Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Cell Physiol ; 326(4): C1226-C1236, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38406827

RESUMEN

Cancer and chemotherapy induce a severe loss of muscle mass (known as cachexia), which negatively impact cancer treatment and patient survival. The aim of the present study was to investigate whether cannabidiol (CBD) administration may potentially antagonize the effects of cisplatin in inducing muscle atrophy, using a model of myotubes in culture. Cisplatin treatment resulted in a reduction of myotube diameter (15.7 ± 0.3 vs. 22.2 ± 0.5 µm, P < 0.01) that was restored to control level with 5 µM CBD (20.1 ± 0.4 µM, P < 0.01). Protein homeostasis was severely altered with a ≈70% reduction in protein synthesis (P < 0.01) and a twofold increase in proteolysis (P < 0.05) in response to cisplatin. Both parameters were dose dependently restored by CBD cotreatment. Cisplatin treatment was associated with increased thiobarbituric acid reactive substances (TBARS) content (0.21 ± 0.03 to 0.48 ± 0.03 nmol/mg prot, P < 0.05), catalase activity (0.24 ± 0.01 vs. 0.13 ± 0.02 nmol/min/µg prot, P < 0.01), whereas CBD cotreatment normalized TBARS content to control values (0.22 ± 0.01 nmol/mg prot, P < 0.01) and reduced catalase activity (0.17 ± 0.01 nmol/min/µg prot, P < 0.05). These changes were associated with increased mRNA expression of GPX1, SOD1, SOD2, and CAT mRNA expression in response to cisplatin (P < 0.01), which was corrected by CBD cotreatment (P < 0.05). Finally, cisplatin treatment increased the mitochondrial protein content of NDUFB8, UQCRC2, COX4, and VDAC1 (involved in mitochondrial respiration and apoptosis), and CBD cotreatment restored their expression to control values. Altogether, our results demonstrated that CBD antagonize the cisplatin-induced C2C12 myotube atrophy and could be used as an adjuvant in the treatment of cancer cachexia to help maintain muscle mass and improve patient quality of life.NEW & NOTEWORTHY In an in vitro model, cisplatin treatment led to myotube atrophy associated with dysregulation of protein homeostasis and increased oxidative stress, resulting in increased apoptosis. Cotreatment with cannabidiol was able to prevent this phenotype by promoting protein homeostasis and reducing oxidative stress.


Asunto(s)
Cannabidiol , Neoplasias , Humanos , Cisplatino/toxicidad , Cannabidiol/farmacología , Cannabidiol/metabolismo , Cannabidiol/uso terapéutico , Caquexia/metabolismo , Catalasa/metabolismo , Calidad de Vida , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/farmacología , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/inducido químicamente , Atrofia Muscular/prevención & control , Atrofia Muscular/tratamiento farmacológico , Estrés Oxidativo , Neoplasias/metabolismo , ARN Mensajero/metabolismo
2.
Eur J Orthop Surg Traumatol ; 34(3): 1717-1729, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38236398

RESUMEN

The aim of the present study was to summarize the effectiveness of amino acid supplementation on muscle strength, muscle volume, and functional capacity in patients undergoing total knee arthroplasty. For this, in November 2022, a search was carried out in the PubMed, Cochrane Library, and EMBASE databases, identifying a total of 2182 documents, of which only 4 were included in the present review. The included studies had 148 participants (47 men and 101 women), with a minimum age of 53 and a maximum of 92 years, and supplementation times of 13 to 30 days (1 to 3 times a day). For the results, in relation to muscle performance, when comparing the control and experimental groups, greater muscle atrophy was observed in the pre- and post-moments of the control group, in relation to the experimental group. In addition, studies suggest a good tendency for muscle mass gain, and improvement in the functional capacities of patients who used supplementation. Therefore, the use of amino acids after TKA surgery reduces muscle atrophy, which preserves muscle mass and leads to better performance in tests of strength and functional capacity, when compared to the use of a placebo.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Masculino , Humanos , Femenino , Anciano de 80 o más Años , Artroplastia de Reemplazo de Rodilla/efectos adversos , Artroplastia de Reemplazo de Rodilla/métodos , Músculo Cuádriceps , Ensayos Clínicos Controlados Aleatorios como Asunto , Atrofia Muscular/etiología , Atrofia Muscular/prevención & control , Fuerza Muscular/fisiología , Aminoácidos/uso terapéutico , Suplementos Dietéticos
3.
Nutrients ; 16(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38201986

RESUMEN

The investigation focused on the impact of Withania somnifera (ashwagandha) extract (WSE) on age-related mechanisms affecting skeletal muscle sarcopenia-related muscle atrophy in aged mice. Beyond evaluating muscular aspects, the study explored chronic low-grade inflammation, muscle regeneration, and mitochondrial biogenesis. WSE administration, in comparison to the control group, demonstrated no significant differences in body weight, diet, or water intake, affirming its safety profile. Notably, WSE exhibited a propensity to reduce epidermal and abdominal fat while significantly increasing muscle mass at a dosage of 200 mg/kg. The muscle-to-fat ratio, adjusted for body weight, increased across all treatment groups. WSE administration led to a reduction in the pro-inflammatory cytokines TNF-α and IL-1ß, mitigating inflammation-associated muscle atrophy. In a 12-month-old mouse model equivalent to a 50-year-old human, WSE effectively preserved muscle strength, stabilized grip strength, and increased muscle tissue weight. Positive effects were observed in running performance and endurance. Mechanistically, WSE balanced muscle protein synthesis/degradation, promoted fiber differentiation, and enhanced mitochondrial biogenesis through the IGF-1/Akt/mTOR pathway. This study provides compelling evidence for the anti-sarcopenic effects of WSE, positioning it as a promising candidate for preventing sarcopenia pending further clinical validation.


Asunto(s)
Extractos Vegetales , Sarcopenia , Withania , Humanos , Animales , Ratones , Lactante , Persona de Mediana Edad , Sarcopenia/tratamiento farmacológico , Sarcopenia/prevención & control , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/etiología , Atrofia Muscular/prevención & control , Etanol , Inflamación , Peso Corporal
4.
J Nutr Biochem ; 125: 109532, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37977405

RESUMEN

Fuzhuan brick tea (FBT) is a post-fermented tea fermented by the fungus Eurotium cristatum and is mainly produced in Hunan Province, China. Our previous study revealed that FBT extract prevents obesity by increasing energy expenditure and mitochondrial content in mice. Therefore, in this study, we hypothesized that FBT extract could be effective in alleviating obesity-induced muscle atrophy by addressing mitochondrial dysfunction, and aimed to explore the underlying molecular mechanism of FBT extract in high-fat diet-induced obese mice. FBT extract increased skeletal muscle weight and size, myosin heavy chain isoforms, and muscle performance in obese mice. Additionally, FBT extract reduced obesity-induced intramuscular lipids, skeletal muscle inflammation, and the expression of skeletal muscle atrophy markers, and increased the expression of fibronectin type III domain-containing protein 5 in skeletal muscles. Obesity-induced skeletal muscle mitochondrial dysfunction was improved by FBT extract as analyzed through mitochondrial morphology, fatty acid oxidation, respiratory chain complexes, and mitochondrial dynamics and biogenesis. Epigallocatechin, a major bioactive compound in FBT extract, attenuated palmitic acid-induced muscle atrophy by regulating mitochondrial functions in C2C12 cells. In conclusion, FBT extract may prevent obesity-induced muscle atrophy by alleviating mitochondrial dysfunction in mice.


Asunto(s)
Enfermedades Mitocondriales , , Ratones , Animales , Ratones Obesos , Obesidad/metabolismo , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/etiología , Atrofia Muscular/prevención & control , Músculo Esquelético/metabolismo , Extractos Vegetales/farmacología
5.
In Vivo ; 38(1): 73-81, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38148056

RESUMEN

BACKGROUND/AIM: Oxidative stress, regulated by SOD2 and mitochondrial dynamics, contributes to muscle atrophy in diabetes. Ginger root extract (GRE) reduces oxidative stress. However, its effect on oxidative stress, mitochondrial dynamics, and muscle atrophy is not known in the diabetic muscle. This study examined the effect of GRE on intramuscular oxidative stress, mitochondrial dynamics, and muscle size in diabetic rats. MATERIALS AND METHODS: Twenty-six male Sprague-Dawley rats were randomly divided into control diet (CON; n=10), high-fat diet with one dose of 35 mg/kg streptozotocin (HFD; n=9), and high-fat diet with one dose of 35 mg/kg streptozotocin and 0.75% w/w GRE (GRE; n=7) fed for seven weeks. Subsequently, the muscle was analyzed for cross-sectional area (CSA), H2O2 concentration, and DRP-1, MFN2, Parkin, PINK1, SOD2 mRNA. Additionally, the protein levels of SOD2, DRP-1, DRP-1ser616, LC3AB, MFN2, OPA1, Parkin, and PINK1 were analyzed. CSA, H2O2 concentration, and gene and protein expression levels were analyzed using a one-way ANOVA. Correlations among intramuscular H2O2, CSA, and SOD2 protein were assessed using Pearson's bivariate correlation test. RESULTS: In the soleus, the GRE group had a greater CSA and lower intramuscular H2O2 concentration compared to the HFD group. Compared to the HFD group, the GRE group had higher SOD2 and DRP-1 mRNA levels and lower MFN2 and total OPA1 protein levels. H2O2 concentration was negatively correlated with CSA and positively correlated with SOD2. CONCLUSION: GRE attenuated intramuscular H2O2, mitochondrial fusion, and muscle size loss. These findings suggest that GRE supplementation in diabetic rats reduces oxidative stress, which may contribute to muscle size preservation.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Zingiber officinale , Ratas , Masculino , Animales , Dinámicas Mitocondriales , Diabetes Mellitus Experimental/metabolismo , Estreptozocina/metabolismo , Estreptozocina/farmacología , Peróxido de Hidrógeno , Ratas Sprague-Dawley , Músculo Esquelético , Diabetes Mellitus Tipo 2/metabolismo , Suplementos Dietéticos , Proteínas Quinasas/metabolismo , Proteínas Quinasas/farmacología , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/etiología , Atrofia Muscular/prevención & control , Ubiquitina-Proteína Ligasas , ARN Mensajero/metabolismo , Dieta Alta en Grasa
6.
ACS Nano ; 18(1): 919-930, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38142426

RESUMEN

Long-term immobilization of joints can lead to disuse atrophy of the muscles in the joints. Oral nutrients are used clinically for rehabilitation and therapeutic purposes, but bioavailability and targeting are limited. Here, we report tea polyphenols (dietary polyphenols), sustained-release nanofilms that release tea polyphenols through slow local degradation of core-shell nanofibers in muscles. This dietary polyphenol does not require gastrointestinal consumption and multiple doses and can directly remove inflammatory factors and superoxide generated in muscle tissue during joint fixation. The quality of muscles is increased by 30%, and muscle movement function is effectively improved. Although nanofibers need to be implanted into muscles, they can improve bacterial infections after joint surgery. To investigate the biological mechanism of this core-shell nanomembrane prevention, we conducted further transcriptomic studies on muscle, confirming that in addition to achieving antioxidation and anti-inflammation by inhibiting TNF-α and NF-κB signaling pathways, tea polyphenol core-shell nanofibers can also promote muscle formation by activating the p-Akt signaling pathway.


Asunto(s)
Nanofibras , Humanos , Preparaciones de Acción Retardada , , Polifenoles/farmacología , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/prevención & control
7.
J Physiol ; 601(21): 4699-4721, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37815420

RESUMEN

Doxorubicin, a conventional chemotherapeutic agent prescribed for cancer, causes skeletal muscle atrophy and adversely affects mobility and strength. Given that doxorubicin-induced muscle atrophy is attributable primarily to oxidative stress, its effects could be mitigated by antioxidant-focused therapies; however, these protective therapeutic targets remain ambiguous. The aim of this study was to demonstrate that doxorubicin triggers severe muscle atrophy via upregulation of oxidative stress (4-hydroxynonenal and malondialdehyde) and atrogenes (atrogin-1/MAFbx and muscle RING finger-1) in association with decreased expression of the antioxidant enzyme extracellular superoxide dismutase (EcSOD), in cultured C2C12 myotubes and mouse skeletal muscle. Supplementation with EcSOD recombinant protein elevated EcSOD levels on the cellular membrane of cultured myotubes, consequently inhibiting doxorubicin-induced oxidative stress and myotube atrophy. Furthermore, doxorubicin treatment reduced interleukin-1ß (IL-1ß) mRNA expression in cultured myotubes and skeletal muscle, whereas transient IL-1ß treatment increased EcSOD protein expression on the myotube membrane. Notably, transient IL-1ß treatment of cultured myotubes and local administration in mouse skeletal muscle attenuated doxorubicin-induced muscle atrophy, which was associated with increased EcSOD expression. Collectively, these findings reveal that the regulation of skeletal muscle EcSOD via maintenance of IL-1ß signalling is a potential therapeutic approach to counteract the muscle atrophy mediated by doxorubicin and oxidative stress. KEY POINTS: Doxorubicin, a commonly prescribed chemotherapeutic agent for patients with cancer, induces severe muscle atrophy owing to increased expression of oxidative stress; however, protective therapeutic targets are poorly understood. Doxorubicin induced muscle atrophy owing to increased expression of oxidative stress and atrogenes in association with decreased protein expression of extracellular superoxide dismutase (EcSOD) in cultured C2C12 myotubes and mouse skeletal muscle. Supplementation with EcSOD recombinant protein increased EcSOD levels on the cellular membrane of cultured myotubes, resulting in inhibition of doxorubicin-induced oxidative stress and myotube atrophy. Doxorubicin treatment decreased interleukin-1ß (IL-1ß) expression in cultured myotubes and skeletal muscle, whereas transient IL-1ß treatment in vivo and in vitro increased EcSOD protein expression and attenuated doxorubicin-induced muscle atrophy. These findings reveal that regulation of skeletal muscle EcSOD via maintenance of IL-1ß signalling is a possible therapeutic approach for muscle atrophy mediated by doxorubicin and oxidative stress.


Asunto(s)
Antioxidantes , Neoplasias , Humanos , Ratones , Animales , Antioxidantes/farmacología , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacología , Interleucina-1beta/uso terapéutico , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/inducido químicamente , Atrofia Muscular/prevención & control , Doxorrubicina/toxicidad , Doxorrubicina/metabolismo , Neoplasias/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico
8.
Nutrients ; 15(16)2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37630706

RESUMEN

Rice bran, a byproduct of rice milling, is rich in fiber and phytochemicals and confers several health benefits. However, its effects on gut microbiota and obesity-related muscle atrophy in postmenopausal status remain unclear. In this study, we investigated the effects of rice bran on gut microbiota, muscle synthesis, and breakdown pathways in estrogen-deficient ovariectomized (OVX) mice receiving a high-fat diet (HFD). ICR female mice were divided into five groups: sham, OVX mice receiving control diet (OC); OVX mice receiving HFD (OH); OVX mice receiving control diet and rice bran (OR); and OVX mice receiving HFD and rice bran (OHR). After twelve weeks, relative muscle mass and grip strength were high in rice bran diet groups. IL-6, TNF-α, MuRf-1, and atrogin-1 expression levels were lower, and Myog and GLUT4 were higher in the OHR group. Rice bran upregulated the expression of occludin and ZO-1 (gut tight junction proteins). The abundance of Akkermansiaceae in the cecum was relatively high in the OHR group. Our finding revealed that rice bran supplementation ameliorated gut barrier dysfunction and gut dysbiosis and also maintained muscle mass by downregulating the expression of MuRf-1 and atrogin-1 (muscle atrophy-related factors) in HFD-fed OVX mice.


Asunto(s)
Dieta Alta en Grasa , Oryza , Femenino , Animales , Ratones , Ratones Endogámicos ICR , Dieta Alta en Grasa/efectos adversos , Disbiosis , Atrofia Muscular/etiología , Atrofia Muscular/prevención & control , Suplementos Dietéticos
9.
Life Sci ; 329: 121975, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37495077

RESUMEN

AIMS: Type 1 diabetes mellitus (T1DM) has been linked to the occurrence of skeletal muscle atrophy. Insulin monotherapy may lead to excessive blood glucose fluctuations. N-acetylcysteine (NAC), a clinically employed antioxidant, possesses cytoprotective, anti-inflammatory, and antioxidant properties. The objective of our study was to evaluate the viability of NAC as a supplementary treatment for T1DM, specifically regarding its therapeutic and preventative impacts on skeletal muscle. MAIN METHODS: Here, we used beagles as T1DM model for 120d to explore the mechanism of NRF2/HO-1-mediated skeletal muscle oxidative stress and apoptosis and the therapeutic effects of NAC. Oxidative stress and apoptosis related factors were analyzed by immunohistochemistry, immunofluorescence, western blotting, and RT-qPCR assay. KEY FINDINGS: The findings indicated that the co-administration of NAC and insulin led to a reduction in creatine kinase levels, preventing weight loss and skeletal muscle atrophy. Improvement in the reduction of muscle fiber cross-sectional area. The expression of Atrogin-1, MuRF-1 and MyoD1 was downregulated, while Myh2 and MyoG were upregulated. In addition, CAT and GSH-Px levels were increased, MDA levels were decreased, and redox was maintained at a steady state. The decreased of key factors in the NRF2/HO-1 pathway, including NRF2, HO-1, NQO1, and SOD1, while KEAP1 increased. In addition, the apoptosis key factors Caspase-3, Bax, and Bak1 were found to be downregulated, while Bcl-2, Bcl-2/Bax, and CytC were upregulated. SIGNIFICANCE: Our findings demonstrated that NAC and insulin mitigate oxidative stress and apoptosis in T1DM skeletal muscle and prevent skeletal muscle atrophy by activating the NRF2/HO-1 pathway.


Asunto(s)
Diabetes Mellitus Tipo 1 , Insulinas , Perros , Animales , Antioxidantes/metabolismo , Acetilcisteína/farmacología , Acetilcisteína/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Transducción de Señal , Estrés Oxidativo , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/prevención & control , Atrofia Muscular/metabolismo , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Apoptosis , Insulinas/metabolismo , Insulinas/farmacología
10.
Biomed Pharmacother ; 163: 114810, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37163777

RESUMEN

Garlic (Allium sativum L.) is a primary dietary component worldwide because of its health benefits and use as a traditional medicine. Elephant garlic (Allium ampeloprasum L.), a related species in the same genus, is less intense and sweeter than A. sativum. The object of this study was to investigate the alleviative effects of aged black garlic (ABG) and aged black elephant garlic (ABEG) on obesity and muscle atrophy induced by obesity in high fat diet-induced obese mice. We demonstrated that ABG and ABEG alleviated obesity and muscle atrophy and enhanced myogenic differentiation and myotube hypertrophy, and this effect was mediated by the upregulation of Akt/mTOR/p70S6K signaling. Furthermore, a candidate bioactive compound of ABG and ABEG was suggested in this study through analysis using gas chromatography-mass spectroscopy and ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectroscopy. In conclusion, ABG and ABEG may alleviate obesity and treat obesity-induced muscle atrophy.


Asunto(s)
Allium , Ajo , Animales , Ratones , Ajo/química , Ratones Endogámicos C57BL , Allium/química , Cebollas , Antioxidantes/farmacología , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/etiología , Atrofia Muscular/prevención & control , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Dieta
11.
J Ethnopharmacol ; 312: 116458, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37028612

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The roots of Achyranthes bidentata Blume are one of the regularly used herbal drugs in Chinese medicine, and has been applied for strengthening the muscle and bone for a long time. However, its effect on muscle remains unclear. AIM OF THE STUDY: This paper aims to explore the anti-muscle atrophy effect of A. bidentata, and to clarify the possible signaling pathways involved. MATERIALS AND METHODS: The saponin extract of the roots of A. bidentata (ABSE) was prepared and analyzed, and its activity on myoblast differentiation was assayed with C2C12 cell culture. ABSE was then orally administered at dosage of 35, 70 and 140 mg/kg/day to disuse-induced muscle atrophy mice. The studies on mice body weight and muscle quality were conducted, and Western blot was used for exploring the possible signaling pathways involved in the muscle protective action aided with transcriptome analysis. RESULTS: The total saponin content of ABSE was 59.1%. ABSE promoted the C2C12 cells differentiation to myotube in C2C12 differentiation assay. Further study with disuse-induced muscle atrophy mice model demonstrated that ABSE significantly increased muscle fiber diameter as well as the proportion of slow muscle fibers. Possible mechanism study aided with transcriptome analysis revealed that ABSE alleviated muscle atrophy at least through activation of PI3K/Akt pathway in vivo & vitro. CONCLUSIONS: The saponin extract of the root of A. bidentata (ABSE) has a protective effect on muscle atrophy, and showed a considerable potential in prevention and treatment of muscle atrophy.


Asunto(s)
Achyranthes , Saponinas , Ratones , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Proteínas Proto-Oncogénicas c-akt , Fosfatidilinositol 3-Quinasas , Saponinas/farmacología , Saponinas/uso terapéutico , Transducción de Señal , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/prevención & control
12.
Nutrients ; 15(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36839161

RESUMEN

Muscle atrophy is characterized by a decline in muscle mass and function. Excessive glucocorticoids in the body due to aging or drug treatment can promote muscle wasting. In this study, we investigated the preventive effect of Nelumbo nucifera leaf (NNL) ethanolic extract on muscle atrophy induced by dexamethasone (DEX), a synthetic glucocorticoid, in mice and its underlying mechanisms. The administration of NNL extract increased weight, cross-sectional area, and grip strength of quadriceps (QD) and gastrocnemius (GA) muscles in DEX-induced muscle atrophy in mice. The NNL extract administration decreased the expression of muscle atrophic factors, such as muscle RING-finger protein-1 and atrogin-1, and autophagy factors, such as Beclin-1, microtubule-associated protein 1A/1B-light chain 3 (LC3-I/II), and sequestosome 1 (p62/SQSTM1) in DEX-injected mice. DEX injection increased the protein expression levels of NOD-like receptor pyrin domain-containing protein 3 (NLRP3), cleaved-caspase-1, interleukin-1beta (IL-1ß), and cleaved-gasdermin D (GSDMD), which were significantly reduced by NNL extract administration (500 mg/kg/day). In vitro studies using C2C12 myotubes also revealed that NNL extract treatment inhibited the DEX-induced increase in autophagy factors, pyroptosis-related factors, and NF-κB. Overall, the NNL extract prevented DEX-induced muscle atrophy by downregulating the ubiquitin-proteasome system, autophagy pathway, and GSDMD-mediated pyroptosis pathway, which are involved in muscle degradation.


Asunto(s)
Atrofia Muscular , Nelumbo , Extractos Vegetales , Animales , Ratones , Autofagia , Dexametasona/efectos adversos , Glucocorticoides/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/inducido químicamente , Atrofia Muscular/prevención & control , Nelumbo/química , Hojas de la Planta/química , Piroptosis , Extractos Vegetales/farmacología
13.
Cells ; 11(20)2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36291111

RESUMEN

Since skeletal muscle atrophy resulting from various causes accelerates the progression of several diseases, its prevention should help maintain health and quality of life. A range of natural materials have been investigated for their potential preventive effects against muscle atrophy. Here, ethanol extracts of Angelica gigas and Artemisia dracunculus were concentrated and dried, and mixed at a ratio of 7:3 to create the mixture CHDT. We then evaluated the potential for CHDT to prevent muscle atrophy and explored the mechanisms involved. CHDT was orally administered to C57BL/6 mice daily for 30 days, and dexamethasone (Dex) was intraperitoneally injected daily to induce muscle atrophy from 14 days after the start of oral administration. We found that CHDT prevented the Dex-induced reductions in muscle strength, mass, and fiber size, likely by upregulating the Akt/mTOR signaling pathway. In addition, CHDT reduced the Dex-induced increase in the serum concentrations of pro-inflammatory cytokines, which directly induce the degradation of muscle proteins. These findings suggest that CHDT could serve as a natural food supplement for the prevention of muscle atrophy.


Asunto(s)
Angelica , Artemisia , Atrofia Muscular , Extractos Vegetales , Animales , Ratones , Citocinas/sangre , Dexametasona , Etanol , Ratones Endogámicos C57BL , Proteínas Musculares/metabolismo , Atrofia Muscular/inducido químicamente , Atrofia Muscular/prevención & control , Atrofia Muscular/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Calidad de Vida , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Quimioterapia Combinada
14.
Age Ageing ; 51(10)2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36315433

RESUMEN

INTRODUCTION: Significant losses of muscle mass and function occur after major abdominal surgery. Neuromuscular electrical stimulation (NMES) has been shown to reduce muscle atrophy in some patient groups, but evidence in post-operative patients is limited. This study assesses the efficacy of NMES for attenuating muscle atrophy and functional declines following major abdominal surgery in older adults. METHODS: Fifteen patients undergoing open colorectal resection completed a split body randomised control trial. Patients' lower limbs were randomised to control (CON) or NMES (STIM). The STIM limb underwent 15 minutes of quadriceps NMES twice daily on post-operative days (PODs) 1-4. Ultrasound measurements of Vastus Lateralis cross-sectional area (CSA) and muscle thickness (MT) were made preoperatively and on POD 5, as was dynamometry to determine knee extensor strength (KES). Change in CSA was the primary outcome. All outcomes were statistically analysed using linear mixed models. RESULTS: NMES significantly reduced the loss of CSA (-2.52 versus -9.16%, P < 0.001), MT (-2.76 versus -8.145, P = 0.001) and KES (-10.35 versus -19.69%, P = 0.03) compared to CON. No adverse events occurred, and patients reported that NMES caused minimal or no discomfort and felt that ~90-minutes of NMES daily would be tolerable. DISCUSSION: NMES reduces losses of muscle mass and function following major abdominal surgery, and as such, may be the promising tool for post-operative recovery. This is important in preventing long-term post-operative dependency, especially in the increasingly frail older patients undergoing major abdominal surgery. Further studies should establish the efficacy of bilateral NMES for improving patient-centred outcomes.


Asunto(s)
Terapia por Estimulación Eléctrica , Fuerza Muscular , Atrofia Muscular , Complicaciones Posoperatorias , Músculo Cuádriceps , Anciano , Humanos , Estimulación Eléctrica , Terapia por Estimulación Eléctrica/efectos adversos , Terapia por Estimulación Eléctrica/métodos , Articulación de la Rodilla , Fuerza Muscular/fisiología , Atrofia Muscular/etiología , Atrofia Muscular/fisiopatología , Atrofia Muscular/prevención & control , Músculo Cuádriceps/diagnóstico por imagen , Músculo Cuádriceps/fisiología , Cuidados Posoperatorios , Complicaciones Posoperatorias/prevención & control , Colectomía/efectos adversos
15.
Medicine (Baltimore) ; 101(31): e29451, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35945760

RESUMEN

Critically ill patients in the intensive care unit (ICU) develop muscle atrophy and decreased physical function. Though neuromuscular electrical stimulation (NMES) therapy has been shown to be effective in preventing this, but its effect on older patients is unknown. To examine the course of critically ill older patients treated with NMES in the ICU and to define the impact of its use. A retrospective cohort study was conducted using older ICU patients (≥65 years) categorized into a control group (n = 20) and an NMES group (n = 22). For subgroup analysis, each group was further classified into pre-old age (65-74 years) and old age (≥75 years). The control group showed significant decrease in muscle thickness during ICU and hospital stay. The NMES group showed lower reduction in muscle thickness and showed decrease in muscle echo intensity during hospital stay, compared to the control group. NMES inhibited decrease in muscle thickness in the pre-old age group versus the old age group. The decreasing effect of NMES on echo intensity during hospital stay manifested only in the pre-old age group. We did not find much difference in physical functioning between the NMES and control groups. Lower limb muscle atrophy reduces in critically ill older patients (≥65 years) with NMES and is pronounced in patients aged < 75 years. The impact of NMES on the physical functioning of older patients in ICU needs to be further investigated.


Asunto(s)
Enfermedad Crítica , Terapia por Estimulación Eléctrica , Enfermedad Crítica/terapia , Estimulación Eléctrica , Humanos , Unidades de Cuidados Intensivos , Atrofia Muscular/prevención & control , Estudios Retrospectivos
16.
BMC Musculoskelet Disord ; 23(1): 780, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35974369

RESUMEN

BACKGROUND: Extensive muscle atrophy is a common occurrence in orthopaedics patients who are bedridden or immobilized. The incidence is higher in intensive care unit (ICU) inpatients. There is still controversy about how to use neuromuscular electrical stimulation (NMES) in ICU patients. We aim to compare the effectiveness and safety of NMES to prevent muscle atrophy in intensive care unit (ICU) patients without nerve injury. METHODS: ICU patients without central and peripheral nerve injury were randomized into experimental group I (Exp I: active and passive activity training (APAT) + NMES treatment on the gastrocnemius and tibialis anterior muscle), experimental group II (Exp II: APAT + NMES treatment on gastrocnemius alone), and control group (Ctl: APAT alone). Changes in the strength of gastrocnemius, the ankle range of motion, and the muscle cross-section area of the lower leg were evaluated before and after the intervention. Also, changes in prothrombin time, lactic acid, and C-reactive protein were monitored during the treatment. RESULTS: The gastrocnemius muscle strength, ankle joint range of motion, and cross-sectional muscle area of the lower leg in the three groups showed a downward trend, indicating that the overall trend of muscle atrophy in ICU patients was irreversible. The decrease in gastrocnemius muscle strength in Exp I and Exp II was smaller than that in the control group (P < 0.05), but there was no difference between Exp I and Exp II. The decrease in active ankle range of motion and cross-sectional area of the lower leg Exp I and Exp II was smaller than that in the control group (P < 0.05), and the decrease in Exp I was smaller than that of Exp II (all P < 0.05). The curative effect in Exp I was better than in Exp II. There were no significant differences in the dynamic changes of prothrombin time, lactic acid, and C-reactive protein during the three groups (P > 0.05). CONCLUSION: In addition to early exercise training, NMES should be applied to prevent muscle atrophy for patients without nerve injury in ICU. Also, simultaneous NMES treatment on agonist/antagonist muscle can enhance the effect of preventing muscle atrophy. TRIAL REGISTRATION: This study was prospectively registered in China Clinical Trial Registry ( www.chictr.org.cn ) on 16/05/2020 as ChiCTR2000032950.


Asunto(s)
Terapia por Estimulación Eléctrica , Unidades de Cuidados Intensivos , Atrofia Muscular , Proteína C-Reactiva , Humanos , Ácido Láctico , Fuerza Muscular , Músculo Esquelético/fisiopatología , Atrofia Muscular/etiología , Atrofia Muscular/prevención & control
17.
J Med Food ; 25(7): 793-796, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35723637

RESUMEN

Silymarin is found in Silybum marianum. We investigated the effect of silymarin on muscle atrophy in obese mice. The experimental mice were divided into three groups: CON, normal diet; HFD, 60% high-fat diet (HF); and SILY: 50 mg silymarin +60% HF. It was confirmed that increases in body weight and fat mass in the SILY group were significantly inhibited. Moreover, the muscle mass in SILY mice was significantly higher than that in the HFD group. The grip strength in HFD group was significantly reduced, whereas in the SILY group it was higher than that in HFD group. In HFD mice, the mRNA levels of protein degradation factors (muscle ring-finger protein 1 [MuRF-1] and Atrogin-1) were increased and protein synthesis factors (phosphoinositide 3-kinase [PI3K] and Akt) were decreased. However, silymarin was found to elevate the degradation factors as compared with HFD group, whereas it reduced the synthesis factors. The results suggest that silymarin could prevent not only obesity but also muscle atrophy.


Asunto(s)
Dieta Alta en Grasa , Silimarina , Animales , Dieta Alta en Grasa/efectos adversos , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Músculo Esquelético/metabolismo , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/etiología , Atrofia Muscular/prevención & control , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteolisis , Silimarina/farmacología
18.
J Ethnopharmacol ; 296: 115490, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-35728709

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The seeds of Psoralea corylifolia (PCS), also called "Boh-Gol-Zhee" in Korean, have been used in traditional medicine. PCS is effective for the treatment of vitiligo, cancer, inflammatory diseases, neurodegenerative diseases, kidney diseases, and musculoskeletal diseases. AIM OF THE STUDY: In this study, we validated the beneficial effects of PCS extract on dexamethasone (DEX)-induced muscle atrophy in mice. MATERIALS AND METHODS: DEX (20 mg/kg/day, 10 days) was intraperitoneally injected into C57BL/6 male mice to induce muscular atrophy. Oral administration of PCS extract (200 or 500 mg/kg/day) was started 2 days before DEX injection and continued for 12 days. RESULTS: PCS extract inhibited DEX-induced decrease in body and muscle weight, grip strength, and cross-sectional area of the tibialis anterior. PCS extract significantly increased the mRNA and protein expression levels of myosin heavy chain 1, 2A, and 2X in DEX-administered mice. DEX administration significantly increased the levels of muscle atrophy factors atrogin-1, muscle RING-finger protein-1, and myostatin, which were inhibited by the PCS extract. Additionally, PCS extract increased the expression of muscle regeneration factors, such as myoblast determination protein 1, myogenin, and embryonic myosin heavy chain, and muscle synthesis markers, such as protein kinase B and mammalian target of rapamycin signaling molecules. PCS extract also significantly decreased the DEX-induced production of 4-hydroxynonenal, an oxidative stress marker. Furthermore, PCS extract recovered superoxide dismutase 2, glutathione peroxidase, and catalase activities, which were significantly reduced by DEX administration. Moreover, DEX-induced activation of nuclear factor kappa-light-chain-enhancer of activated B cells and expression of cytokines, such as tumor necrosis factor α and monocyte chemoattractant protein-1, significantly decreased after PCS extract administration. CONCLUSIONS: Here, we demonstrated that PCS extract administration protected against DEX-induced muscle atrophy. This beneficial effect was mediated by suppressing the expression of muscle degradation factors and increasing the expression of muscle regeneration and synthesis factors. This effect was probably due to the inhibition of oxidative stress and inflammation. These results highlight the potential of PCS extract as a protective and therapeutic agent against muscle dysfunction and atrophy.


Asunto(s)
Dexametasona , Atrofia Muscular , Extractos Vegetales , Psoralea , Animales , Dexametasona/efectos adversos , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Masculino , Mamíferos/metabolismo , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Atrofia Muscular/inducido químicamente , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/prevención & control , Cadenas Pesadas de Miosina/metabolismo , Estrés Oxidativo , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Psoralea/metabolismo , Semillas/metabolismo
19.
Nutrients ; 14(10)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35631169

RESUMEN

Prevention of muscle atrophy contributes to improved quality of life and life expectancy. In this study, we investigated the effects of laurel, selected from 34 spices and herbs, on dexamethasone (DEX)-induced skeletal muscle atrophy and deciphered the underlying mechanisms. Co-treatment of C2C12 myotubes with laurel for 12 h inhibited the DEX-induced expression of intracellular ubiquitin ligases-muscle atrophy F-box (atrogin-1/MAFbx) and muscle RING finger 1 (MuRF1)-and reduction in myotube diameter. Male Wistar rats were supplemented with 2% laurel for 17 days, with DEX-induced skeletal muscle atrophy occurring in the last 3 days. Laurel supplementation inhibited the mRNA expression of MuRF1, regulated DNA damage and development 1 (Redd1), and forkhead box class O 1 (Foxo1) in the muscles of rats. Mechanistically, we evaluated the effects of laurel on the cellular proteolysis machinery-namely, the ubiquitin/proteasome system and autophagy-and the mTOR signaling pathway, which regulates protein synthesis. These data indicated that the amelioration of DEX-induced skeletal muscle atrophy induced by laurel, is mainly mediated by the transcriptional inhibition of downstream factors of the ubiquitin-proteasome system. Thus, laurel may be a potential food ingredient that prevents muscle atrophy.


Asunto(s)
Músculo Esquelético , Atrofia Muscular , Extractos Vegetales , Complejo de la Endopetidasa Proteasomal , Calidad de Vida , Animales , Dexametasona , Laurus/química , Masculino , Músculo Esquelético/patología , Atrofia Muscular/inducido químicamente , Atrofia Muscular/prevención & control , Extractos Vegetales/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Ratas , Ratas Wistar , Ubiquitina
20.
Eur J Pharmacol ; 925: 174995, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35523319

RESUMEN

The skeletal muscle (SkM) is the largest organ, which plays a vital role in controlling musculature, locomotion, body heat regulation, physical strength, and metabolism of the body. A sedentary lifestyle, aging, cachexia, denervation, immobilization, etc. Can lead to an imbalance between protein synthesis and degradation, which is further responsible for SkM atrophy (SmA). To date, the understanding of the mechanism of SkM mass loss is limited which also restricted the number of drugs to treat SmA. Thus, there is an urgent need to develop novel approaches to regulate muscle homeostasis. Presently, some natural products attained immense attraction to regulate SkM homeostasis. The natural products, i.e., polyphenols (resveratrol, curcumin), terpenoids (ursolic acid, tanshinone IIA, celastrol), flavonoids, alkaloids (tomatidine, magnoflorine), vitamin D, etc. exhibit strong potential against SmA. Some of these natural products have been reported to have equivalent potential to standard treatments to prevent body lean mass loss. Indeed, owing to the large complexity, diversity, and slow absorption rate of bioactive compounds made their usage quite challenging. Moreover, the use of natural products is controversial due to their partially known or elusive mechanism of action. Therefore, the present review summarizes various experimental and clinical evidence of some important bioactive compounds that shall help in the development of novel strategies to counteract SmA elicited by various causes.


Asunto(s)
Productos Biológicos , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Caquexia/metabolismo , Humanos , Músculo Esquelético/metabolismo , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/metabolismo , Atrofia Muscular/prevención & control , Polifenoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA