Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Phytomedicine ; 125: 155351, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38232540

RESUMEN

BACKGROUND: Autophagy, a cellular process involving lysosomal self-digestion, plays a crucial role in recycling biomolecules and degrading dysfunctional proteins and damaged organelles. However, in non-small cell lung cancer (NSCLC), cancer cells can exploit autophagy to survive metabolic stress and develop resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), which reduce treatment efficacies. Currently, most studies have found that late-stage autophagy inhibitors can hinder EGFR-TKIs resistance, while research on early-stage autophagy inhibitors is still limited. PURPOSE: This study investigates the mechanism via which the Xie-Bai-San (XBS) formula enhances NSCLC cell sensitivity to gefitinib, revealing the relationship between XBS-induced cell death and the inhibition of autophagosome formation. METHODS: Cell viability was assessed using CCK-8 and EdU assays, lentivirus transfection was utilized to generate PC9 cells harboring the PIK3CA E545K mutation (referred to as PC9-M), autophagic flux was monitored using mCherry-GFP-LC3 adenovirus. Protein expression and colocalization were observed through immunofluorescence staining. The interaction between Bcl-2 and Beclin-1 in PC9-GR and PC9-M cells was determined via co-immunoprecipitation (Co-IP) assay, cell apoptosis was assessed by flow cytometry and PI staining, and overall survival analysis of lung adenocarcinoma patients was conducted using the TCGA database. In vivo experiments included a patient-derived xenograft (PDX) model with EGFR and PIK3CA mutations and subcutaneous mice xenografts of NSCLC cell lines (PC9 and PC9-GR). In addition, autophagic vesicles in mouse tumor tissues were observed via transmission electron microscopy analysis. RESULTS: XBS effectively inhibits the proliferation of gefitinib-resistant NSCLC cells and induces apoptosis both in vitro and in vivo. Mechanistically, XBS suppresses gefitinib-induced autophagic flux by inhibiting autophagy through the upregulation of p-mTOR and Bcl-2 and downregulation of Beclin-1. Additionally, XBS enhances the interaction between Bcl-2 and Beclin-1, and the overexpression of Beclin-1 promotes NSCLC cell proliferation and counteracts XBS-induced cell death, while XBS demonstrates minimal impact on autophagosome-lysosome fusion or lysosome function. CONCLUSION: This study reveals a novel role for the XBS formula in impeding autophagy initiation and demonstrates its potential as a candidate drug to counteract autophagy-induced treatment resistance in NSCLC.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/patología , Gefitinib/farmacología , Beclina-1 , Neoplasias Pulmonares/patología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Autofagosomas , Receptores ErbB/metabolismo , Quinazolinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Resistencia a Antineoplásicos , Apoptosis , Proteínas Proto-Oncogénicas c-bcl-2 , Línea Celular Tumoral
2.
Sci Rep ; 13(1): 18586, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37903904

RESUMEN

Alzheimer's disease (AD), a neurodegenerative disorder, causes short-term memory and cognition declines. It is estimated that one in three elderly people die from AD or other dementias. Chinese herbal medicine as a potential drug for treating AD has gained growing interest from many researchers. Moschus, a rare and valuable traditional Chinese animal medicine, was originally documented in Shennong Ben Cao Jing and recognized for its properties of reviving consciousness/resuscitation. Additionally, Moschus has the efficacy of "regulation of menstruation with blood activation, relief of swelling and pain" and is used for treating unconsciousness, stroke, coma, and cerebrovascular diseases. However, it is uncertain whether Moschus has any protective effect on AD patients. We explored whether Moschus could protect glutamate (Glu)-induced PC12 cells from cellular injury and preliminarily explored their related action mechanisms. The chemical compounds of Moschus were analyzed and identified by GC-MS. The Glu-induced differentiated PC12 cell model was thought to be the common AD cellular model. The study aims to preliminarily investigate the intervention effect of Moschus on Glu-induced PC12 cell damage as well as their related action mechanisms. Cell viability, lactate dehydrogenase (LDH), mitochondrial reactive oxygen species, mitochondrial membrane potential (MMP), cell apoptosis, autophagic vacuoles, autolysosomes or autophagosomes, proteins related to apoptosis, and the proteins related to autophagy were examined and analyzed. Seventeen active compounds of the Moschus sample were identified based on GC-MS analysis. In comparison to the control group, Glu stimulation increased cell viability loss, LDH release, mitochondrial damage, loss of MMP, apoptosis rate, and the number of cells containing autophagic vacuoles, and autolysosomes or autophagosomes, while these results were decreased after the pretreatment with Moschus and 3-methyladenine (3-MA). Furthermore, Glu stimulation significantly increased cleaved caspase-3, Beclin1, and LC3II protein expression, and reduced B-cell lymphoma 2/BAX ratio and p62 protein expression, but these results were reversed after pretreatment of Moschus and 3-MA. Moschus has protective activity in Glu-induced PC12 cell injury, and the potential mechanism might involve the regulation of autophagy and apoptosis. Our study may promote research on Moschus in the field of neurodegenerative diseases, and Moschus may be considered as a potential therapeutic agent for AD.


Asunto(s)
Enfermedad de Alzheimer , Ácido Glutámico , Animales , Ratas , Femenino , Humanos , Anciano , Ácido Glutámico/toxicidad , Autofagia , Especies Reactivas de Oxígeno/metabolismo , Autofagosomas/metabolismo , Apoptosis , Enfermedad de Alzheimer/tratamiento farmacológico , Células PC12 , Supervivencia Celular
3.
Clin Transl Sci ; 16(12): 2543-2556, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37749758

RESUMEN

Aberrant autophagic activity is observed in osteoarthritic joints. Vitamin D was shown to alleviate not only osteoarthritis severity, but also autophagy process. However, the influence of vitamin D on autophagy in knee osteoarthritis (KOA) remains ambiguous. This study aimed to determine the effect of vitamin D2 on serum levels of autophagosome protein LC3A in patients with KOA and whether LC3A levels were correlated with serum 25-hydroxyvitamin D (25(OH)D) and clinical outcomes of patients with KOA. A total of 165 patients with KOA and 25 healthy controls were recruited. Vitamin D2 (ergocalciferol) was administered to patients with KOA at a weekly dosage of 40,000 IU. Serum LC3A, knee pain and functional scores, muscle strength, physical performance, and biochemical parameters were examined before and after 6 months of vitamin D2 supplementation. Serum LC3A levels were significantly higher in patients with KOA than healthy controls. In patients with KOA, vitamin D2 supplementation significantly decreased serum LC3A levels. Furthermore, baseline levels of serum LC3A were significantly associated with radiographic severity, pain and functional scores, total cholesterol, hs-CRP, IL-6, protein carbonyl, and serum 25(OH)D. After adjusting for established confounders, independent relationships among serum LC3A and radiographic severity, pain and functional scores, total cholesterol, hs-CRP, IL-6, protein carbonyl, and serum 25(OH)D were also observed. Vitamin D2 supplementation was shown to not only decrease serum levels of LC3A, inflammatory markers, as well as oxidative stress, but also improve muscle strength and physical performance in patients with KOA.


Asunto(s)
Osteoartritis de la Rodilla , Deficiencia de Vitamina D , Humanos , Osteoartritis de la Rodilla/tratamiento farmacológico , Proteína C-Reactiva , Autofagosomas , Interleucina-6 , Vitamina D , Inflamación/tratamiento farmacológico , Dolor , Suplementos Dietéticos , Rendimiento Físico Funcional , Colesterol
4.
Phytomedicine ; 119: 154994, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37597363

RESUMEN

BACKGROUND: Naegleria fowleri is a brain-eating amoeba causing a fatal brain infection called primary amoebic meningoencephalitis (PAM). Despite its high mortality over 95%, effective therapeutic drug for PAM has not been developed yet. Therefore, development of an effective and safe therapeutic drug for PAM is urgently needed. In this study, we investigated anti-amoebic effect of kaempferol (KPF) against N. fowleri and its underlying anti-amoebic molecular mechanisms. METHODS: Anti-amoebic activity of KPF against N. fowleri trophozoites, as well as cytotoxicity of KPF in C6 glial cells and CHO-K1 cells were investigated. The programmed cell death mechanisms in KPF-treated N. fowleri were also analyzed by apoptosis-necrosis assay, mitochondrial dysfunction assay, TUNEL assay, RT-qPCR, and CYTO-ID assay. RESULTS: KPF showed anti-amoebic activity against N. fowleri trophozoites with an IC50 of 29.28 ± 0.63 µM. However, it showed no significant cytotoxicity to mammalian cells. KPF induced significant morphological alterations of the amoebae, resulting in death. Signals associated with apoptosis were detected in the amoebae upon treatment with KPF. KPF induced an increase of intracellular reactive oxygen species level, loss of mitochondrial membrane potential, increases of expression levels of genes associated with mitochondria dysfunction, and reduction of ATP levels in the amoebae. Autophagic vacuole accumulations with increased expression levels of autophagy-related genes were also detected in KPF-treated amoebae. CONCLUSION: KPF induces programmed cell death in N. fowleri trophozoites via apoptosis-like pathway and autophagy pathway. KPF could be used as a candidate of anti-amoebic drug or supplement compound in the process of developing or optimizing therapeutic drug for PAM.


Asunto(s)
Naegleria fowleri , Animales , Quempferoles/farmacología , Apoptosis , Necrosis , Autofagosomas , Mamíferos
5.
Am J Chin Med ; 50(6): 1599-1615, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35786171

RESUMEN

Improving autophagy-lysosome fusion has been considered a key method in the treatment of Alzheimer's disease (AD). Cornel iridoid glycoside (CIG) is extracted from Cornus officinalis and has been shown to promote the clearance of tau oligomers via the autophagy pathway. However, the mechanisms of CIG on autophagy deficits are not understood. Here, we found autophagy deficit and tau aggregation in the brains of P301S tau transgenic mice and MAPT cells edited using CRISPR-Cas9 technology. CIG decreased tau aggregation and alleviated autophagic markers involving the JNK/Beclin-1 signaling pathway which demonstrated CIG that might enhance lysosome formation by upregulating ATPase Vps4A expression. Knocking down VPS4A increased autophagosome accumulation and attenuated the effect of CIG on p62. In addition, CIG had no effect on tau oligomers but still inhibited the level of tau monomer in VPS4A knockout cells. The effective component (Sweroside, SWE) of CIG attenuated tau oligomers accumulation and increased Vps4A level but not CHMP2B. SWE could not change the level of tau oligomers in VPS4A knockout cells. In conclusion, CIG suppressed autophagosome accumulation by regulating the ATPase Vps4A/JNK. SWE is a core of active factors of CIG in Vps4A regulation. These findings suggest CIG may be a potential drug in AD treatment.


Asunto(s)
Enfermedad de Alzheimer , Autofagosomas , Adenosina Trifosfatasas , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Autofagosomas/metabolismo , Autofagia/genética , Glicósidos Iridoides/farmacología , Iridoides/farmacología , Ratones
6.
Biochim Biophys Acta Mol Basis Dis ; 1868(10): 166455, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35680107

RESUMEN

Autophagy inhibition is currently considered a novel therapeutic strategy for cancer treatment. Lipoic acid (LA), a naturally occurring compound found in all prokaryotic and eukaryotic cells, inhibits breast cancer cell growth; however, the effect of LA on autophagy-mediated breast cancer cell death remains unknown. Our study identified that LA blocks autophagic flux by inhibiting autophagosome-lysosome fusion and lysosome activity which increases the accumulation of autophagosomes in MCF-7 and MDA-MB231 cells, leading to cell death of breast cancer cells. Interestingly, autophagic flux blockade limits the recycling of cellular fuels, resulting in insufficient substrates for cellular bioenergetics. Therefore, LA impairs cellular bioenergetics by the inhibition of mitochondrial function and glycolysis. We show that LA-induced ROS generation is responsible for the blockade of autophagic flux and cellular bioenergetics in breast cancer cells. Moreover, LA-mediated blockade of autophagic flux and ROS generation may interfere with the regulation of the BCSCs/progenitor phenotype. Here, we demonstrate that LA inhibits mammosphere formation and subpopulation of BCSCs. Together, these results implicate that LA acts as a prooxidant, potent autophagic flux inhibitor, and causes energetic impairment, which may lead to cell death in breast cancer cells/BCSCs.


Asunto(s)
Neoplasias , Ácido Tióctico , Autofagosomas/metabolismo , Autofagia , Metabolismo Energético , Neoplasias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ácido Tióctico/farmacología , Ácido Tióctico/uso terapéutico
7.
Biochem Pharmacol ; 197: 114933, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35093393

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is becoming an increasingly serious disease worldwide. Unfortunately, no specific drug has been approved to treat NAFLD. Accumulating evidence suggests that lipotoxicity, which is induced by an excess of intracellular triacylglycerols (TAGs), is a potential mechanism underlying the ill-defined progression of NAFLD. Under physiological conditions, a balance is maintained between TAGs and free fatty acids (FFAs) in the liver. TAGs are catabolized to FFAs through neutral lipolysis and/or lipophagy, while FFAs can be anabolized to TAGs through an esterification reaction. However, in the livers of patients with NAFLD, lipophagy appears to fail. Reversing this abnormal state through several lipophagic molecules (mTORC1, AMPK, PLIN, etc.) facilitates NAFLD amelioration; therefore, restoring failed lipophagy may be a highly efficient therapeutic strategy for NAFLD. Here, we outline the lipophagy phases with the relevant important proteins and discuss the roles of lipophagy in the progression of NAFLD. Additionally, the potential candidate drugs with therapeutic value targeting these proteins are discussed to show novel strategies for future treatment of NAFLD.


Asunto(s)
Autofagia/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Autofagia/fisiología , Berberina/administración & dosificación , Ácidos Grasos no Esterificados/antagonistas & inhibidores , Ácidos Grasos no Esterificados/metabolismo , Factores de Crecimiento de Fibroblastos/administración & dosificación , Humanos , Metabolismo de los Lípidos/fisiología , Lipólisis/efectos de los fármacos , Lipólisis/fisiología , Hígado/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina/administración & dosificación , Canales de Potencial de Receptor Transitorio/administración & dosificación , Triglicéridos/antagonistas & inhibidores , Triglicéridos/metabolismo
8.
Cells ; 10(11)2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34831346

RESUMEN

AIMS: Tay-Sachs and Sandhoff diseases (GM2 gangliosidosis) are autosomal recessive disorders of lysosomal function that cause progressive neurodegeneration in infants and young children. Impaired hydrolysis catalysed by ß-hexosaminidase A (HexA) leads to the accumulation of GM2 ganglioside in neuronal lysosomes. Despite the storage phenotype, the role of autophagy and its regulation by mTOR has yet to be explored in the neuropathogenesis. Accordingly, we investigated the effects on autophagy and lysosomal integrity using skin fibroblasts obtained from patients with Tay-Sachs and Sandhoff diseases. RESULTS: Pathological autophagosomes with impaired autophagic flux, an abnormality confirmed by electron microscopy and biochemical studies revealing the accelerated release of mature cathepsins and HexA into the cytosol, indicating increased lysosomal permeability. GM2 fibroblasts showed diminished mTOR signalling with reduced basal mTOR activity. Accordingly, provision of a positive nutrient signal by L-arginine supplementation partially restored mTOR activity and ameliorated the cytopathological abnormalities. INNOVATION: Our data provide a novel molecular mechanism underlying GM2 gangliosidosis. Impaired autophagy caused by insufficient lysosomal function might represent a new therapeutic target for these diseases. CONCLUSIONS: We contend that the expression of autophagy/lysosome/mTOR-associated molecules may prove useful peripheral biomarkers for facile monitoring of treatment of GM2 gangliosidosis and neurodegenerative disorders that affect the lysosomal function and disrupt autophagy.


Asunto(s)
Arginina/farmacología , Autofagia , Gangliosidosis GM2/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Autofagosomas/ultraestructura , Autofagia/efectos de los fármacos , Catepsinas/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Hexosaminidasa A/química , Hexosaminidasa A/metabolismo , Hexosaminidasa B/química , Hexosaminidasa B/metabolismo , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Mutación/genética , Permeabilidad , Proteínas Proto-Oncogénicas c-akt/metabolismo , Enfermedad de Sandhoff/patología , Transducción de Señal/efectos de los fármacos , Enfermedad de Tay-Sachs/patología , Transcriptoma/genética
9.
Biomed Pharmacother ; 142: 112045, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34426257

RESUMEN

OBJECTIVE: Asthma is characterized by airway hyperresponsiveness(AHR), inflammation and remodeling. Autophagy and endoplasmic reticulum stress(ERS) are dysregulated in asthma, and ATG5 has attracted wide attentions a representative gene of autophagy. Previous evidence shows that acupuncture may treat asthma by regulating the immune environment.However,the precise mechanism involved in acupuncture's effects on asthma is unclear. Thus, we investigated the inner-relationships of acupuncture and ATG5-mediated autophagy, ERS and CD4+ T lymphocyte differentiation in asthma. METHODS: Ovalbumin (OVA)-sensitized and challenged ATG5+/- and ATG5-/-mice with asthma were treated by acupuncture at Dazhui(GV14),Feishu(BL13) and Zusanli(ST36),and sacrificed the next day.Then blood and bronchoalveolar lavage fluid (BALF)samples were collected to determine inflammatory cell counts and cytokine levels. Lung tissue samples were obtained for histological examination, and the spleen was harvested for flow cytometry. RESULTS: Compared with the untreated group, acupuncture decreased BALF inflammatory cell counts and AHR in OVA-induced mice.Acupuncture decreased autophagy-related protein and mRNA (ATG5,Beclin-1,p62 and LC3B)amounts and ERS-related protein (p-PERK, p-IRE-1,Grp78, and ATF6)levels as well as autophagosome formation in lung tissue, concomitant with increased IFN-γ and decreased IL-4, IL-17 and TGF-ß amounts in BALF.Consistently, the imbalance of CD4+ T lymphocyte subsets(Th1/Th2 and Treg/Th17) was also corrected by acupuncture.Meanwhile, AHR and inflammation were decreased in ATG5-/- mice compared with ATG+/-animals,without affecting the therapeutic effect of acupuncture. CONCLUSION: Acupuncture reduces airway inflammation and AHR in asthma by inhibiting ATG5-mediated autophagy to regulate endoplasmic reticulum stress and CD4+T lymphocyte differentiation.


Asunto(s)
Terapia por Acupuntura , Asma/terapia , Proteína 5 Relacionada con la Autofagia/antagonistas & inhibidores , Proteína 5 Relacionada con la Autofagia/genética , Autofagia/genética , Linfocitos T CD4-Positivos/inmunología , Estrés del Retículo Endoplásmico/genética , Animales , Asma/inducido químicamente , Asma/inmunología , Asma/patología , Autofagosomas/ultraestructura , Autofagia/inmunología , Proteína 5 Relacionada con la Autofagia/inmunología , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Linfocitos T CD4-Positivos/citología , Diferenciación Celular/inmunología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/inmunología , Femenino , Inflamación/genética , Inflamación/inmunología , Ratones Endogámicos C57BL , Ovalbúmina/toxicidad , Hipersensibilidad Respiratoria
10.
Molecules ; 26(10)2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-34065886

RESUMEN

Nujiangexanthone A (NJXA), a bioactive component isolated from the leaves of Garcinia nujiangensis, has been reported to exhibit anti-inflammatory, antioxidant, and antitumor effects. Our previous work has shown that NJXA induced G0/1 arrest and apoptosis, thus suppressing cervical cancer cell growth. The present study provides new evidence that NJXA can induce cell death in HeLa cells by promoting mitophagy. We first identified that NJXA triggered GFP-LC3 and YFP-Parkin puncta accumulation, which are biomarkers of mitophagy. Moreover, NJXA degraded the mitochondrial membrane proteins Tom20 and Tim23 and mitochondrial fusion proteins MFN1 and MFN2, downregulated Parkin, and stabilized PINK1. Additionally, we revealed that NJXA induced lysosome degradation and colocalization of mitochondria and autophagosomes, which was attenuated by knocking down ATG7, the key regulator of mitophagy. Furthermore, since mitophagy is induced under starvation conditions, we detected the cytotoxic effect of NJXA in nutrient-deprived HeLa cells and observed better cytotoxicity. Taken together, our work contributes to the further clarification of the mechanism by which NJXA inhibits cervical cancer cell proliferation and provides evidence that NJXA has the potential to develop anticancer drugs.


Asunto(s)
Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Garcinia/química , Mitofagia/efectos de los fármacos , Extractos Vegetales/farmacología , Neoplasias del Cuello Uterino/metabolismo , Xantonas/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Autofagosomas/metabolismo , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Proliferación Celular/genética , Femenino , Técnicas de Inactivación de Genes , Células HeLa , Humanos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Mitofagia/genética , Nutrientes/deficiencia , Hojas de la Planta/química , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transfección , Ubiquitina-Proteína Ligasas/metabolismo , Neoplasias del Cuello Uterino/patología
11.
mBio ; 12(3): e0108821, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34060333

RESUMEN

ATP/ADP depicts the bioenergetic state of Mycobacterium tuberculosis (Mtb). However, the metabolic state of Mtb during infection remains poorly defined due to the absence of appropriate tools. Perceval HR (PHR) was recently developed to measure intracellular ATP/ADP levels, but it cannot be employed in mycobacterial cells due to mycobacterial autofluorescence. Here, we reengineered the ATP/ADP sensor Perceval HR into PHR-mCherry to analyze ATP/ADP in fast- and slow-growing mycobacteria. ATP/ADP reporter strains were generated through the expression of PHR-mCherry. Using the Mtb reporter strain, we analyzed the changes in ATP/ADP levels in response to antimycobacterial agents. As expected, bedaquiline induced a decrease in ATP/ADP. Interestingly, the transcriptional inhibitor rifampicin led to the depletion of ATP/ADP levels, while the cell wall synthesis inhibitor isoniazid did not affect the ATP/ADP levels in Mtb. The usage of this probe revealed that Mtb faces depletion of ATP/ADP levels upon phagocytosis. Furthermore, we observed that the activation of macrophages with interferon gamma and lipopolysaccharides leads to metabolic stress in intracellular Mtb. Examination of the bioenergetics of mycobacteria residing in subvacuolar compartments of macrophages revealed that the bacilli residing in phagolysosomes and autophagosomes have significantly less ATP/ADP than the bacilli residing in phagosomes. These observations indicate that phagosomes represent a niche for metabolically active Mtb, while autophagosomes and phagolysosomes harbor metabolically quiescent bacilli. Interestingly, even in activated macrophages, Mtb residing in phagosomes remains metabolically active. We further observed that macrophage activation affects the metabolic state of intracellular Mtb through the trafficking of Mtb from phagosomes to autophagosomes and phagolysosomes. IMPORTANCE ATP/ADP levels guide bacterial cells, whether to replicate or to enter nonreplicating persistence. However, tools for measuring ATP/ADP levels with spatiotemporal resolution are lacking. Here, we describe a method for tracking ATP/ADP levels at the single-cell and population levels. Using this tool, we have demonstrated that the transcription inhibitor rifampicin induces metabolic stress. In contrast, the cell wall synthesis inhibitor isoniazid does not alter the metabolic state of the bacilli, suggesting that transcription is tightly intertwined with metabolism, while cell wall synthesis is not. Furthermore, we analyzed the metabolic state of mycobacteria residing in different compartments of macrophages. We observed that Mtb cells residing inside phagosomes have healthy ATP/ADP levels. In contrast, the bacteria residing inside phagolysosomes and autophagosomes face depletion of ATP. Interestingly, the activation of macrophages facilitates the trafficking of mycobacterial cells from metabolism-conducive phagosomes to metabolism-averse phagolysosomes and autophagosomes. We believe that this tool holds the key to the identification of inhibitors of mycobacterial metabolism.


Asunto(s)
Metabolismo Energético , Macrófagos/microbiología , Mycobacterium tuberculosis/metabolismo , Fagosomas/microbiología , Adenosina Difosfato/análisis , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/análisis , Adenosina Trifosfato/metabolismo , Antibióticos Antituberculosos/farmacología , Autofagosomas/microbiología , Humanos , Isoniazida/farmacología , Mycobacterium tuberculosis/genética , Rifampin/farmacología , Estrés Fisiológico/efectos de los fármacos
12.
Int J Mol Med ; 48(1)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33982791

RESUMEN

Head and neck squamous cell carcinoma (HNSCC), one of the most common malignancies worldwide, often has a poor prognosis due to the associated metastasis and chemoresistance. Hence, the development of more effective chemotherapeutics is critical. Neferine, a bisbenzylisoquinoline alkaloid isolated from the seed embryo of Nelumbo nucifera (common name: Lotus), exerts antitumor effects by regulating apoptosis and autophagy pathways, making it a potential therapeutic option for HNSCC. In our study, it was revealed that neferine inhibited the growth and induced the apoptosis of HNSCC cells both in vitro and in vivo. Furthermore, the results revealed that neferine activated the ASK1/JNK pathway by increasing reactive oxygen species production, resulting in the subsequent induction of apoptosis and the regulation of canonical autophagy in HNSCC cells. Moreover, a novel pro­apoptotic mechanism was described for neferine via the activation of caspase­8 following the accumulation of p62, which was caused by autophagic flux inhibition. These findings provided insights into the mechanisms responsible for the anticancer effect of neferine, specifically highlighting the crosstalk that occured between apoptosis and autophagy, which was mediated by p62 in HNSCC. Hence, the neferine­induced inhibition of autophagic flux may serve as the basis for a potential adjuvant therapy for HNSCC.


Asunto(s)
Apoptosis/efectos de los fármacos , Bencilisoquinolinas/farmacología , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Nelumbo/química , Proteína Sequestosoma-1/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Animales , Autofagosomas/efectos de los fármacos , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Medicamentos Herbarios Chinos , Neoplasias de Cabeza y Cuello/patología , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos BALB C , Especies Reactivas de Oxígeno/metabolismo , Semillas/química , Proteína Sequestosoma-1/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
13.
Adv Exp Med Biol ; 1308: 137-160, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33861443

RESUMEN

Programmed cell death processes such as apoptosis and autophagy strongly contribute to the onset and progression of cancer. Along with these lines, modulation of cell death mechanisms to combat cancer cells and elimination of resistance to apoptosis is of great interest. It appears that modulation of autophagy and endoplasmic reticulum (ER) stress with specific agents would be beneficial in the treatment of several disorders. Interestingly, it has been suggested that herbal natural products may be suitable candidates for the modulation of these processes due to few side effects and significant therapeutic potential. Ginsenosides are derivatives of ginseng and exert modulatory effects on the molecular mechanisms associated with autophagy and ER stress. Ginsenosides act as smart phytochemicals that confer their effects by up-regulating ATG proteins and converting LC3-I to -II, which results in maturation of autophagosomes. Not only do ginsenosides promote autophagy but they also possess protective and therapeutic properties due to their capacity to modulate ER stress and up- and down-regulate and/or dephosphorylate UPR transducers such as IRE1, PERK, and ATF6. Thus, it would appear that ginsenosides are promising agents to potentially restore tissue malfunction and possibly eliminate cancer.


Asunto(s)
Estrés del Retículo Endoplásmico , Ginsenósidos , Apoptosis , Autofagosomas , Autofagia , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico
14.
Mol Brain ; 14(1): 65, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33823883

RESUMEN

Palmitate is a saturated fatty acid that is well known to induce endoplasmic reticulum (ER) stress and autophagy. A high-fat diet increases the palmitate level in the hypothalamus, the main region of the brain regulating energy metabolism. Interestingly, hypothalamic palmitate level is also increased under starvation, urging the study to distinguish the effects of elevated hypothalamic palmitate level under different nutrient conditions. Herein, we show that ER-phagy (ER-targeted selective autophagy) is required for progress of ER stress and that palmitate decreases ER stress by inhibiting ER-phagy in hypothalamic cells under starvation. Palmitate inhibited starvation-induced ER-phagy by increasing the level of B-cell lymphoma 2 (Bcl-2) protein, which inhibits autophagy initiation. These findings suggest that, unlike the induction of ER stress under nutrient-rich conditions, palmitate protects hypothalamic cells from starvation-induced stress by inhibiting ER-phagy.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Palmitatos/farmacología , Animales , Autofagosomas/metabolismo , Línea Celular Transformada , Medios de Cultivo/farmacología , Técnicas de Silenciamiento del Gen , Genes bcl-2 , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis , Interferencia de ARN , ARN Interferente Pequeño/genética , Inanición
15.
Breast Cancer ; 28(1): 60-66, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32654094

RESUMEN

LED red light has been reported to have many health benefits. The present study was conducted to characterise anti-proliferation properties of four LED red light wavelengths (615, 630, 660 and 730 nm) against non-triple negative (MCF-7) and triple negative (MDA-MB-231) breast cancer-origin cell lines. It has been shown by MTT assay that at 24 h post-exposure time point, only LED red light with wavelength 660 nm possessed anti-proliferative effects against both cell lines with 40% reduction of cell viability. The morphology of LED 660 nm irradiated cells was found flatten with enlarged cell size, typical characteristic of cell senescent. Indications of autophagy activities following the irradiation have been provided by acridine orange staining, showing high presence of acidic vesicle organelles (AVOs). In addition, high LC3-II/LC3-I to LC3 ratio has been observed qualitatively in Western blot analysis indicating an increase number of autophagosomes formation in LED 660 nm irradiated cells compared to control cells. Electron dense bodies observed in these cells under TEM micrographs provided additional support to the above observations, leading to the conclusion that LED 660 nm irradiation promoted anti-proliferative activities through autophagy in breast cancer-origin cells. These findings have suggested that LED 660 nm might be developed and be employed as an alternative cancer treatment method in future.


Asunto(s)
Autofagosomas/metabolismo , Autofagia/efectos de la radiación , Neoplasias de la Mama/terapia , Fototerapia/métodos , Apoptosis , Autofagosomas/efectos de la radiación , Autofagosomas/ultraestructura , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Femenino , Humanos , Microscopía Electrónica de Transmisión , Semiconductores
16.
Drug Res (Stuttg) ; 71(1): 43-50, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33022720

RESUMEN

Glucagon-like peptide-2 (GLP-2) is a peptide hormone that belongs to the glucagon-derived peptide family. We have previously shown that analogues of the sister hormone Glucagon-like peptide-1 (GLP-1) showed neuroprotective effects. Here we investigated the effect of a GLP-2 agonist in a cell model of Parkinson's disease (PD) created by treating SH-SY5Y or Neuro-2a cells with 1-Methyl-4-phenyl-pyridine ion (MPP+). Cell viability and cell cytotoxicity was detected by MTT and LDH assays, respectively. The protein expression levels of mitochondrial, autophagy and apoptotic biomarkers including PGC-1α, Mfn2, IRE1, ATG7, LC3B, Beclin1 and Bcl-2 were detected by western blot. Mitochondrial superoxide was detected by MitoSOX Red. In addition, mitochondrial morphology, autophagosome and apoptotic corpuscles were observed by transmission electron microscope (TEM). We found that the GLP-1 and the GLP-2 agonists both protect cells against mitochondrial damage, autophagy impairments and apoptosis induced by MPP+both in SH-SY5Y and Neuro-2a cells. Cell signaling for mitogenesis was enhanced, and oxidative stress levels much reduced by the drugs. This demonstrates for the first time the neuroprotective effects of a GLP-2 analogue in PD cellular models, in which oxidative stress, autophagy and apoptosis play crucial roles. The protective effects were comparable to those seen with the GLP-1 analogue liraglutide. The results suggest that not only GLP-1, but also GLP-2 has neuroprotective properties and may be useful as a novel treatment of PD.


Asunto(s)
Péptido 2 Similar al Glucagón/agonistas , Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Autofagosomas/efectos de los fármacos , Autofagosomas/ultraestructura , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Péptido 1 Similar al Glucagón/agonistas , Humanos , Liraglutida/farmacología , Liraglutida/uso terapéutico , Microscopía Electrónica de Transmisión , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Mitocondrias/ultraestructura , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Enfermedad de Parkinson/patología , Transducción de Señal/efectos de los fármacos
17.
Autophagy ; 17(2): 553-577, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32097085

RESUMEN

Macroautophagy/autophagy is an auto-digestive pro-survival pathway activated in response to stress to target cargo for lysosomal degradation. In recent years, autophagy has become prominent as an innate antiviral defense mechanism through multiple processes, such as targeting virions and viral components for elimination. These exciting findings have encouraged studies on the ability of autophagy to restrict HIV. However, the role of autophagy in HIV infection remains unclear. Whereas some reports indicate that autophagy is detrimental for HIV, others have claimed that HIV deliberately activates this pathway to increase its infectivity. Moreover, these contrasting findings seem to depend on the cell type investigated. Here, we show that autophagy poses a hurdle for HIV replication, significantly reducing virion production. However, HIV-1 uses its accessory protein Nef to counteract this restriction. Previous studies have indicated that Nef affects autophagy maturation by preventing the fusion between autophagosomes and lysosomes. Here, we uncover that Nef additionally blocks autophagy initiation by enhancing the association between BECN1 and its inhibitor BCL2, and this activity depends on the cellular E3 ligase PRKN. Remarkably, the ability of Nef to counteract the autophagy block is more frequently observed in pandemic HIV-1 and its simian precursor SIVcpz infecting chimpanzees than in HIV-2 and its precursor SIVsmm infecting sooty mangabeys. In summary, our findings demonstrate that HIV-1 is susceptible to autophagy restriction and define Nef as the primary autophagy antagonist of this antiviral process.Abbreviations: 3-MA: 3-methyladenine; ACTB: actin, beta; ATG16L1: autophagy related 16 like 1; BCL2: bcl2 apoptosis regulator; BECN1: beclin 1; cDNA: complementary DNA; EGFP: enhanced green fluorescence protein; ER: endoplasmic reticulum; Gag/p55: group-specific antigen; GFP: green fluorescence protein; GST: glutathione S transferase; HA: hemagglutinin; HIV: human immunodeficiency virus; IP: immunoprecipitation; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; Nef: negative factor; PRKN: parkin RBR E3 ubiquitin ligase; PtdIns3K: phosphatidylinositol 3 kinase; PtdIns3P: phosphatidylinositol 3 phosphate; PTM: post-translational modification; RT-qPCR: reverse transcription followed by quantitative PCR; RUBCN: rubicon autophagy regulator; SEM: standard error of the mean; SERINC3: serine incorporator 3; SERINC5: serine incorporator 5; SIV: simian immunodeficiency virus; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB; UVRAG: UV radiation resistance associated gene; VSV: vesicular stomatitis virus; ZFYVE1/DFCP1: zinc finger FYVE-type containing 1.


Asunto(s)
Autofagia/genética , Beclina-1/metabolismo , VIH-1/patogenicidad , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagosomas/metabolismo , Autofagia/fisiología , Beclina-1/genética , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , Humanos , Lisosomas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética
18.
J Cachexia Sarcopenia Muscle ; 12(1): 177-191, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33244887

RESUMEN

BACKGROUND: With organismal aging, the hypothalamic-pituitary-gonadal (HPG) activity gradually decreases, resulting in the systemic functional declines of the target tissues including skeletal muscles. Although the HPG axis plays an important role in health span, how the HPG axis systemically prevents functional aging is largely unknown. METHODS: We generated muscle stem cell (MuSC)-specific androgen receptor (Ar) and oestrogen receptor 2 (Esr2) double knockout (dKO) mice and pharmacologically inhibited (Antide) the HPG axis to mimic decreased serum levels of sex steroid hormones in aged mice. After short-term and long-term sex hormone signalling ablation, the MuSCs were functionally analysed, and their aging phenotypes were compared with those of geriatric mice (30-month-old). To investigate pathways associated with sex hormone signalling disruption, RNA sequencing and bioinformatic analyses were performed. RESULTS: Disrupting the HPG axis results in impaired muscle regeneration [wild-type (WT) vs. dKO, P < 0.0001; Veh vs. Antide, P = 0.004]. The expression of DNA damage marker (in WT = 7.0 ± 1.6%, dKO = 32.5 ± 2.6%, P < 0.01; in Veh = 13.4 ± 4.5%, Antide = 29.7 ± 5.5%, P = 0.028) and senescence-associated ß-galactosidase activity (in WT = 3.8 ± 1.2%, dKO = 10.3 ± 1.6%, P < 0.01; in Veh = 2.1 ± 0.4%, Antide = 9.6 ± 0.8%, P = 0.005), as well as the expression levels of senescence-associated genes, p16Ink4a and p21Cip1 , was significantly increased in the MuSCs, indicating that genetic and pharmacological inhibition of the HPG axis recapitulates the progressive aging process of MuSCs. Mechanistically, the ablation of sex hormone signalling reduced the expression of transcription factor EB (Tfeb) and Tfeb target gene in MuSCs, suggesting that sex hormones directly induce the expression of Tfeb, a master regulator of the autophagy-lysosome pathway, and consequently autophagosome clearance. Transduction of the Tfeb in naturally aged MuSCs increased muscle mass [control geriatric MuSC transplanted tibialis anterior (TA) muscle = 34.3 ± 2.9 mg, Tfeb-transducing geriatric MuSC transplanted TA muscle = 44.7 ± 6.7 mg, P = 0.015] and regenerating myofibre size [eMyHC+ tdTomato+ myofibre cross-section area (CSA) in control vs. Tfeb, P = 0.002] after muscle injury. CONCLUSIONS: Our data show that the HPG axis systemically controls autophagosome clearance in MuSCs through Tfeb and prevents MuSCs from senescence, suggesting that sustained HPG activity throughout life regulates autophagosome clearance to maintain the quiescence of MuSCs by preventing senescence until advanced age.


Asunto(s)
Autofagosomas , Mioblastos , Células Madre , Animales , Senescencia Celular , Gónadas , Hipotálamo , Ratones , Músculo Esquelético , Hipófisis , Regeneración
19.
J Cell Physiol ; 236(5): 4050-4065, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33174204

RESUMEN

Arsenic is an environmental toxicant. Its overdose can cause liver damage. Autophagy has been reported to be involved in arsenite (iAs3+ ) cytotoxicity and plays a dual role in cell proliferation and cell death. However, the effect and molecular regulative mechanisms of iAs3+ on autophagy in hepatocytes remains largely unknown. Here, we found that iAs3+ exposure lead to hepatotoxicity by inducing autophagosome and autolysosome accumulation. On the one hand, iAs3+ promoted autophagosome synthesis by inhibiting E2F1/mTOR pathway in L-02 human hepatocytes. On the other, iAs3+ blocked autophagosome degradation partially via suppressing the expression of INPP5E and Rab7 as well as impairing lysosomal activity. More importantly, autophagosome and autolysosome accumulation induced by iAs3+ increased the protein level of E2F7a, which could further inhibit cell viability and induce apoptosis of L-02 cells. The treatment of Ginkgo biloba extract (GBE) effectively reduced autophagosome and autolysosome accumulation and thus alleviated iAs3+ -induced hepatotoxicity. Moreover, GBE could also protect lysosomal activity, promote the phosphorylation level of E2F1 (Ser364 and Thr433) and Rb (Ser780) as well as suppress the protein level of E2F7a in iAs3+ -treated L-02 cells. Taken together, our data suggested that autophagosome and autophagolysosome accumulation play a critical role for iAs3+ -induced hepatotoxicity, and GBE is a promising candidate for intervening iAs3+ induced liver damage by regulating E2F1-autophagy-E2F7a pathway and restoring lysosomal activity.


Asunto(s)
Arsenitos/toxicidad , Autofagia , Factor de Transcripción E2F1/metabolismo , Factor de Transcripción E2F7/metabolismo , Hígado/patología , Lisosomas/metabolismo , Extractos Vegetales/farmacología , Transducción de Señal , Apoptosis/efectos de los fármacos , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Autofagosomas/ultraestructura , Línea Celular , Supervivencia Celular/efectos de los fármacos , Ginkgo biloba , Humanos , Hígado/efectos de los fármacos , Hígado/ultraestructura , Lisosomas/efectos de los fármacos , Lisosomas/ultraestructura , Modelos Biológicos , Transducción de Señal/efectos de los fármacos
20.
J Cell Mol Med ; 24(19): 11283-11293, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32881330

RESUMEN

QiShenYiQi pill (QSYQ), a traditional Chinese medicine, is well known for improving the myocardial remodelling, but the dose-effect relationship of its intervention in the reparative myocardial fibrosis is still unclear. We investigated the effect of QSYQ on the reparative myocardial fibrosis in cardiac myosin-induced rats and explored its mechanism of action by regulating autophagy. The results indicated that QSYQ increased LVEF and LVFS, and decreased the LVEDD, LVESD, HMI, LVMI, myocardial inflammation histology score, and collagen volume fraction in a dose-dependent manner. In addition, QSYQ declined the number of autophagosomes, down-regulated the expression of myocardial Beclin-1 and LC3B, up-regulated the expression of myocardial p62 and increased the ratios of myocardial p-PI3K/PI3K, p-Akt/Akt and p-mTOR/mTOR. We provided evidence for that QSYQ could inhibit excessive myocardial autophagy by regulating the PI3K/Akt-mTOR pathway and can be a potential therapeutic approach in treating the cardiovascular diseases such as myocarditis and dilated cardiomyopathy.


Asunto(s)
Autofagia/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Miocardio/patología , Animales , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Autofagosomas/ultraestructura , Proteínas Relacionadas con la Autofagia/metabolismo , Beclina-1/genética , Beclina-1/metabolismo , Fibrosis , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Miocardio/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Endogámicas Lew , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA