"(PC6) and "Xuehai"(SP10) for 30 min per time;the mice in the simvastatin group were given simvastatin orally (2.5 mg·kg-1·d-1), with both treatments given once daily, 5 times a week, with a total intervention period of 12 weeks. The body weight and general condition of the mice were observed and recorded during the intervention period. After the intervention, the contents of serum total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were measured using an automated biochemistry analyzer. Hematoxylin eosin (HE) staining was used to observe the pathological morphology of the thoracic aorta. ELISA was used to measure the contents of serum oxidized low-density lipoprotein (ox-LDL) and superoxide dismutase (SOD) activity. Western blot and real-time fluorescent quantitative PCR analysis were used to detect the expression levels of SIRT1 and FOXO3a protein and mRNA in the thoracic aorta. RESULTS: Compared with the control group, body weight at the 8th and 12th week, serum TC, TG, LDL-C, and ox-LDL contents of the model group mice were significantly increased(P<0.05, P<0.01), while the HDL-C contents, SOD activity, and the expression levels of SIRT1 protein and mRNA in the thoracic aorta were significantly decreased(P<0.05, P<0.01). HE staining showed thickening of the aortic intima, endothelial cell degeneration, swelling, and shedding. Compared with the model group, body weight at the 8th and 12th week, serum TC, TG, LDL-C, and ox-LDL contents of mice in the simvastatin group and moxibustion group were significantly decreased(P<0.01), while the serum SOD activity, expression levels of SIRT1 protein and mRNA in the thoracic aorta were significantly increased(P<0.01). The HDL-C contents were significantly increased in the simvastatin group(P<0.05). The thoracic aortic structure was more intact in both groups, with a more regular lumen and orderly arrangement of the elastic membrane in the media, and a slight amount of endothelial cell degeneration and swelling in the intima. There was no significant difference in the evaluated indexes between the moxibustion group and the simvastatin group and the pathological changes in the thoracic aorta were similar between the two groups. CONCLUSIONS: Moxibustion can reduce the body weight of AS model mice, regulate lipid levels, repair vascular intima, and alleviate endothelial damage. Its mechanism of action may be related to the regulation of the SIRT1/FOXO3a signaling pathway to improve oxidative damage.


Asunto(s)
Apolipoproteínas E , Aterosclerosis , Proteína Forkhead Box O3 , Moxibustión , Sirtuina 1 , Animales , Humanos , Masculino , Ratones , Puntos de Acupuntura , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerosis/metabolismo , Aterosclerosis/genética , Aterosclerosis/terapia , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal , Sirtuina 1/metabolismo , Sirtuina 1/genética , Triglicéridos/sangre , Triglicéridos/metabolismo
3.
Aging (Albany NY) ; 16(8): 6745-6756, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38546402

RESUMEN

Ginsenoside Rb1 is the major active constituent of ginseng, which is widely used in traditional Chinese medicine for the atherosclerosis treatment by anti-inflammatory, anti-oxidant and reducing lipid accumulation. We explored cellular target and molecular mechanisms of ginsenoside Rb1 based on network pharmacology and in vitro experimental validation. In this study, we predicted 17 potential therapeutic targets for ginsenoside Rb1 with atherosclerosis from public databases. We then used protein-protein interaction network to screen the hub targets. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway enrichment showed that the effects of ginsenoside Rb1 were meditated through multiple targets and pathways. Next, molecular docking results revealed that in the 10 core targets, CCND1 has the highest binding energy with ginsenoside Rb1. Vascular cell proliferation plays a critical role in atherosclerosis development. However, the effect and direct target of ginsenoside Rb1 in regulating vascular cell proliferation in atherosclerosis remains unclear. Edu straining results indicated that ginsenoside Rb1 inhibited the cell proliferation of endothelial cells, macrophages, and vascular smooth muscle cells. The protein immunoprecipitation (IP) analysis showed that ginsenoside Rb1 inhibited the vascular cell proliferation by suppressing the interaction of CCDN1 and CDK4. These findings systematically reveal that the anti-atherosclerosis mechanism of ginsenoside Rb1 by integrating network pharmacology and experimental validation, which provide evidence to treat atherosclerosis by using ginsenoside Rb1 and targeting CCND1.


Asunto(s)
Aterosclerosis , Proliferación Celular , Ginsenósidos , Simulación del Acoplamiento Molecular , Mapas de Interacción de Proteínas , Ginsenósidos/farmacología , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Proliferación Celular/efectos de los fármacos , Humanos , Farmacología en Red , Animales , Ciclina D1/metabolismo , Ciclina D1/genética , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Ratones , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/genética
4.
J Ethnopharmacol ; 327: 117969, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437888

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Zexieyin formula (ZXYF), a traditional Chinese herbal formula recorded in the Huangdi Neijing to have efficacy in relieving spleen dampness and heat accumulation syndrome, which is also the key pathogenesis of atherosclerosis (AS). The efficacy has demonstrated by our previous studies. However, the intrinsic mechanism of ZXYF for treating vascular inflammation and the effect of inflammatory response on plaque are not known. Currently, plaque stabilization is crucial for the prognosis of AS. AIM OF THE STUDY: Our study mainly focused on the therapeutic effects of ZXYF on high-fat diet (HFD)-induced vascular inflammation and vulnerable plaques (VP) in mice and explored its underlying mechanism. METHODS AND MATERIALS: Male apolipoprotein E knockout (APOE-/-) mice were fed HFD for 8 weeks to establish a VP model. During this period, the mice were also administered ZXYF, while atorvastatin (ATO) was used as a positive control. Aortic plaque area and morphology were detected by oil red staining and HE staining. Aortic plaque collagen content was detected by Masson staining. M1/M2 type macrophages were detected using immunofluorescence (IF). The study analyzed the levels of inflammation-related cytokines (IL-1ß, IL-10, IL-6), MAPK/NF-κB pathway proteins, and NLRP3 inflammasomes (NLRP3, Caspase-1) using Western blot. Additionally, the levels of matrix metalloproteinase (MMP)-2 and MMP-9 and α-smooth muscle actin (α-SMA) in the aorta were analyzed using immunohistochemistry (IHC). The plaque instability index was calculated for each group using the vulnerable plaque formula. RESULTS: In this study, APOE-/- mice were fed high-fat diet for 8 weeks. The results of oil-red and HE staining indicated a significant increase in the aortic plaque area of the mice, which exhibited a typical VP phenotype. ZXYF and ATO significantly improved AS plaques and prevented plaque rupture. HFD exacerbated vascular inflammation, stimulated macrophage conversion to M1-type through the MAPK/NF-κB signaling pathway, and released pro-inflammatory factors such as interleukin (IL)-1ß, IL-1α, and IL-6. These factors activated NLRP3 inflammasome, leading to cellular death. However, ZXYF could reverse this trend and promote the conversion of macrophages to the anti-inflammatory M2 type. The anti-inflammatory effect of ATO was not significant. Moreover, HFD promoted the release of MMP-2 and MMP-9 from macrophages, which degraded plaque collagen, and induced a decrease in plaque SMC content, resulting in a thinning of the plaque fibrous cap. In contrast, ZXYF inhibited the decomposition of plaque collagen and increased the content of plaque smooth muscle cells (SMC) by reducing macrophage secretion of MMPs, thereby stabilizing plaques. Although ATO could reverse the decrease in plaque collagen and SMC content, its effect on MMPs was not significant. Finally, we calculated the vulnerability index to assess the overall risk of the plaque vulnerability phenotype. In line with these findings, ZXYF and ATO were able to effectively reverse the increase in the vulnerability index caused by HFD and lower the risk of adverse cardiovascular events. CONCLUSION: Our results suggested that ZXYF could reduce inflammation and increase plaque stability by inhibiting the MAPK/NF-κB signaling pathway, which provided a theoretical basis for clinical application and subsequent research.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Ratones , Masculino , Animales , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Interleucina-6 , Ratones Noqueados para ApoE , Aterosclerosis/metabolismo , Placa Aterosclerótica/tratamiento farmacológico , Placa Aterosclerótica/patología , Transducción de Señal , Inflamación/patología , Inflamasomas/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Apolipoproteínas E/genética , Colágeno
5.
J Ethnopharmacol ; 327: 118006, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38442806

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Hawthorn leaves are a combination of the dried leaves of the Rosaceae plants, i.e., Crataegus pinnatifida Bge. or Crataegus pinnatifida Bge. var. major N. E. Br., is primarily cultivated in East Asia, North America, and Europe. hawthorn leaf flavonoids (HLF) are the main part of extraction. The HLF have demonstrated potential in preventing hypertension, inflammation, hyperlipidemia, and atherosclerosis. However, the potential pharmacological mechanism behind its anti-atherosclerotic effect has yet to be explored. AIM OF THE STUDY: The in vivo and in vitro effects of HLF on lipid-mediated foam cell formation were investigated, with a specific focus on the levels of secreted phospholipase A2 type IIA (sPLA2-II A) in macrophage cells. MATERIALS AND METHODS: The primary constituents of HLF were analyzed using ultra-high performance liquid chromatography and liquid chromatography-tandem mass spectrometry. In vivo, HLF, at concentrations of 5 mg/kg, 20 mg/kg, and 40 mg/kg, were administered to apolipoprotein E knockout mice (ApoE-/-) fed by high-fat diet (HFD) for 16 weeks. Aorta and serum samples were collected to identify lesion areas and lipids through mass spectrometry analysis to dissect the pathological process. RAW264.7 cells were incubated with oxidized low-density lipoprotein (ox-LDL) alone, or ox-LDL combined with different doses of HLF (100, 50, and 25 µg/ml), or ox-LDL plus 24-h sPLA2-IIA inhibitors, for cell biology analysis. Lipids and inflammatory cytokines were detected using biochemical analyzers and ELISA, while plaque size and collagen content of plaque were assessed by HE and the Masson staining of the aorta. The lipid deposition in macrophages was observed by Oil Red O staining. The expression of sPLA2-IIA and SCAP-SREBP2-LDLR was determined by RT-qPCR and Western blot analysis. RESULTS: The chemical profile of HLF was studied using UPLC-Q-TOF-MS/MS, allowing the tentative identification of 20 compounds, comprising 1 phenolic acid, 9 flavonols and 10 flavones, including isovitexin, vitexin-4″-O-glucoside, quercetin-3-O-robibioside, rutin, vitexin-2″-O-rhamnoside, quercetin, etc. HLF decreased total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and non-high-density lipoprotein cholesterol (non-HDL-C) levels in ApoE-/- mice (P < 0.05), reduced ox-LDL uptake, inhibited level of inflammatory factors, such as IL-6, IL-8, TNF-α, and IL-1ꞵ (P < 0.001), and alleviated aortic plaques with a thicker fibrous cap. HLF effectively attenuated foam cell formation in ox-LDL-treated RAW264.7 macrophages, and reduced levels of intracellular TC, free cholesterol (FC), cholesteryl ester (CE), IL-6, TNF-α, and IL-1ß (P < 0.001). In both in vivo and in vitro experiments, HLF significantly downregulated the expression of sPLA2-IIA, SCAP, SREBP2, LDLR, HMGCR, and LOX-1 (P < 0.05). Furthermore, sPLA2-IIA inhibitor effectively mitigated inflammatory release in RAW264.7 macrophages and regulated SCAP-SREBP2-LDLR signaling pathway by inhibiting sPLA2-IIA secretion (P < 0.05). CONCLUSION: HLF exerted a protective effect against atherosclerosis through inhibiting sPLA2-IIA to diminish SCAP-SREBP2-LDLR signaling pathway, to reduce LDL uptake caused foam cell formation, and to slow down the progression of atherosclerosis in mice.


Asunto(s)
Aterosclerosis , Crataegus , Fosfolipasas A2 Secretoras , Placa Aterosclerótica , Ratones , Animales , Crataegus/química , Quercetina/uso terapéutico , Fosfolipasas A2 Secretoras/metabolismo , Interleucina-6/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Espectrometría de Masas en Tándem , Aterosclerosis/metabolismo , Placa Aterosclerótica/tratamiento farmacológico , Placa Aterosclerótica/metabolismo , Macrófagos/metabolismo , Flavonoides/uso terapéutico , Lipoproteínas LDL/metabolismo , Transducción de Señal , Colesterol/metabolismo , Ratones Noqueados , Apolipoproteínas E/genética
6.
Cell Commun Signal ; 22(1): 178, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475787

RESUMEN

BACKGROUND: Carthamus tinctorius L., a traditional herbal medicine used for atherosclerosis (AS), lacks a clear understanding of its therapeutic mechanisms. This study aimed to investigate the therapeutic effects and mechanisms of Carthamus tinctorius L.-derived nanovesicles (CDNVs) in AS treatment. METHODS: CDNVs were isolated and characterized using improved isolation methods. Transmission electron microscopy, nanoparticle tracking analysis, and protein analysis confirmed their morphology, size, and protein composition. Small RNA sequencing was performed to identify the miRNA profile of CDNVs, and bioinformatics analysis was used to determine their potential biological roles. In vivo biodistribution and toxicity studies were conducted in mice to assess the stability and safety of orally administered CDNVs. The anti-atherosclerotic effects of CDNVs were evaluated in ApoE-/- mice through plaque burden analysis. The protective effects of CDNVs on ox-LDL-treated endothelial cells were assessed through proliferation, apoptosis, reactive oxygen species activation, and monocyte adhesion assays. miRNA and mRNA sequencing of CDNV-treated endothelial cells were performed to explore their regulatory effects and potential target genes. RESULTS: CDNVs were successfully isolated and purified from Carthamus tinctorius L. tissue lysates. They exhibited a saucer-shaped or cup-shaped morphology, with an average particle size of 142.6 ± 0.7 nm, and expressed EV markers CD63 and TSG101. CDNVs contained proteins, small RNAs, and metabolites, including the therapeutic compound HSYA. Small RNA sequencing identified 95 miRNAs, with 10 common miRNAs accounting for 72.63% of the total miRNAs. These miRNAs targeted genes involved in cell adhesion, apoptosis, and cell proliferation, suggesting their relevance in cardiovascular disease. Orally administered CDNVs were stable in the gastrointestinal tract, absorbed into the bloodstream, and accumulated in the liver, lungs, heart, and aorta. They significantly reduced the burden of atherosclerotic plaques in ApoE-/- mice and exhibited superior effects compared to HSYA. In vitro studies demonstrated that CDNVs were taken up by HUVECs, promoted proliferation, attenuated ox-LDL-induced apoptosis and ROS activation, and reduced monocyte adhesion. CDNV treatment resulted in significant changes in miRNA and mRNA expression profiles of HUVECs, with enrichment in inflammation-related genes. CXCL12 was identified as a potential direct target of miR166a-3p. CONCLUSION: CDNVs isolated from Carthamus tinctorius L. tissue lysates represent a promising oral therapeutic option for cardiovascular diseases. The delivery of miRNAs by CDNVs regulates inflammation-related genes, including CXCL12, in HUVECs, suggesting their potential role in modulating endothelial inflammation. These findings provide valuable insights into the therapeutic potential of CDNVs and their miRNAs in cardiovascular disease.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Carthamus tinctorius , MicroARNs , Ratones , Animales , Células Endoteliales/metabolismo , Carthamus tinctorius/genética , Carthamus tinctorius/metabolismo , Enfermedades Cardiovasculares/metabolismo , Distribución Tisular , Ratones Noqueados para ApoE , MicroARNs/genética , Aterosclerosis/metabolismo , Inflamación/metabolismo , Apoptosis , ARN Mensajero/metabolismo , Apolipoproteínas E/metabolismo
7.
J Ethnopharmacol ; 328: 118076, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38521431

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: QiXian Granule (QXG) is an integrated traditional Chinese medicine formula used to treat postmenopausal atherosclerotic (AS) cardiovascular diseases. The previous studies have found that QXG inhibited isoproterenol (ISO)-induced myocardial remodeling. And its active ingredient, Icraiin, can inhibit ferroptosis by promoting oxidized low-density lipoprotein (xo-LDL)-induced vascular endothelial cell injury and autophagy in atherosclerotic mice. Another active ingredient, Salvianolic Acid B, can suppress ferroptosis and apoptosis during myocardial ischemia/reperfusion injury by reducing ubiquitin-proteasome degradation of Glutathione Peroxidase 4 (GPX4) and down-regulating the reactive oxygen species (ROS)- c-Jun N-terminal kinases (JNK)/mitogen-activated protein kinase (MAPK) pathway. AIM OF THE STUDY: The objective of this research was to assess the possible impact of QXG on atherosclerosis in postmenopausal individuals and investigate its underlying mechanisms. MATERIALS AND METHODS: Female ApoE-/- mice underwent ovariectomy and were subjected to a high-fat diet (HFD) to establish a postmenopausal atherosclerosis model. The therapeutic effects of QXG were observed in vivo and in vitro through intraperitoneal injection of erastin, G-protein Coupled Estrogen Receptor (GPER) inhibitor (G15), and silent Mucolipin Transient Receptor Potential Channel 1 (TRPML1) adenovirus injection via tail vein. UPLC-MS and molecular docking techniques identified and evaluated major QXG components, contributing to the investigation of QXG's anti-postmenopausal atherosclerotic effects. RESULTS: QXG increased serum Estradiol levels, decreased follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels, which indicated QXG had estrogen-like effects in Ovx/ApoE-/- mice. Furthermore, QXG demonstrated the potential to impede the progression of AS in Ovx/ApoE-/- mice, as evidenced by reductions in serum triglycerides (TG), total cholesterol (TC), and low-density lipoprotein-cholesterol (LDL-C) levels. Additionally, QXG inhibited ferroptosis in Ovx/ApoE-/- mice. Notably, UPLC-MS analysis identified a total of 106 active components in QXG. The results of molecular docking analysis demonstrated that Epmedin B, Astragaloside II, and Orientin exhibit strong binding affinity towards TRPML1. QXG alleviates the progression of atherosclerosis by activating TRPML1 through the GPER pathway or directly activating TRPML1, thereby inhibiting GPX4 and ferritin heavy chain (FTH1)-mediated iron pendant disease. In vitro, QXG-treated serum suppressed proliferation, migration, and ox-LDL-induced MMP and ROS elevation in HAECs. CONCLUSION: QXG inhibited GPX4 and FTH1-mediated ferroptosis in vascular endothelial cells through up-regulating GPER/TRPML1 signaling, providing a potential therapeutic option for postmenopausal females seeking a safe and effective medication to prevent atherosclerosis. The study highlights QXG's estrogenic properties and its promising role in combating postmenopausal atherosclerosis.


Asunto(s)
Aterosclerosis , Medicamentos Herbarios Chinos , Ferroptosis , Femenino , Animales , Ratones , Células Endoteliales , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Posmenopausia , Cromatografía Liquida , Simulación del Acoplamiento Molecular , Espectrometría de Masas en Tándem , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/prevención & control , Aterosclerosis/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , LDL-Colesterol/metabolismo , Estrógenos/metabolismo , Apolipoproteínas E , Lisosomas/metabolismo
8.
Br J Pharmacol ; 181(12): 1768-1792, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38355288

RESUMEN

BACKGROUND AND PURPOSE: Panax ginseng is widely applied in the adjuvant treatment of cardiometabolic diseases in clinical practice without clear mechanisms. This study aims to clearly define the efficacy and underlying mechanism of P. ginseng and its active components in protecting against atherosclerosis. EXPERIMENTAL APPROACH: The anti-atherogenic efficacy of total ginseng saponin extract (TGS) and its components was evaluated on Ldlr-/- mice. Gut microbial structure was analysed by 16S rRNA sequencing and PCR. Bile acid profiles were revealed using targeted metabolomics with LC-MS/MS analysis. The contribution of gut microbiota to atherosclerosis was assessed by co-housing experiments. KEY RESULTS: Ginsenoside Rb1, representing protopanaxadiol (PPD)-type saponins, increased intestinal Lactobacillus abundance, resulting in enhanced bile salt hydrolase (BSH) activity to promote intestinal conjugated bile acid hydrolysis and excretion, followed by suppression of enterohepatic farnesoid X receptor (FXR)-fibroblast growth factor 15 (FGF15) signal, and thereby increased cholesterol 7α-hydroxylase (CYP7A1) transcriptional expression and facilitated metabolic elimination of cholesterol. Synergistically, protopanaxatriol (PPT)-type saponins, represented by ginsenoside Rg1, protected against atherogenesis-triggered gut leak and metabolic endotoxaemia. Ginsenoside Rg1 directly induced mucin production to nutritionally maintain Akkermansia muciniphila, which reciprocally inhibited gut permeation. Rb1/Rg1 combination, rather than a single compound, can largely mimic the holistic efficacy of TGS in protecting Ldlr-/- mice from atherogenesis. CONCLUSION AND IMPLICATIONS: Our study provides strong evidence supporting TGS and ginsenoside Rb1/Rg1 combinations as effective therapies against atherogenesis, via targeting different signal nodes by different components and may provide some elucidation of the holistic mode of herbal medicines.


Asunto(s)
Aterosclerosis , Microbioma Gastrointestinal , Ginsenósidos , Homeostasis , Ratones Noqueados , Panax , Animales , Ginsenósidos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Homeostasis/efectos de los fármacos , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Masculino , Ratones , Panax/química , Ratones Endogámicos C57BL , Ácidos y Sales Biliares/metabolismo , Receptores de LDL/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Amidohidrolasas/metabolismo , Colesterol 7-alfa-Hidroxilasa/metabolismo
9.
Biochem Biophys Res Commun ; 702: 149628, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38335704

RESUMEN

Atherosclerosis (AS) is considered to be one of the main pathogenic factors of coronary heart disease, cerebral infarction and peripheral vascular disease. Oxidative stress and inflammation run through the occurrence and development of atherosclerosis and related cardiovascular events. Muscone is a natural extract of deer musk and also the main physiological active substance of musk. This study investigated the impact of muscone on atherosclerosis. ApoE-/- mice were used to establised AS model and injected with low-dose (4 mg/kg/day) or high-dose (8 mg/kg/day) of muscone intraperitoneally for 4 weeks. Then aortic tissues were collected, and pathological sections of the aorta were prepared for oil red staining, HE and masson staining. The changes of MDA, SOD, VCAM-1, NF-κB, and TNF-α were observed by Western blotting or immunofluorescence staining. The results showed that high-dose muscone could effectively reduce the plaque area/aortic root area and relative atherosclerotic area, reduce the collagen composition in plaque tissue. In addition, we also found that high-dose muscone can effectively increase MDA level, reduce the level of SOD, and inhibit the expression of VCAM-1, NF-κB/p65, TNF-α in arterial plaques. Our results indicate that the administration of muscone has the benefit of inhibiting atherosclerosis. The potential mechanisms may be associated with antioxidant effect and inhibition of inflammatory reaction in arterial plaques. With the increasing understanding of the relationship between muscone and atherosclerosis, muscone has high potential value as a new drug to treat atherosclerosis.


Asunto(s)
Aterosclerosis , Cicloparafinas , Ciervos , Placa Aterosclerótica , Ratones , Animales , Placa Aterosclerótica/patología , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo , Ratones Noqueados para ApoE , Ciervos/metabolismo , Aterosclerosis/metabolismo , Inflamación/patología , Aorta/metabolismo , Superóxido Dismutasa/metabolismo , Apolipoproteínas E/metabolismo
10.
J Ethnopharmacol ; 326: 117892, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38350505

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Atherosclerosis (AS) is a chronic vascular ailment characterized by inflammatory and lipid deposition in the arterial wall caused by endothelial injury. Ferroptosis is a novel type of cell death, and endothelial ferroptosis is a significant contributor to the progression of AS. Gualou-Xiebai (GLXB) is a renowned Chinese herb pair that serves a crucial function in treating AS. However, whether the underlying mechanism of GLXB plays a role in anti-atherosclerotic effects by inhibiting ferroptosis in endothelial cells has not been determined. AIM OF THE STUDY: To explore the influence of GLXB on endothelial ferroptosis and determine its underlying mechanism of action in AS. MATERIALS AND METHODS: In ApoE-/- mice, ultrasound was performed in mice fed a high-fat diet (HFD) for 12 weeks to assess the success of AS establishment. Then, ApoE-/- mice were treated with GLXB and Simvastatin (positive control) for 4 weeks. The effects of GLXB on AS pathology were assessed through aorta imaging and hematoxylin-eosin (HE) staining. To confirm the presence of ferroptosis, mitochondrial damage was observed using transmission electron microscope (TEM), along with analysis of free iron and lipid peroxidation levels. In vitro: ox-LDL-induced human vascular endothelial cells (HUVECs) injury and treated with GLXB, the ferroptosis inducer Erastin and an Nrf2 inhibitor ML385. Cell viability was evaluated using the CCK-8 assay in all groups. Flow cytometry was employed to detect lipid peroxidation and intracellular ferrous iron levels. Immunofluorescence staining microscopy verified Nrf2 nuclear translocation. Protein expression were measured by Western blot analysis. RESULTS: GLXB improved atherosclerotic aortic lesions and vascular plaques. GLXB inhibited endothelial injury in the aorta by decreasing the levels of inflammatory factors and adhesion factors, and by decreasing the shedding of endothelial cells. GLXB suppressed ferroptosis in ApoE-/- mice by attenuating mitochondrial damage in ECs, increasing the levels of glutathione (GSH) and superoxide dismutase (SOD) in aortic tissues and down-regulating the levels of levels of lipid peroxide (LPO) and malondialdehyde (MDA). Interestingly, Erastin was used to demonstrate in vitro that GLXB inhibition of ferroptosis attenuated ox-LDL-induced injuring effects on HUVECs that were reversed by Erastin. Mechanistically, GLXB activates the Nrf2 signaling pathway to inhibit ferroptosis by increasing downstream anti-ferroptosis target proteins and promoting the interaction between Nrf2 and SLC7A11. More convincingly, ML385 (Nrf2 inhibitor) reversed the anti-ferroptosis effect of GLXB. CONCLUSION: GLXB inhibits ferroptosis-mediated endothelial cell injury via activating the Nrf2 signaling pathway and further alleviates AS pathological damage.


Asunto(s)
Aterosclerosis , Ferroptosis , Lipoproteínas LDL , Humanos , Animales , Ratones , Células Endoteliales , Factor 2 Relacionado con NF-E2/metabolismo , Dieta Alta en Grasa/efectos adversos , Aterosclerosis/metabolismo , Apolipoproteínas E/genética , Hierro/metabolismo
11.
Phytomedicine ; 126: 155447, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38394732

RESUMEN

BACKGROUD: High comorbidity rates have been reported in patients with atherosclerosis and osteoporosis, posing a serious risk to the health and well-being of elderly patients. To improve and update clinical practice regarding the joint treatment of these two diseases, the common mechanisms of atherosclerosis and osteoporosis need to be clarified. MicroRNAs (miRNAs), are importance molecules in the pathogenesis of human diseases, including in cardiovascular and orthopedic fields. They have garnered interest as potential targets for novel therapeutic strategies. However, the key miRNAs involved in atherosclerosis and osteoporosis and their precise regulation mechanisms remain unknown. Paeonol (Pae), an active ingredient in Cortex Moutan, has shown promising results in improving both lipid and bone metabolic abnormalities. However, it is uncertain whether this agent can exert a cotherapeutic effect on atherosclerosis and osteoporosis. OBJECTIVE: This study aimed to screen important shared miRNAs in atherosclerotic and osteoporotic complications, and explore the mechanism of the protective effects of Pae against atherosclerosis and osteoporosis in high-fat diet (HFD)-fed ApoE-/- mice. METHODS: An experimental atherosclerosis and osteoporosis model was established in 40-week-old HFD ApoE-/- mice. Various techniques such as Oil Red O staining, HE staining and micro-CT were used to confirm the co-occurrence of these two diseases and efficacy of Pae in addition to the associated biochemical changes. Bioinformatics was used to screen key miRNAs in the atherosclerosis and osteoporosis model, and gene involvement was assessed through serum analyses, qRT-PCR, and western blot. To investigate the effect of Pae on the modulation of the miR let-7g/HMGA2/CEBPß pathway, Raw 264.7 cells were cocultured with bone marrow mesenchymal stem cells (BMSCs) and treated with an miR let-7g mimic/inhibitor. RESULTS: miR let-7g identified using bioinformatics was assessed to evaluate its participation in atherosclerosis-osteoporosis. Experimental analysis showed reduced miR let-7g levels in the atherosclerosis-osteoporosis mice model. Moreover, miR let-7g was required for BMSC - Raw 264.7 cell crosstalk, thereby promoting foam cell formation and adipocyte differentiation. Treatment with Pae significantly reduced plaque accumulation and foam cell number in the aorta while increasing bone density and improving trabecular bone microarchitecture in HFD ApoE-/- mice. Pae also increased the level of miR let-7g in the bloodstream of model mice. In vitro studies, Pae enhanced miR let-7g expression in BMSCs, thereby suppressing the HMGA2/CEBPß pathway to prevent the formation of foam cells and differentiation of adipocytes induced by oxidized low-density lipoprotein (ox-LDL). CONCLUSION: The study results suggested that miR let-7g participates in atherosclerosis -osteoporosis regulation and that Pae acts as a potential therapeutic agent for preventing atherosclerosis-osteoporosis through regulatory effects on the miR let-7g/HMGA2/CEBPß pathway to hinder foam cell formation and adipocyte differentiation.


Asunto(s)
Acetofenonas , Aterosclerosis , MicroARNs , Osteoporosis , Humanos , Animales , Ratones , Anciano , Células Espumosas , MicroARNs/genética , MicroARNs/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Diferenciación Celular , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Apolipoproteínas E/genética
12.
Nat Commun ; 15(1): 975, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316794

RESUMEN

While cardiovascular disease (CVD) is one of the major co-morbidities in patients with rheumatoid arthritis (RA), the mechanism(s) that contribute to CVD in patients with RA remain to be fully elucidated. Herein, we observe that plasma concentrations of 13-series resolvin (RvT)4 negatively correlate with vascular lipid load in mouse inflammatory arthritis. Administration of RvT4 to male arthritic mice fed an atherogenic diet significantly reduces atherosclerosis. Assessment of the mechanisms elicited by this mediator demonstrates that RvT4 activates cholesterol efflux in lipid laden macrophages via a Scavenger Receptor class B type 1 (SR-BI)-Neutral Cholesterol Ester Hydrolase-dependent pathway. This leads to the reprogramming of lipid laden macrophages yielding tissue protection. Pharmacological inhibition or knockdown of macrophage SR-BI reverses the vasculo-protective activities of RvT4 in vitro and in male mice in vivo. Together these findings elucidate a RvT4-SR-BI centered mechanism that orchestrates macrophage responses to limit atherosclerosis during inflammatory arthritis.


Asunto(s)
Artritis , Aterosclerosis , Humanos , Masculino , Ratones , Animales , Colesterol/metabolismo , Macrófagos/metabolismo , Aterosclerosis/metabolismo , Transporte Biológico , Artritis/metabolismo
13.
Zhongguo Zhen Jiu ; 44(2): 169-174, 2024 Feb 12.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38373762

RESUMEN

OBJECTIVES: To observe the effects of Lizhong Tongmai acupuncture (acupuncture for regulating middle jiao and promoting meridians) on trimethylamine-N-oxide (TMAO), CD36 expression, and cholesterol deposition in atherosclerotic (AS) mice, exploring potential mechanism of electroacupuncture (EA) in treating AS. METHODS: A total of 31 male SPF-grade C57BL/6J ApoE-/- mice were fed with high-fat diet for 8 weeks to establish AS model. After successful modeling, the remaining 30 mice were randomly divided into a model group, a medication group, and an EA group, with 10 mice in each group. An additional 10 normal mice of the same strain were selected as a blank group. The mice in the blank group and the model group received no intervention. The mice in the medication group were treated with intragastric administration of atorvastatin calcium. The mice in the EA group were treated with EA at "Neiguan" (PC 6), "Tianshu" (ST 25) and "Zusanli" (ST 36). The same-side "Neiguan" (PC 6) and "Zusanli" (ST 36), "Tianshu" (ST 25) and the tail of the mice were connected to the EA apparatus, with disperse-dense wave, a frequency of 2 Hz/15 Hz, and a current intensity of 0.3 mA for 10 min per session. Acupuncture was performed unilaterally per session, alternating between the left and right sides, with a frequency of once every other day. After intervention, HE staining was used to observe the pathological morphology of the aorta. Microplate assays were conducted to measure triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) levels in serum. Ultra high performance liquid chromatography-mass spectrometry technique (UPLC-MS) was employed to detect TMAO level in plasma. Western blot was performed to assess CD36 protein expression level in the aorta. Microanalysis was used to measure cholesterol ester (CE) level in the aorta and the CE/TC ratio was calculated. RESULTS: Compared with the blank group, the mice in the model group exhibited significant pathological changes of atherosclerosis, serum TG, TC, LDL-C levels were increased (P<0.01), and HDL-C level was decreased (P<0.01); the plasma TMAO level, aortic CE level, and the CE/TC ratio were increased (P<0.01), along with elevated CD36 protein expression level in the aorta (P<0.01). Compared with the model group, the mice in the medication group and the EA group showed improvements in aortic pathology, serum TG, TC, LDL-C levels were reduced, HDL-C levels were increased (P<0.05); plasma TMAO levels, aortic CE levels, and the CE/TC ratio were decreased (P<0.01), and CD36 protein expression levels were lowered (P<0.05). The serum TG and TC levels in the EA group were higher than those in the medication group (P<0.05). CONCLUSIONS: The Lizhong Tongmai acupuncture can ameliorate aortic pathological changes, regulate blood lipid levels, reduce plasma TMAO level, inhibit CD36 protein expression in the aorta, and decrease cholesterol deposition. These effects may contribute to the therapeutic mechanism of EA in treating AS.


Asunto(s)
Aterosclerosis , Electroacupuntura , Metilaminas , Masculino , Ratones , Animales , Antígenos CD36/genética , LDL-Colesterol/metabolismo , Cromatografía Liquida , Ratones Endogámicos C57BL , Puntos de Acupuntura , Ratones Noqueados para ApoE , Espectrometría de Masas en Tándem , Aterosclerosis/genética , Aterosclerosis/terapia , Aterosclerosis/metabolismo
14.
Sci Rep ; 14(1): 3547, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347122

RESUMEN

Cholesterol deposition in intimal macrophages leads to foam cell formation and atherosclerosis. Reverse cholesterol transport (RCT), initiated by efflux of excess cholesterol from foam cells, counteracts atherosclerosis. However, targeting RCT by enhancing cholesterol efflux was so far accompanied by adverse hepatic lipogenesis. Here, we aimed to identify novel natural enhancers of macrophage cholesterol efflux suitable for the prevention of atherosclerosis. Plant extracts of an open-access library were screened for their capacity to increase cholesterol efflux in RAW264.7 macrophages trace-labeled with fluorescent BODIPY-cholesterol. Incremental functional validation of hits yielded two final extracts, elder (Sambucus nigra) and bitter orange (Citrus aurantium L.) that induced ATP binding cassette transporter A1 (ABCA1) expression and reduced cholesteryl ester accumulation in aggregated LDL-induced foam cells. Aqueous elder extracts were subsequently prepared in-house and both, flower and leaf extracts increased ABCA1 mRNA and protein expression in human THP-1 macrophages, while lipogenic gene expression in hepatocyte-derived cells was not induced. Chlorogenic acid isomers and the quercetin glycoside rutin were identified as the main polyphenols in elder extracts with putative biological action. In summary, elder flower and leaf extracts increase macrophage ABCA1 expression and reduce foam cell formation without adversely affecting hepatic lipogenesis.


Asunto(s)
Aterosclerosis , Extractos Vegetales , Sambucus nigra , Sambucus , Humanos , Células Espumosas/metabolismo , Lipoproteínas LDL/metabolismo , Lipogénesis , Colesterol/metabolismo , Aterosclerosis/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo
15.
J Ethnopharmacol ; 325: 117768, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38253275

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Atherosclerosis (AS), a lipid-induced inflammatory condition of the arteries, is a primary contributor to atherosclerotic cardiovascular diseases including stroke. Arctium lappa L. leaf (ALL), an edible and medicinal herb in China, has been documented and commonly used for treating stroke since the ancient times. However, the elucidations on its anti-AS effects and molecular mechanism remain insufficient. AIM OF THE STUDY: To investigate the AS-ameliorating effects and the underlying mechanism of action of an ethanolic extract of leaves of Arctium lappa L. (ALLE). MATERIALS AND METHODS: ALLE was reflux extracted using with 70% ethanol. An HPLC method was established to monitor the quality of ALLE. High fat diet (HFD) and vitamin D3-induced experimental AS in rats were used to determine the in vivo effects; and oxidized low-density lipoprotein-induced RAW264.7 macrophage foam cells were used for in vitro assays. Simvatatin was used as positive control. Biochemical assays were implemented to ascertain the secretions of lipids and pro-inflammatory mediators. Haematoxylin-eosin (H&E) and Oil red O stains were employed to assess histopathological alterations and lipid accumulation conditions, respectively. CCK-8 assays were used to measure cytotoxicity. Immunoblotting assay was conducted to measure protein levels. RESULTS: ALLE treatment significantly ameliorated lipid deposition and histological abnormalities of aortas and livers in AS rats; improved the imbalances of serum lipids including total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C); notably attenuated serum concentrations of inflammation-associated cytokines/molecules including TNF-α, IL-6, IL-1ß, VCAM-1, ICAM-1and MMP-9. Mechanistic studies demonstrated that ALLE suppressed the phosphorylation/activation of PI3K, Akt and NF-κB in AS rat aortas and in cultured foam cells. Additionally, the PI3K agonist 740Y-P notably reversed the in vitro inhibitory effects of ALLE on lipid deposition, productions of TC, TNF-α and IL-6, and protein levels of molecules of PI3K/Akt and NF-κB singnaling pathways. CONCLUSIONS: ALLE ameliorates HFD- and vitamin D3-induced experimental AS by modulating lipid metabolism and inflammatory responses, and underlying mechanisms involves inhibition of the PI3K/Akt and NF-κB singnaling pathways. The findings of this study provide scientific justifications for the traditional application of ALL in managing atherosclerotic diseases.


Asunto(s)
Arctium , Aterosclerosis , Fragmentos de Péptidos , Receptores del Factor de Crecimiento Derivado de Plaquetas , Accidente Cerebrovascular , Ratas , Animales , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Fosfatidilinositol 3-Quinasas/metabolismo , Metabolismo de los Lípidos , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Aterosclerosis/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Lípidos , Colesterol/farmacología , Etanol/farmacología , Lipoproteínas LDL/metabolismo , Colecalciferol/farmacología , Colecalciferol/uso terapéutico
16.
J Ethnopharmacol ; 323: 117715, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38181934

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCY: Zexieyin formula (ZXYF) has been identified to have therapeutic actions of atherosclerosis (AS). It's unknown that whether ZXYF has therapeutic potential of atherosclerosis (AS) with cognitive impairment (CI) and its underlying mechanisms. AIM OF THE STUDY: To elucidate therapeutic effect of ZXYF for AS with CI as well as its underlying mechanisms in AS with CI mice model. METHODS AND MATERIALS: To establish AS with CI model, we fed ApoE-/- mice with high-fat diet (HFD) for 8 weeks. Oil red O staining (ORO) and Hematoxylin-eosin staining (HE) were used to detect aortic plaque area. Morris water maze (MWM) and Y-maze were used to measure cognitive function and cognitive improvement after administration of ZXYF and atorvastatin (ATO). Network pharmacology was used to screen for potential mechanisms for improving cognitive function. Western blot was used to detect expressions of MAPK, Aß and synaptic proteins in hippocampus. RESULTS: HFD caused and accelerated the AS in ApoE-/- mice, while it was easier able to produce CI than normal mice. Administration of ZXYF or ATO for 8 weeks significantly reduced aortic plaque area in ORO and HE tests, and improved cognitive abilities in MWM and Y-maze tests. Network pharmacology results showed that MAPK or synaptic proteins were highly associated with CI. HFD contributed to abnormal expressions of MAPK (pERK, pP38, pJNK), NF-kB, synaptic proteins (PSD95, synapsin1) and ß-amyloid (Aß) in hippocampus, which were all reversed by ZXYF. However, ERK and PSD95 expressions were not reversed by ATO in hippocampus. CONCLUSIONS: ZXYF mitigated AS, further alleviating CI by modulating MAPK signaling, relating to synaptic proteins enhancing and Aß protein decreasing in the hippocampus. This study firstly lit up the new clinical application of ZXYF, which might promote the use of ZXYF in AS and CI patients.


Asunto(s)
Aterosclerosis , Trastornos del Conocimiento , Disfunción Cognitiva , Placa Aterosclerótica , Humanos , Ratones , Animales , Disfunción Cognitiva/tratamiento farmacológico , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Cognición , Placa Aterosclerótica/tratamiento farmacológico , Apolipoproteínas E/genética
17.
J Ethnopharmacol ; 324: 117814, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38286155

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Tiaogan Daozhuo Formula (TGDZF) is a common formulation against atherosclerosis, however, there is limited understanding of its therapeutic mechanism. AIM OF THIS STUDY: To examine the effectiveness of TGDZF in the treatment of atherosclerosis and to explore its mechanisms. MATERIALS AND METHODS: In ApoE-/- mice, atherosclerosis was induced by a high-fat diet for 12 weeks and treated with TGDZF at different doses. The efficacy of TGDZF in alleviating atherosclerosis was evaluated by small animal ultrasound and histological methods. Lipid levels were measured by biochemical methods. The capacity of cholesterol efflux was tested with a cholesterol efflux assay in peritoneal macrophage, and the expression of AMPKα1, PPARγ, LXRα, and ABCA1 was examined at mRNA and protein levels. Meanwhile, RAW264.7-derived macrophages were induced into foam cells by ox-LDL, and different doses of TGDZF-conducting serum were administered. Similarly, we examined differences in intracellular lipid accumulation, cholesterol efflux rate, and AMPKα1, PPARγ, LXRα, and ABCA1 levels following drug intervention. Finally, changes in the downstream molecules were evaluated following the inhibition of AMPK by compound C or PPARγ silencing by small interfering RNA. RESULTS: TGDZF administration reduced aortic plaque area and lipid accumulation in aortic plaque and hepatocytes, and improved the serum lipid profiles of ApoE-/- mice. Further study revealed that its efficacy was accompanied by an increase in cholesterol efflux rate and the expression of PPARγ, LXRα, and ABCA1 mRNA and protein, as well as the promotion of AMPKα1 phosphorylation. Moreover, similar results were caused by the intervention of TGDZF-containing serum in vitro experiments. Inhibition of AMPK and PPARγ partially blocked the regulatory effect of TGDZF, respectively. CONCLUSIONS: TGDZF alleviated atherosclerosis and promoted cholesterol efflux from macrophages by activating the AMPK-PPARγ-LXRα-ABCA1 pathway.


Asunto(s)
Aterosclerosis , PPAR gamma , Animales , Ratones , PPAR gamma/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Colesterol/metabolismo , Receptores X del Hígado/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/prevención & control , Aterosclerosis/metabolismo , Células Espumosas , Apolipoproteínas E/genética , ARN Mensajero/metabolismo
18.
Phytomedicine ; 123: 155192, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37951148

RESUMEN

BACKGROUND: Tetranucleotide repeat domain protein 39B (TTC39B) was found to combine with ubiquitin ligase E3, and promote the ubiquitination modification of liver X receptor (LXR), which led to the inhibition of reverse cholesterol transport and development of atherosclerosis. QiShenYiQi pill (QSYQ) is a modern Chinese patent drug for treating ischemic cardiovascular diseases, the underlying mechanism is found to promote the expression of LXR-α/ ATP-binding cassette transporter G5 (ABCG5) in the liver of atherosclerotic mice. PURPOSE: The aim of this study is to investigate the effect of QSYQ on TTC39B-LXR mediated reverse cholesterol transport in atherosclerotic mice. STUDY DESIGN AND METHODS: Male apolipoprotein E gene knockout mice (7 weeks old) were fed with high-fat diet and treated with low dose of QSYQ (QSYQ-l, 0.3 g/kg·d), high dose of QSYQ (QSYQ-H, 1.2 g/kg·d) and LXR-α agonist (LXR-A, GW3965 10 mg/kg·d) for 8 weeks. C57BL/6 J mice were fed with normal diet and used as negative control. Oil red O staining, HE staining, ELISA, RNA sequencing, western blot, immunohistochemistry, RT-PCR, cell culture and RNA interference were performed to analyze the effect of QSYQ on atherosclerosis. RESULTS: HE staining showed that QSYQ reduced the atherosclerotic lesion significantly when compared to the control group. ELISA measurement showed that QSYQ decreased serum VLDL and increased serum ApoA1. Oil Red O staining showed that QSYQ reduced the lipid content of liver and protect liver function. Comparative transcriptome RNA-sequence of liver showed that DEGs after QSYQ treatment enriched in high-density lipoprotein particle, ubiquitin ligase complex, bile secretion, etc. Immunohistochemical staining and western blot proved that QSYQ increased the protein expression of hepatic SR-B1, LXR-α, LXR-ß, CYP7A1 and ABCG5. Targeted inhibiting Ttc39b gene in vitro further established that QSYQ inhibited the gene expression of Ttc39b, increased the protein expression of SR-B1, LXR-α/ß, CYP7A1 and ABCG5 in rat hepatocyte. CONCLUSION: Our results demonstrated the new anti-atherosclerotic mechanism of QSYQ by targeting TTC39B-LXR mediated reverse cholesterol transport in liver. QSYQ not only promoted reverse cholesterol transport, but also improved fatty liver and protected liver function.


Asunto(s)
Aterosclerosis , Compuestos Azo , Medicamentos Herbarios Chinos , Lipoproteínas , Masculino , Ratones , Ratas , Animales , Receptores X del Hígado/metabolismo , Colesterol/metabolismo , Receptores Nucleares Huérfanos/genética , Receptores Nucleares Huérfanos/metabolismo , Receptores Nucleares Huérfanos/uso terapéutico , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 5/metabolismo , Ratones Endogámicos C57BL , Hígado , Ratones Noqueados , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo
19.
Proteomics ; 24(5): e2300179, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37679095

RESUMEN

This study aimed to clarify the role of glutamine in atherosclerosis and its participating mechanism. Forty C57BL/6J mice were divided into wild control (wild Con), ApoE- /- control (ApoE- /- Con), glutamine + ApoE- /- control (Glut + ApoE- /- Con), ApoE- /- high fat diet (ApoE- /- HFD), and glutamine + ApoE- /- HFD (Glut + ApoE- /- HFD) groups. The degree of atherosclerosis, western blotting, and multiomics were detected at 18 weeks. An in vitro study was also performed. Glutamine treatment significantly decreased the degree of aortic atherosclerosis (p = 0.03). O-GlcNAcylation (O-GlcNAc), IL-1ß, IL-1α, and pyruvate kinase M2 (PKM2) in the ApoE- /- HFD group were significantly higher than those in the ApoE- /- Con group (p < 0.05). These differences were attenuated by glutamine treatment (p < 0.05), and aggravated by O-GlcNA transferase (OGT) overexpression in the in vitro study (p < 0.05). Multiomics showed that the ApoE- /- HFD group had higher levels of oxidative stress regulatory molecules (guanine deaminase [GUAD], xanthine dehydrogenase [XDH]), proinflammatory regulatory molecules (myristic acid and myristoleic acid), and stress granules regulatory molecules (caprin-1 and deoxyribose-phosphate aldolase [DERA]) (p < 0.05). These differences were attenuated by glutamine treatment (p < 0.05). We conclude that glutamine supplementation might alleviate atherosclerosis through downregulation of O-GlcNAc, glycolysis, oxidative stress, and proinflammatory pathway.


Asunto(s)
Aterosclerosis , Glutamina , Animales , Ratones , Glutamina/farmacología , Ratones Endogámicos C57BL , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Dieta Alta en Grasa , Apolipoproteínas E , Suplementos Dietéticos , Ratones Noqueados
20.
Environ Toxicol ; 39(1): 228-237, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37688784

RESUMEN

OBJECTIVE: This study aims to investigate the protective mechanism of moxibustion in combating atherosclerosis (AS). METHODS: Apolipoprotein E (ApoE)-deficient mice, aged 8 weeks, were randomly assigned into four groups: the model group (n = 6), SC79 group (n = 6), moxibustion group (n = 6), and moxibustion+SC79 group (n = 6). All mice were fed with a high-fat diet (HFD). Concurrently, 8-week-old C57BL/6 mice of the same genetic background were utilized as the control group (n = 6) and were given a regular diet. Macrophages were isolated via flow cytometry. The intracellular Ca2+ expression in macrophages was evaluated, and aortic plaques were quantitatively assessed through en face oil red O and Masson staining. The presence of macrophages and smooth muscle cells in AS plaques was determined by MAC-3 and α-smooth muscle actin (α-SMA) immunohistochemistry. The relative fluorescence intensity of nuclear factor-κB (NF-κB) in macrophages was identified by immunofluorescence staining. The expressions of proteins related to the P2Y12/phosphatidylinositol 3-hydroxy kinase (PI3K)/protein kinase B (AKT) signaling pathway were examined by Western blotting. RESULTS: Moxibustion reduced free Ca2+ expression in macrophage cytoplasm, inhibiting Ca2+ influx and oxidative stress. Significant reductions in atherosclerotic plaque formation and inflammation markers, including TNF-α and IL-1ß, were noted in the moxibustion group. Moxibustion modulated the P2Y12/PI3K/AKT pathway, impacting various inflammatory and oxidative stress-related proteins. Introduction of the AKT activator SC79 counteracted moxibustion's benefits, highlighting the P2Y12/PI3K/AKT pathway's central role. CONCLUSION: Moxibustion, through the P2Y12/PI3K/AKT signaling pathway, can inhibit Ca2+ overload-induced oxidative stress and inflammatory response, decrease macrophage infiltration, and increase the content of smooth muscle cells and collagen, thereby exerting a protective effect against AS.


Asunto(s)
Aterosclerosis , Moxibustión , Placa Aterosclerótica , Animales , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasa/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones Endogámicos C57BL , Aterosclerosis/prevención & control , Aterosclerosis/metabolismo , Placa Aterosclerótica/metabolismo , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA