Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Pan Afr Med J ; 44: 93, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37229304

RESUMEN

Introduction: malaria remains the leading cause of morbidity and mortality in developing tropical and subtropical nations. Due to the emergence and spread of drug resistance to currently available drugs, there is a need for the search of novel, safe, and reasonably affordable anti-malarial medications. The objective of this study was to assess the in vivoanti-malarial effectiveness of Avicennia marina stem bark extracts in a mice model. Methods: guidelines 425 of the Organization for Economic Cooperation and Development were used to determine the extracts' acute toxicity. Mice infected with chloroquine-sensitive Plasmodium berghei (ANKA strain) were tested for in vivoanti-plasmodial activity, and by giving oral doses of 100 mg/kg, 250 mg/kg, and 500 mg/kg body weight of extracts, the plant's suppressive, curative, and preventive effects were assessed. Results: mice treated with dosages of up to 5000 mg/kg showed no evidence of acute toxicity or mortality. Consequently, it was determined that the acute lethal dosage of Avicennia marina extracts in swiss albino mice was greater than 5000 mg/kg. All doses of the extracts exhibited significant (p<0.05) dose-dependent suppression of P. berghei in the suppressive tests compared to the control group. At the highest dose (500 mg/kg), Methanolic crude extracts exerted the highest (93%) parasitemia suppression during the 4-day suppressive test. The extracts also displayed significant (p<0.001) prophylactic and curative activities at all doses compared to the control. Conclusion: results from this study ascertained the safety and promising curative, prophylactic and suppressive anti-plasmodial capabilities of the stem bark extracts of Avicennia marina in mice model.


Asunto(s)
Antimaláricos , Avicennia , Malaria , Ratones , Animales , Plasmodium berghei , Extractos Vegetales/farmacología , Corteza de la Planta , Malaria/tratamiento farmacológico
2.
Mar Environ Res ; 187: 105920, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36931048

RESUMEN

Plants in general and mangroves in particular can harbor hyper-diverse microorganisms in their different compartments including the phyllosphere area. This study used the leaves of three mangrove species; black mangrove (Avicenia germinans), red mangrove (Rhizophora mangle) and mangrove apple (Sonneratia alba) in order to evaluate the phyllosphere epiphytic bacterial community on their leaves surface and assess the ability of some epiphytic bacteria to tolerate and survive under pyrene stress. Through the 16S rRNA genes sequencing, 380203, 405203 and 344863 OTUs were identified respectively in the leaves of mangroves apple, black and red mangroves. The identified OTUs was positively correlated with leaves-wax (p < 0.05, r2 = 0.904), nitrogen (r2 = 0.72), phosphorus content (r2 = 0.62) and the water factor (r2 = 0.93). It was however highly and negatively correlated with the canopy cover (r2 = 0.93). The pyrene degradation rate in the mineral salt medium (MSM) containing pyrene as external stress was different in each mangrove species and varied depending on various factors. Therefore, through the succession culture in MSM, several bacteria strain belonging to Rhizobiales and Enterobacteres were found to be abundant in red mangroves. Bacteria belonging to Bacilliales and Sphingobacteriales were more abundant in mangroves apples and bacteria from Xanthomonadales and Sphingomonadales were more presents in back mangroves. The important finding was to reveal that the black mangrove at the non-submerged substrate, recorded the highest number of OTU, coinciding with its highest leaf's nitrogen and phosphorus content and most importantly, its highest rate of pyrene degradation. The general result of this study join previous research results and get place in the mangrove agenda, as part of a better understanding insight into the role of plant identity in driving the phyllosphere epiphytic microbial community structures in mangrove ecosystems.


Asunto(s)
Avicennia , Ecosistema , ARN Ribosómico 16S/genética , Bacterias/genética , Plantas/genética , Plantas/microbiología , Hojas de la Planta/microbiología , Pirenos , Fósforo
3.
Crit Rev Biotechnol ; 43(3): 393-414, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35285350

RESUMEN

Mangrove plants, also known as halophytes, are ecologically important plants that grow in various tropical and subtropical intertidal regions. Owing to the extreme abiotic and biotic stressful conditions they thrive in, these plants produce unique compounds with promising pharmacological propensities. Mangroves are inhabited by an astronomical number of fungal communities which produce a diverse array of extracellular degradative enzymes, namely: amylase, cellulase, xylanase, pectinase, cholesterol oxidase, etc. Such enzymes can be isolated from the mangrove fungi and harnessed for different biotechnological applications, for example, as replacements for chemical catalysts. Mangrove microbes attract considerable attention as they shelter the largest group of marine microorganisms that are resistant to extreme conditions and can produce novel biogenic substances. Vaccines developed from mangrove microbes may promise a safe future by developing effective immunization procedures with a minimum of economic burden. Interestingly, mangroves offer an exciting opportunity for synthesizing nanoparticles in a greener way as these plants are naturally rich in phytochemicals. Rhizophora mucronata Lam., Avicennia officinalis L. and Excoecaria agallocha L. are capable of synthesizing nanoparticles which have evolved recently as an alternative in various industries and are used for their biomedical application. Besides, the phytoconstituents isolated from mangrove plants, such as: gallic acid, galactose, lupeol, catechins, carotenoids, etc., were explored for various biological activities. These compounds are used in the pharmaceutical and nutraceutical industries to produce antimicrobial, antioxidant, anticancer, antidiabetic, and other therapeutic agents. The present review provides information on the biotechnological potentials of mangrove plants and their bioactive compounds as a new source of novel drugs, enzymes, nanoparticles and therapeutically important microbial pigments. Thus, this review forms a base of support and hasten the urgent research on biomedical applications of mangroves.


Asunto(s)
Antiinfecciosos , Avicennia , Rhizophoraceae , Humanos , Avicennia/microbiología , Plantas , Rhizophoraceae/microbiología , Fitoquímicos
4.
Braz J Biol ; 82: e265038, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36259892

RESUMEN

Mangrove shrub Avicennia marina (Forsk.) Vierh was used to test the antifungal and antibacterial activities of aerial fractions in vitro. Aspergillus sp, Candida sp and Gram positive bacteria have all been found to be sensitive to mangrove extracts, whereas Gram negative bacteria have been found to be resistant to them. Agar disc diffusion and well-cut diffusion were employed to conduct antifungal and antibacterial activities. The MICs (minimum inhibitory concentrations) for each assay have been established. Several extracts from Mangrove reduced fungus growth (diameters fluctuated between 11 and 41 mm). The Ethyl acetate fraction showed particularly strong inhibition of C. tropicalis, C. albicanis, and A. fumigatus. They had 41, 40, and 25 mm-diameter inhibition zones, respectively. Nesoral, a synthetic antifungal medication, showed no significant changes in its MICs compared to different extracts. Enterococcus faecalis and Bacillus subtilis were inhibited by Petroleum Ether extracts at MICs of 0.78 and 0.35 mg/mL, respectively. It is possible that A. marina extracts may be exploited as a viable natural alternative that may be employed in the management of various infections, notably nosocomial bacterial infections, as anti-candidiasis and as anti-aspergillosis agents.


Asunto(s)
Antifúngicos , Avicennia , Antifúngicos/farmacología , Agar , Arabia Saudita , Océano Índico , Extractos Vegetales/farmacología , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología
5.
Biomed Res Int ; 2022: 7624189, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35572728

RESUMEN

Avicennia alba is a mangrove plant that is extensively used to treat severe health issues. This focus of this study was to investigate the antidiabetic, anti-inflammatory, analgesic, and antidiarrheal activities of methanolic extract of A. alba leaves in Swiss albino mouse model. The antidiabetic, anti-inflammatory, analgesic, and antidiarrheal activities of the leaf extract were performed using alloxan-monohydrate, carrageenan-induced paw edema, acetic acid-induced writhing test and the hot plate method, and castor oil-induced method, respectively. The extract was used at doses ranging from 200 to 500 mg/kg to conduct the investigation. Leaf extract at 400 and 500 mg/kg showed potent antidiabetic activity in alloxan-induced diabetic mice. Advanced research is needed to control blood glucose levels and carrageenan paw edema-based anti-inflammatory effects. Both tests showed statistically significant result in a dose-dependent manner. The maximum dose (500 mg/kg) demonstrated potent analgesic activity in both writhing test and hot plate method. The plant extract also showed significant antidiarrheal activity at 400 and 500 mg/kg in experimental mice. However, more research is needed to explore the possible mechanisms and isolate the compounds associated with these bioactivities from the leaf extract of A. alba.


Asunto(s)
Avicennia , Diabetes Mellitus Experimental , Aloxano/efectos adversos , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Antiinflamatorios/uso terapéutico , Antiinflamatorios no Esteroideos/farmacología , Antidiarreicos/farmacología , Carragenina/efectos adversos , Diabetes Mellitus Experimental/tratamiento farmacológico , Edema/inducido químicamente , Edema/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Ratones , Extractos Vegetales/uso terapéutico , Hojas de la Planta
6.
Environ Sci Pollut Res Int ; 29(44): 66148-66159, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35499724

RESUMEN

Oil spills are a significant stressor to coastal and maritime environments worldwide. The growth responses of Batis maritima and Avicennia germinans seedlings to weathered Deepwater Horizon oiling were assessed through a mesocosm study using a factorial arrangement of 4 soil oiling levels (0 L m-2, 1 L m-2, 2 L m-2, 4 L -m-2) × 3 tissue oiling levels (0% of stem height, 50% of stem height, 100% of stem height). Overall, growth metrics of B. maritima displayed much greater sensitivity to both tissue and soil oiling than A. germinans, which exhibited a relatively high tolerance to both routes of oiling exposure. Batis maritima in the 4 L m-2 soil oiling treatment demonstrated significant reductions in cumulative stem height and leaf number, whereas no significant effects of soil oiling on A. germinans were detected. This was reflected in the end of the study biomass partitioning, where total aboveground and live aboveground biomass were significantly reduced for B. maritima with 4 L m-2 soil oiling, but no impacts to A. germinans were found. Tissue oiling of 100% did appear to reduce B. maritima stem diameter, but no effect of tissue oiling was discerned on biomass partitioning, suggesting that there were no impacts to integrated growth. These findings suggest that B. maritima would be more severely affected by moderate soil oiling than A. germinans.


Asunto(s)
Avicennia , Magnoliopsida , Contaminación por Petróleo , Petróleo , Contaminación por Petróleo/análisis , Plantones , Suelo , Humedales
7.
New Phytol ; 232(6): 2267-2282, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34610157

RESUMEN

Chilling restrains the distribution of mangroves. We tested whether foliar phosphorus (P) fractions and gene expression are associated with cold tolerance in mangrove species. We exposed seedlings of six mangrove populations from different latitudes to favorable, chilling and recovery treatments, and measured their foliar P concentrations and fractions, photochemistry, nighttime respiration, and gene expression. A Kandelia obovata (KO; 26.45°N) population completely and a Bruguiera gymnorhiza (Guangxi) (BGG; 21.50°N) population partially (30%) survived chilling. Avicennia marina (24.29°N), and other B. gymnorhiza (26.66°N, 24.40°N, and 19.62°N) populations died after chilling. Photosystems of KO and photosystem I of BGG were least injured. During chilling, leaf P fractions, except nucleic acid P in three populations, declined and photoinhibition and nighttime respiration increased in all populations, with the greatest impact in B. gymnorhiza. Leaf nucleic acid P was positively correlated with photochemical efficiency during recovery and nighttime respiration across populations for each treatment. Relatively high concentrations of nucleic acid P and metabolite P were associated with stronger chilling tolerance in KO. Bruguiera gymnorhiza exhibited relatively low concentrations of organic P in favorable and chilling conditions, but its partially survived population showed stronger compensation in nucleic acid P and Pi concentrations and gene expression during recovery.


Asunto(s)
Avicennia , Rhizophoraceae , China , Frío , Fósforo , Fotosíntesis , Hojas de la Planta
8.
J Cancer Res Ther ; 17(4): 879-886, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34528536

RESUMEN

PURPOSE: Medical halophytes plants are potent sources of bioactive secondary metabolite components used against different diseases. Avicenniamarina one of the typical halophytes plant species used in folk medicine to treat smallpox, rheumatism, and ulcer. Despite the richness of A.marina with polyphenolic, flavonoids, terpenoid, and terpene, contents remain poorly investigated against cancer types. Consequently, to explore the function-composition relationship of A.marina hexane leaves crude extract, the current study designed to investigate the cytotoxicity, apoptotic and antiproliferative impacts on the colon (HCT-116), liver (HepG2), and breast (MCF-7) cancer cell lines. MATERIALS AND METHODS: Therefore, the cytotoxicity impact screening carried out by Sulforhodamine-B assay. While, the initiation of the apoptosis evaluated by chromatin condensing, early apoptosis, late apoptosis and the formation and appearance of apoptotic bodies. On the other hand, the flow cytometry used to identify the phase of inhibition where the determined IC50 value used. While, the chemical composition of the hexane extract was detected using liquid chromatography-mass spectrometry/mass spectrometry. RESULTS: Revealed that hexane extract showed a weak induction of apoptosis despite the formation of apoptotic bodies and the high cell inhibitory effect on all tested cell lines with IC50 values (23.7 ± 0.7, 44.9 ± 0.93, 79.55 ± 0.57) µg/ml on HCT-116, HepG2, and MCF-7, respectively. Furthermore, it showed the ability to inhibit cell cycle in G0/G1 for HCT-116, S phase for HepG2, and MCF-7. CONCLUSION: In the light of these results, the current study suggests that A.marina leaves hexane extract may be considered as a candidate for further anticancer drug development investigations.


Asunto(s)
Apoptosis , Avicennia/química , Proliferación Celular , Neoplasias/patología , Extractos Vegetales/farmacología , Hojas de la Planta/química , Ciclo Celular , Células HCT116 , Células Hep G2 , Humanos , Células MCF-7 , Neoplasias/tratamiento farmacológico
9.
Arch Pharm (Weinheim) ; 354(9): e2100120, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34085721

RESUMEN

Medicinal plants are valuable sources of different active constituents that are known to have important pharmacological activities including anticancer effects. Lupeol, a pentacyclic triterpenoid, present in many medicinal plants, has a wide range of biological activities. Although the anticancer activity of lupeol was reported, the published data are inconsistent and the clear mechanism of action has never been assigned. The current study aims at investigating the anticancer specificity and mechanism of lupeol isolated from Avicennia marina, which grows in the desert of the United Arab Emirates. The compound was purified by chromatography and identified by spectroscopy. Compared with a negative control, lupeol caused significant (p < .001) growth inhibitory activity on MCF-7 and Hep3B parental and resistant cells by 45%, 46%, 72%, and 35%, respectively. The mechanism of action of lupeol was further explored by measuring its effect on key players in cancer development and progression, BCL-2 anti-apoptotic and BAX pro-apoptotic proteins. Lupeol significantly (p < .01) downregulated BCL-2 gene expression in parental and resistant Hep3B cells by 33 and 3.5 times, respectively, contributing to the induction of apoptosis in Hep3B cells, whereas it caused no effect on BAX. Furthermore, the immunoblotting analysis revealed that lupeol cleaved the executioner caspase-3 into its active form. Interestingly, lupeol showed no significant effect on the proliferation of monocytes, whereas it caused an increase in the sub-G1 population and a reduction in the apoptosis rates of monocytes at 48 and 72 h, indicative of no immuno-inflammatory responses. Collectively, lupeol can be considered as promising effective and safe anticancer agent, particularly against Hep3B cancer cells.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Avicennia/química , Triterpenos Pentacíclicos/farmacología , Antineoplásicos Fitogénicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Regulación hacia Abajo/efectos de los fármacos , Femenino , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Células MCF-7 , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Triterpenos Pentacíclicos/aislamiento & purificación , Proteínas Proto-Oncogénicas c-bcl-2/genética , Factores de Tiempo
10.
Molecules ; 26(8)2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33921289

RESUMEN

The recent coronavirus disease 2019 (COVID-19) pandemic is a global threat for healthcare management and the economic system, and effective treatments against the pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus responsible for this disease have not yet progressed beyond the developmental phases. As drug refinement and vaccine progression require enormously broad investments of time, alternative strategies are urgently needed. In this study, we examined phytochemicals extracted from Avicennia officinalis and evaluated their potential effects against the main protease of SARS-CoV-2. The antioxidant activities of A. officinalis leaf and fruit extracts at 150 µg/mL were 95.97% and 92.48%, respectively. Furthermore, both extracts displayed low cytotoxicity levels against Artemia salina. The gas chromatography-mass spectroscopy analysis confirmed the identifies of 75 phytochemicals from both extracts, and four potent compounds, triacontane, hexacosane, methyl linoleate, and methyl palminoleate, had binding free energy values of -6.75, -6.7, -6.3, and -6.3 Kcal/mol, respectively, in complexes with the SARS-CoV-2 main protease. The active residues Cys145, Met165, Glu166, Gln189, and Arg188 in the main protease formed non-bonded interactions with the screened compounds. The root-mean-square difference (RMSD), root-mean-square fluctuations (RMSF), radius of gyration (Rg), solvent-accessible surface area (SASA), and hydrogen bond data from a molecular dynamics simulation study confirmed the docked complexes' binding rigidity in the atomistic simulated environment. However, this study's findings require in vitro and in vivo validation to ensure the possible inhibitory effects and pharmacological efficacy of the identified compounds.


Asunto(s)
Avicennia/química , Tratamiento Farmacológico de COVID-19 , Fitoquímicos/uso terapéutico , SARS-CoV-2/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/uso terapéutico , Avicennia/metabolismo , Sitios de Unión , COVID-19/patología , COVID-19/virología , Frutas/química , Frutas/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Alcohol Feniletílico/química , Alcohol Feniletílico/metabolismo , Alcohol Feniletílico/uso terapéutico , Fenilpropionatos/química , Fenilpropionatos/metabolismo , Fenilpropionatos/uso terapéutico , Fitoquímicos/química , Fitoquímicos/metabolismo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , SARS-CoV-2/aislamiento & purificación , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/metabolismo
11.
Phytochemistry ; 187: 112766, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33878605

RESUMEN

Avicennia marina is a widely distributed mangrove species with high tolerance to salt, oxidative stress and heavy metals. In the preset work, we found that superoxide dismutase (SOD) activity increases in Avicennia marina leaves in response to salt and hydrogen peroxide. Monitoring the SOD using Western blot analysis revealed that the accumulation of SOD increased in response to hydrogen peroxide but not in response to salinity stress. Here we also isolated and cloned a gene encoding AmSOD1 which was classified into the group of plant CuZnSODs based on amino acid sequence analysis. AmSOD1 was heterologously expressed in the soluble fraction of E. coli strain Rosetta (DE3). The cells expressing His-AmSOD1 were more tolerant in response to hydrogen peroxide treatment but not salt stress, suggesting the involvement of AmSOD1 in hydrogen peroxide tolerance. The enzyme His-AmSOD1 exhibited a molecular mass of 38 kDa, but it could be monomer in reducing conditions indicating a double-strand protein with intra-molecular disulfide bridge. There are two copper and two zinc moles per mole of dimer form of His-AmSOD1 suggesting the binding of one copper and one zinc ions to each monomer. The Pure His-AmSOD1 was highly active in vitro and its activity was considerably enhanced when the growth medium of the cells producing AmSOD1 was supplemented with Cu2+. The high stability of the recombinant AmSOD1 after incubation in a broad range pH and high temperature is a distinctive feature for AmSOD1, which may open new insights for application of AmSOD1 as a protein drug in different medical purposes.


Asunto(s)
Avicennia , Cobre , Escherichia coli , Peróxido de Hidrógeno , Concentración de Iones de Hidrógeno , Superóxido Dismutasa , Zinc
12.
Mar Drugs ; 19(5)2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33925208

RESUMEN

Walleye dermal sarcoma virus (WDSV) is a type of retrovirus, which affects most of the adult walleye fishes during the spawning time. The virus causes multiple epithelial tumors on the fish's skin and fins that are liable for more than 50% of the mortality rate of fish around the world. Till now, no effective antiviral drug or vaccine candidates have been developed that can block the progression of the disease caused by the pathogen. It was found that the 582-amino-acid (aa) residues long internal structural gag polyprotein of the virus plays an important role in virus budding and virion maturation outside of the cell. Inhibition of the protein can block the budding and virion maturation process and can be developed as an antiviral drug candidate against the virus. Therefore, the study aimed to identify potential natural antiviral drug candidates from the tropical mangrove marine plant Avicennia alba, which will be able to block the budding and virion maturation process by inhibiting the activity of the gag protein of the virus. Initially, a homology modeling approach was applied to identify the 3D structure, followed by refinement and validation of the protein. The refined protein structures were then utilized for molecular docking simulation. Eleven phytochemical compounds have been isolated from the marine plant and docked against the virus gag polyprotein. Three compounds, namely Friedlein (CID244297), Phytosterols (CID12303662), and 1-Triacontanol (CID68972) have been selected based on their docking score -8.5 kcal/mol, -8.0 kcal/mol and -7.9 kcal/mol, respectively, and were evaluated through ADME (Absorption, Distribution, Metabolism and Excretion), and toxicity properties. Finally, molecular dynamics (MD) simulation was applied to confirm the binding stability of the protein-ligands complex structure. The ADME and toxicity analysis reveal the efficacy and non-toxic properties of the compounds, where MD simulation confirmed the binding stability of the selected three compounds with the targeted protein. This computational study revealed the virtuous value of the selected three compounds against the targeted gag polyprotein and will be effective and promising antiviral candidates against the pathogen in a significant and worthwhile manner. Although in vitro and in vivo study is required for further evaluation of the compounds against the targeted protein.


Asunto(s)
Antivirales/farmacología , Avicennia/química , Epsilonretrovirus/efectos de los fármacos , Enfermedades de los Peces/prevención & control , Extractos Vegetales/farmacología , Infecciones por Retroviridae/veterinaria , Infecciones Tumorales por Virus/veterinaria , Animales , Antivirales/aislamiento & purificación , Epsilonretrovirus/metabolismo , Epsilonretrovirus/patogenicidad , Enfermedades de los Peces/virología , Productos del Gen gag/antagonistas & inhibidores , Productos del Gen gag/metabolismo , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Extractos Vegetales/aislamiento & purificación , Conformación Proteica , Infecciones por Retroviridae/prevención & control , Infecciones por Retroviridae/virología , Relación Estructura-Actividad , Infecciones Tumorales por Virus/prevención & control , Infecciones Tumorales por Virus/virología , Liberación del Virus/efectos de los fármacos
13.
Environ Sci Pollut Res Int ; 28(21): 27207-27217, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33507508

RESUMEN

This study aimed to examine the impact of ethanolic Avicennia marina (A. marina) leaves extract against seven pathogenic bacteria and the protective effect of this plant against hyperlipidemia caused by dexamethasone (DEX)-treated rats. Forty-eight male rats weighing between 150 and 200 g were randomly selected into six groups containing eight rats in each group. Moreover, in vitro antioxidant DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) free radical scavenging activity, FRAP (ferric reducing antioxidant power), and ABTS assay were also analyzed for leaf extract. Results showed that the IC50 values were observed as 193.9 ± 1.03 µg/mL, 340.29 ± 8.16 µM TE/mg, and 326.8 ± 6.14 µM TE/mg for DPPH, FRAP, and ABTS radical scavenging activities, respectively. A. marina leaves ethanolic extract exhibited higher activity against Candida albicans and Bacillus subtilis, moderate activity against Salmonella typhimurium, and Vibrio damsel. The administration of DEX resulted in significant (P < 0.05) increase in the levels of MDA concentration, TG, TC, LDL, LDH, and glucose but decreased significantly in HDL. Treatment with A. marina extract positively reversed the distorted lipid profile and peroxidation and improved MDA, GSH, NO, and SOD activities in DEX-administered rats. Histological investigation of liver tissue sections showed that the treatment with A. marina leaves extract moderate the fatty change caused by DEX. It is concluded that A. marina leaves extract improved the hypolipidemic property of DEX administration in comparison with standard treatment with atorvastatin.


Asunto(s)
Antioxidantes , Avicennia , Animales , Antibacterianos/farmacología , Hipolipemiantes/farmacología , Masculino , Extractos Vegetales , Hojas de la Planta , Ratas
14.
Mar Drugs ; 18(12)2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33371387

RESUMEN

The discovery of new secondary metabolites from natural origins has become more challenging in natural products research. Different approaches have been applied to target the isolation of new bioactive metabolites from plant extracts. In this study, bioactive natural products were isolated from the crude organic extract of the mangrove plant Avicennia lanata collected from the east coast of Peninsular Malaysia in the Setiu Wetlands, Terengganu, using HRESI-LCMS-based metabolomics-guided isolation and fractionation. Isolation work on the crude extract A. lanata used high-throughput chromatographic techniques to give two new naphthofuranquinone derivatives, hydroxyavicenol C (1) and glycosemiquinone (2), along with the known compounds avicenol C (3), avicequinone C (4), glycoquinone (5), taraxerone (6), taraxerol (7), ß-sitosterol (8) and stigmasterol (9). The elucidation and identification of the targeted bioactive compounds used 1D and 2D-NMR and mass spectrometry. Except for 6-9, all isolated naphthoquinone compounds (1-5) from the mangrove plant A. lanata showed significant anti-trypanosomal activity on Trypanosoma brucei brucei with MIC values of 3.12-12.5 µM. Preliminary cytotoxicity screening against normal prostate cells (PNT2A) was also performed. All compounds exhibited low cytotoxicity, with compounds 3 and 4 showing moderate cytotoxicity of 78.3% and 68.6% of the control values at 100 µg/mL, respectively.


Asunto(s)
Antiprotozoarios/aislamiento & purificación , Avicennia , Furanos/aislamiento & purificación , Naftoquinonas/aislamiento & purificación , Extractos Vegetales/aislamiento & purificación , Trypanosoma brucei brucei/efectos de los fármacos , Antiprotozoarios/farmacología , Línea Celular , Furanos/farmacología , Humanos , Naftoquinonas/farmacología , Extractos Vegetales/farmacología , Trypanosoma brucei brucei/fisiología
15.
Pharm Biol ; 58(1): 1211-1220, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33280468

RESUMEN

CONTEXT: Fruit of Avicennia marina (Forsk.) Vierh. (Acanthaceae) is used as a Chinese herb. Studies have found that it contains marinoid J, a novel phenylethanoid glycoside (PG) compound, but its neuroprotective functions are largely unknown. OBJECTIVE: This study evaluated the effects of marinoid J on vascular dementia (VD) and determined its potential mechanisms of action. MATERIALS AND METHODS: The VD model was established by the ligation of the bilateral common carotid artery in Sprague-Dawley rats, who received daily intragastrically administration of saline, marinoid J (125 or 500 mg/kg body weight/d), or oxiracetam (250 mg/kg body weight/d) for 14 days (20 rats in each group). The Morris water maze (MWM) was used to evaluate cognitive performance. The hippocampus was subjected to histological and proteomic analyses. RESULTS: Marinoid J shortened the escape latency of VD rats (31.07 ± 3.74 s, p < 0.05). It also decreased malondialdehyde (MDA) (27.53%) and nitric oxide (NO) (20.41%) while increasing superoxide dismutase (SOD) (11.26%) and glutathione peroxidase (GSH-Px) (20.38%) content in hippocampus tissues. Proteomic analysis revealed 45 differentially expressed proteins (DEPs) in marinoid J-treated VD rats, which included angiotensin-converting enzyme (ACE), keratin 18 (KRT18), cluster of differentiation 34 (CD34), and synaptotagmin II (SYT2). CONCLUSIONS: Marinoid J played a role in protecting hippocampal neurons by regulating a set of proteins that influence oxidative stress and apoptosis, this effect may thereby alleviate the symptoms of VD rats. Thus, pharmacological manipulation of marinoid J may offer a novel opportunity for VD treatment.


Asunto(s)
Avicennia/química , Disfunción Cognitiva/tratamiento farmacológico , Demencia Vascular/tratamiento farmacológico , Frutas/química , Nootrópicos/uso terapéutico , Animales , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Disfunción Cognitiva/etiología , Disfunción Cognitiva/psicología , Demencia Vascular/complicaciones , Demencia Vascular/psicología , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/patología , Aprendizaje/efectos de los fármacos , Masculino , Memoria/efectos de los fármacos , Prueba del Laberinto Acuático de Morris , Proteómica , Ratas , Ratas Sprague-Dawley
16.
J Ethnopharmacol ; 263: 113179, 2020 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-32768642

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Avicennia marina (Forssk.) Vierh. is a historic plant, well-known for many centuries in traditional and folk use medicine. A. marina is an evergreen tree belongs to Acanthaceae family. The plant is the most widespread mangrove in the tropical and subtropical regions of Indo-West-Pacific area. Current scientific data confirmed the medicinal values of A. marina. The pharmacological activity of the plant is attributed to the presence of several phytochemical classes. AIM OF THE STUDY: To evaluate the link between the traditional use of the plant and the scientific data accumulated over time including both the phytochemical analysis and therapeutic activities. Additionally, to evaluate the usage of obtained data for further development of the plant and its products in the pharmaceutical market. MATERIALS AND METHODS: The data related to traditional medicine, therapeutic uses, phytochemical analysis and market availability of A. marina and its products from different geographical regions were collected. The collected data was compared and the research gaps were identified in order to highlight areas that can be employed to improve plant-based research and development. RESULTS: Although the wide geographical distribution of the plant, its historic traditional use, richness of phytochemicals and diverse pharmacological activities, the utilization of these data has never been exploited for human health and several gaps were identified. These gaps include the lack of phyto-geographical comparison of the plant, the lack of proper mapping of traditional use to the scientific data and inadequate exploration of plant phytochemicals by researchers. CONCLUSIONS: A. marina is an old tree that has evolved over centuries and adapted diverse climates. It contains a pool of potential phytochemicals that can be employed for the discovery of drugs after careful studies. Scientists are required to invest money and time to explore these renewable and natural sources of drugs and design drug formulations to overcome current difficult to treat health issues and fight against the era of drug resistant.


Asunto(s)
Avicennia , Etnofarmacología/métodos , Medicina Tradicional/métodos , Fitoquímicos/uso terapéutico , Fitoterapia/métodos , Animales , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/uso terapéutico , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Antineoplásicos/uso terapéutico , Antivirales/química , Antivirales/aislamiento & purificación , Antivirales/uso terapéutico , Etnofarmacología/tendencias , Humanos , Medicina Tradicional/tendencias , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Fitoterapia/tendencias , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/uso terapéutico
17.
Comb Chem High Throughput Screen ; 23(9): 945-954, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32342807

RESUMEN

BACKGROUND: Avicennia alba Blume, is a well-known mangrove plant used in traditional medicinal practices for several human ailments. OBJECTIVE: The study aimed at the evaluation of antidiabetic, antioxidant, anti-inflammatory and cytotoxic activities of A. alba ethanolic leaf (AAL) and bark (AAB) extract along with phytochemical investigation. METHODS: In vitro antidiabetic study was done by α-amylase, α-glucosidase enzyme inhibition assay; antioxidant study by DPPH, ABTS, superoxide, and metal chelating assays, antiinflammatory study by protein denaturation assay. The cytotoxicity study was done on TC1 murine cell line. Further, GC-MS analysis was carried out for AAL extracts. RESULTS: AAL exhibited better antidiabetic activities with IC50 values of 1.18 and 0.87 mg/ml against α-amylase and α-glucosidase enzymes respectively. The AAL exhibited better ABTS, superoxide scavenging and metal chelating potential with IC50 values of 0.095, 0.127 and 0.444 mg/ml. However, AAB showed higher DPPH scavenging potential with IC50 value of 0.163 mg/ml. The AAL also exhibited higher protein denaturation potential with IC50 value of 0.370 mg/ml. The bark extract exhibited better cytotoxic activity as compared to leaf extracts on the TC1 murine cell line. The phytochemical study revealed higher total phenol (25.64 mg GAE/g), flavonoid (205.09 mg QE/g), and tannin content (251.17 mg GAE/g) in AAL. The GC-MS analysis revealed the presence of several compounds in AAL extract. CONCLUSION: The result of the present study highlights the antidiabetic, antioxidant and cytotoxic activities of mangrove plant Avicennia alba.


Asunto(s)
Antiinflamatorios/química , Antioxidantes/química , Avicennia/química , Inhibidores de Glicósido Hidrolasas/química , Extractos Vegetales/química , alfa-Amilasas/antagonistas & inhibidores , alfa-Glucosidasas/metabolismo , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Descubrimiento de Drogas , Cromatografía de Gases y Espectrometría de Masas , Inhibidores de Glicósido Hidrolasas/farmacología , Humanos , Hipoglucemiantes/farmacología , Ratones , Fenoles/química , Fitoquímicos/química , Fitoquímicos/farmacología , Componentes Aéreos de las Plantas/química , Extractos Vegetales/farmacología , Taninos/química
18.
Environ Sci Pollut Res Int ; 27(13): 15174-15187, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32072409

RESUMEN

Mosquitoes are principal vector of several vector-borne diseases affecting human beings leading to thousands of deaths per year and responsible for transmitting diseases like malaria, dengue, chikungunya, yellow fever, Zika virus, Japanese encephalitis, and lymphatic filariasis. In the present study, we evaluated the different solvent extracts of mangrove Avicennia marina for their toxicity against larvae of three major mosquito vectors, as well as selected microbial pathogens. The larvicidal mortality of third instars was observed after 24 h. Highest larval mortality was found for the acetone extract of A. marina against Culex quinquefasciatus (LC50 = 0.197 mg/ml; LC90 = 1.5011 mg/ml), Anopheles stephensi (LC50 = 0.176 mg/ml; LC90 = 3.6290 mg/ml), and Aedes aegypti (LC50 = 0.164 mg/ml; LC90 = 4.3554 mg/ml). GC-MS analysis of acetone extract revealed 5 peaks, i.e., 1-hexyl-2-nitrocyclohexane (3.229%), eicosanoic acid (40.582%), cis-9-hexadecenal (70.54%), oleic acid (4.646%), and di-N-decylsulfone (5.136%). Parallel to larvicidal assay, sub-lethal dosage acetone extracts severely affected the enzyme regulations (α,ß-carboxylesterase, GST and CYP450) of third instars. Larval and pupal durations increased in all treatment sub-lethal dosage (0.127, 0.151, 0.177, and 0.197 mg/ml), whereas egg hatchability and means of fecundity decreased compared to control. The survival rate was reduced statistically in Cx. quinquefasciatus (χ2 = 23.77, df = 1, P = 0.001) in all the treatment dosages as compared to the control. Antimicrobial activity assays showed significant growth inhibition post treatment with acetone and methanol extracts against Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus pneumoniae, Escherichia coli, and Shigella flexneri. Overall, these results indicated the potential employment of A. marina extracts as a source of natural mosquitocidal and antimicrobial compounds of green-based environment.


Asunto(s)
Aedes , Avicennia , Culex , Insecticidas , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Larva , Mosquitos Vectores , Extractos Vegetales , Hojas de la Planta
19.
Med Arch ; 74(6): 421-427, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33603265

RESUMEN

INTRODUCTION: Diabetes mellitus is a common disease worldwide. It is considered as the third leading cause of death, in the developed countries followed by heart diseases and cancer. AIM: The aim of this study was to assess the effectiveness of the aqueous fraction of R. mucronata and A. marina leaves grown in Saudi Arabia alone or in combination as antidiabetic agents and explore its effect on the antioxidants status. METHODS: One hundred and twenty male Wistar albino rats were divided into 8 groups were utilized in this study. Streptozotocin (STZ) was utilized for induction of diabetes. The effects of daily oral administration of aqueous extract from the leaves of R. mucronata (400 mg/kg BW), A. marina (400 mg/kg BW) and the combination of both plant extracts for 6 weeks were evaluated on blood glucose, insulin, tissues' antioxidants as well as pancreatic immunohistochemistry in normal, (STZ)-induced diabetic rats. RESULTS: Oral administration of the plants extracts significantly reduced (p ≤ 0.001) serum glucose, insulin and improved the antioxidants status in the liver compared to the untreated rats. Immunohistochemically, the pancreas of diabetic rats treated with R. mucronata revealed a few islets ß-cells (2-3%/ HPF) with positive caspase-3. CONCLUSION: The extract of R. mucronata exhibited a promising antidiabetic, antioxidant and tissue enhancing effects compared with A. marina alone or in combination.


Asunto(s)
Antioxidantes/uso terapéutico , Apoptosis/efectos de los fármacos , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Extractos Vegetales/uso terapéutico , Estreptozocina/efectos adversos , Animales , Avicennia/química , Humanos , Masculino , Modelos Animales , Fitoterapia , Ratas , Ratas Wistar , Rhizophoraceae/química , Arabia Saudita
20.
Nat Prod Res ; 34(16): 2403-2406, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30600710

RESUMEN

Mangrove plants are endowed with various biologically active compounds which have potent antibacterial and antioxidant properties. In present study, a bioactivity-guided fractionation for antibacterial and antioxidant active metabolites from the twigs of Avicennia officinalis collected from Kuala Selangor Nature Park, Selangor, Malaysia gave 13 major fractions. The antibacterial activity of A. officinalis fractions using well-diffusion showed strong selectivity on the Gram-positive bacteria (Staphylococcus epidermidis, S. aureus and Bacillus subtilis) with minimum inhibition concentration (MIC) values of 0.156-5.00 mg/mL. However, no antibacterial activities were observed on the Gram-negative bacteria (Vibrio cholera, Enterobacter cloacae and Escherichia coli). The active antibacterial fractions were further isolated using several chromatographic techniques to give two naphthofuranquinones, namely, avicenol C (1) and stenocarpoquinone B (2). Meanwhile, the antioxidant activity of A. officinalis fractions were evaluated using DPPH radical scavenging assay exhibited low antioxidant activities. Molecular structure of the naphthofuranquinones was elucidated using 1 D and 2 D NMR spectroscopy.


Asunto(s)
Antibacterianos/aislamiento & purificación , Antioxidantes/aislamiento & purificación , Avicennia/química , Extractos Vegetales/química , Quinonas/aislamiento & purificación , Antibacterianos/farmacología , Antioxidantes/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Malasia , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Quinonas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA