Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Pest Manag Sci ; 80(2): 763-775, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37774133

RESUMEN

BACKGROUND: Nectar plants provide extra nourishment for parasitoids, which can utilize floral volatiles to locate nectar-rich flowers. A promising strategy is to screen potential floral species based on the wasps' olfactory preferences for nectar sources, and to ensure their suitability for both natural enemies and targeted pests. Cotesia vestalis (Haliday) is a dominant parasitoid of the oligophagous pest Plutella xylostella, which poses a significant threat to cruciferous vegetables globally. However, the chemical cues in plant-parasitoid complexes mediating Cotesia vestalis to locate nectar food resources and the positive effect of nectar plants on the Cotesia vestalis population are poorly understood. RESULTS: The results showed that Fagopyrum esculentum was the most attractive plant that attracted Cotesia vestalis, not Plutella xylostella in 44 flowering plants from 19 families. 1,2-Diethyl benzene and 1,4-diethyl benzene, identified from the floral volatiles from F. esculentum in full bloom, were found to elicit dose-dependent electrophysiological responses and attract Cotesia vestalis adults, demonstrating their potential as semiochemicals. Moreover, the age-stage, two-sex life table revealed that feeding on nectar food increased the efficacy of Cotesia vestalis adults against Plutella xylostella. CONCLUSION: In summary, the findings provide insights into the chemical ecology of plant-parasitoid complexes and support the potential use of F. esculentum as insectary plants in habitat manipulation against Plutella xylostella by supplying natural nectar food for the Cotesia vestalis population. Our results suggest an attract and reward strategy based on an attractant for Cotesia vestalis to control Plutella xylostella, or the development of volatile-based artificial food for Cotesia vestalis. © 2023 Society of Chemical Industry.


Asunto(s)
Fagopyrum , Lepidópteros , Mariposas Nocturnas , Avispas , Humanos , Animales , Néctar de las Plantas , Benceno , Avispas/fisiología , Mariposas Nocturnas/fisiología , Larva , Interacciones Huésped-Parásitos
2.
Plant Cell Environ ; 45(10): 3036-3051, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35924491

RESUMEN

Potato, a cool-weather crop, emits volatile organic compounds (VOCs) which attract the specialist herbivore, Phthorimaea operculella, but also this herbivore's parasitic wasp, Trichogramma chilonis, an important biocontrol agent. What happens to this trophic system when heat stress challenges this agro-ecosystem? We studied how high temperature (HT) pre-treatments influence potato's VOC emissions and their subsequent effects on the preferences of insects, as evaluated in oviposition assays and Y-tube olfactometers. HT pre-stressed plants were less attractive to P. operculella adult moths, which were repelled by HT VOCs, but increased the recruitment of the parasitoid, T. chilonis, which were attracted. VOC emissions, including the most abundant constituent, ß-caryophyllene, were enhanced by HT treatments; some constituents elicited stronger behavioural responses than others. Transcripts of many genes in the biosynthetic pathways of these VOCs were significantly enhanced by HT treatment, suggesting increases in de novo biosynthesis. HT increased the plant's stomatal apertures, and exogenous applications of the hormone, ABA, known to suppress stomatal apertures, reduced leaf volatile emissions and affected the HT-altered plant attractions to both insects. From these results, we infer that HT stress affects this plant-insect interaction through its influence on VOC emissions, potentially decreasing herbivore ovipositions while increasing ovipositions of the parasitoid.


Asunto(s)
Solanum tuberosum , Compuestos Orgánicos Volátiles , Avispas , Animales , Ecosistema , Femenino , Respuesta al Choque Térmico , Herbivoria , Plantas/metabolismo , Solanum tuberosum/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Avispas/fisiología
3.
J Chem Ecol ; 48(4): 370-383, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35257255

RESUMEN

Kairomones are semiochemicals that are emitted by an organism and which mediate interspecific interaction that is of benefit to an organism of another species that receives these chemical substances. Parasitoids find and recognize their hosts through eavesdropping on the kairomones emitted from the by-products or the body of the host. Hemipteran insect pests feed on plant sap and excrete the digested plant materials as honeydew. Honeydew serves as a nutritional food source for parasitoids and a medium for micro-organisms whose activity induces the release of volatiles exploited by parasitoids for host location. The parasitoid Encarsia formosa preferentially parasitizes its host, the greenhouse whitefly, Trialeurodes vaporariorum, on tomato Solanum lycopersicum, but little is known about the chemicals that mediate these interactions. We investigated the olfactory responses of the parasitoid E. formosa to odours from honeydew and nymphs of T. vaporariorum in a Y-tube olfactometer. Arrestment behaviour of the parasitoid to honeydew and nymph extracts, as well as to synthetic hydrocarbons, was also observed in Petri-dish bioassays. We found that T. vaporariorum honeydew volatiles attracted the parasitoid E. formosa but odours from the whitefly nymphs did not. We also found that the parasitoid spent more time searching on areas treated with extracts of honeydew and nymphs than on untreated areas. Gas-chromatography-mass spectrometric analysis revealed that the honeydew volatiles contained compounds such as (Z)-3-hexenol, δ-3-carene, 3-octanone, α-phellandrene, methyl salicylate, ß-ocimene, ß-myrcene, and (E)-ß-caryophyllene which are known to be attractive to E. formosa. The cuticular extracts of the nymphs predominantly contained alkanes, alkenes, and esters. Among the alkanes, synthetic nonacosane arrested the parasitoid. Our findings are discussed in relation to how the parasitoid E. formosa uses these chemicals to locate its host, T. vaporariorum.


Asunto(s)
Hemípteros , Himenópteros , Solanum lycopersicum , Avispas , Alcanos , Animales , Señales (Psicología) , Interacciones Huésped-Parásitos , Ninfa , Feromonas , Extractos Vegetales , Taiwán , Avispas/fisiología
4.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34341115

RESUMEN

Theory identifies factors that can undermine the evolutionary stability of mutualisms. However, theory's relevance to mutualism stability in nature is controversial. Detailed comparative studies of parasitic species that are embedded within otherwise mutualistic taxa (e.g., fig pollinator wasps) can identify factors that potentially promote or undermine mutualism stability. We describe results from behavioral, morphological, phylogenetic, and experimental studies of two functionally distinct, but closely related, Eupristina wasp species associated with the monoecious host fig, Ficus microcarpa, in Yunnan Province, China. One (Eupristina verticillata) is a competent pollinator exhibiting morphologies and behaviors consistent with observed seed production. The other (Eupristina sp.) lacks these traits, and dramatically reduces both female and male reproductive success of its host. Furthermore, observations and experiments indicate that individuals of this parasitic species exhibit greater relative fitness than the pollinators, in both indirect competition (individual wasps in separate fig inflorescences) and direct competition (wasps of both species within the same fig). Moreover, phylogenetic analyses suggest that these two Eupristina species are sister taxa. By the strictest definition, the nonpollinating species represents a "cheater" that has descended from a beneficial pollinating mutualist. In sharp contrast to all 15 existing studies of actively pollinated figs and their wasps, the local F. microcarpa exhibit no evidence for host sanctions that effectively reduce the relative fitness of wasps that do not pollinate. We suggest that the lack of sanctions in the local hosts promotes the loss of specialized morphologies and behaviors crucial for pollination and, thereby, the evolution of cheating.


Asunto(s)
Ficus/parasitología , Interacciones Huésped-Parásitos , Avispas/fisiología , Animales , Conducta Animal , Evolución Biológica , China , Femenino , Ficus/fisiología , Cabeza/anatomía & histología , Oviposición , Filogenia , Polen , Polinización , Estaciones del Año , Semillas/crecimiento & desarrollo , Simbiosis , Avispas/anatomía & histología
5.
Sci Rep ; 11(1): 2101, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33483556

RESUMEN

The toxicity of seven biorational insecticides [five insect growth regulators (Buprofezin, Fenoxycarb, Pyriproxyfen, Methoxyfenozide, and Tebufenozide) and two oil-extracts of neem and bitter gourd seeds] against Bemisia tabaci and their selectivity for its parasitoid, Encarsia formosa were evaluated in laboratory and field conditions for 2 years (2018-2019) in Pakistan. Toxicity results demonstrate that Pyriproxyfen, Buprofezin, and Fenoxycarb proved to be effective (80-91% mortality and 66.3-84.2% population-reduction) against B. tabaci followed by Methoxyfenozide, Tebufenozide (50-75% mortality and 47.8-52.4% population-reduction), and then oil-extracts of neem and bitter gourd (25-50% mortality and 36.5-39.8% population-reduction) in the laboratory [72 h post-application exposure interval (PAEI)] and field trails (168 h PAEI), respectively. All tested biorationals, except Methoxyfenozide [(slightly-harmful/Class-II), i.e., causing mortality of parasitoids between a range of 25-50%] and Tebufenozide [(moderately-harmful/Class-III), i.e., causing mortality of parasitoids between the ranges of 51-75%], proved harmless/Class-I biorationals at PAEI of 7-days in the field (parasitism-reduction < 25%) and 3-days in the lab (effect < 30%). In laboratory bioassays, exposure of parasitized-pseudopupae and adult-parasitoids to neem and bitter gourd oils demonstrated that these compounds proved harmless/Class-I biorationals (< 30% mortality). Alternatively, Pyriproxyfen, Buprofezin, Fenoxycarb, Methoxyfenozide, and Tebufenozide were slightly-harmful biorationals (30-79% mortality) against the respective stages of E. formosa. We conclude that most of the tested biorationals proved harmless or slightly harmful to E. formosa, except tebufenozide after PAEI of 7-days (168 h) in the field and, therefore, may be used strategically in Integrated Pest Management (IPM) of B. tabaci.


Asunto(s)
Gossypium/parasitología , Hemípteros/fisiología , Insecticidas/toxicidad , Control Biológico de Vectores/métodos , Avispas/fisiología , Animales , Azadirachta/química , Gossypium/genética , Interacciones Huésped-Parásitos/efectos de los fármacos , Hidrazinas/toxicidad , Hormonas Juveniles/toxicidad , Larva/efectos de los fármacos , Larva/fisiología , Momordica charantia/química , Fenilcarbamatos/toxicidad , Extractos Vegetales/toxicidad , Plantas Modificadas Genéticamente , Piridinas/toxicidad , Tiadiazinas/toxicidad , Resultado del Tratamiento
6.
Sci Rep ; 10(1): 9090, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32499494

RESUMEN

Spotted Wing Drosophila (Drosophila suzukii; Matsumura) is an invasive fruit fly with the ability to oviposit in a broad range of agriculturally valuable fruits. Volatile organic compounds (VOCs) produced by botanical oils may reduce D. suzukii's attraction to hosts and decrease survival, but it is unknown whether their efficacy varies across D. suzukii life stages or affects the survival and success of higher trophic levels. Through a series of laboratory bioassays, we evaluated the effects of peppermint (Mentha arvensis L.) oil produced VOCs on D. suzukii survival and the survival of and parasitism rates by a pupal parasitoid wasp, Pachycrepoideus vindemmiae (Rondani). First, we determined whether fumigation with peppermint oil VOCs at the pupal stage reduced adult emergence, and whether this depended on environmental conditions (i.e. soil moisture). Second, we evaluated whether fumigation with peppermint oil VOCs reduced or enhanced parasitism by the pupal parasitoid and whether this depended on the timing of peppermint oil VOC exposure (i.e. before, during, or after parasitoid access). Fumigation with VOCs of 4.5 mg of peppermint oil reduced D. suzukii emergence under moist soil conditions but dry soil had a similar effect on reducing adult emergence as peppermint oil presence. Peppermint oil VOC fumigation was toxic to adult P. vindemmiae, but developing P. vindemmiae were unaffected by peppermint oil VOC fumigation. Using peppermint essential oil as a fumigant may reduce D. suzukii emergence from the pupal stage. However, this could negatively impact P. vindemmiae dependent on the timing of application.


Asunto(s)
Drosophila/efectos de los fármacos , Drosophila/parasitología , Frutas/parasitología , Fumigación , Interacciones Huésped-Parásitos/efectos de los fármacos , Control de Insectos/métodos , Mentha piperita/química , Aceites Volátiles/toxicidad , Aceites de Plantas/toxicidad , Pupa/efectos de los fármacos , Avispas/efectos de los fármacos , Avispas/fisiología , Animales , Aceites Volátiles/aislamiento & purificación , Aceites de Plantas/aislamiento & purificación
7.
Bull Entomol Res ; 110(4): 542-549, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31928543

RESUMEN

The present study was carried out to unveil interactive relevance among consecutive and alternate members of a tritrophic system comprised of sugar beet genotypes, beet armyworm, Spodoptera exigua (Hübner), and its parasitoid, Habrobracon hebetor (Say) using demographic parameters. To do so, H. hebetor was reared on S. exigua fed on 10 sugar beet genotypes, including SB26; SB27; SB29; SB33; SB34; (7112*SB36)*Sh-1-HSF-5; FC220; FC301; SBSI006; and HM 1339RZ in a growth chamber at 25 ± 1 °C, 60 ± 5% RH, and 16:8 (L: D) h photoperiod. The data was analyzed based on the age-stage, two-sex life table theory. Our results revealed high variation in duration of different life stages of H. hebetor on S. exigua reared on different sugar beet genotypes examined. The shortest (10.605 days) and longest (13.721 days) pre-adult period of H. hebetor was on S. exigua reared on SB26 and SB34, respectively. The longest (17.2 days) and shortest adult longevity (7.5 days) was on S. exigua reared on SB26 and SB27, respectively. The highest values of the intrinsic rate of increase (r) (0.209 day-1) and finite rate of increase (λ) (1.233 day-1) were observed on S. exigua reared on SB34 and their lowest values (0.159 and 1.172 day-1, respectively) were recorded on SB27. Resistant and susceptible genotypes to S. exigua, FC301 and (7112*SB36)*Sh-1-HSF-5, respectively, were only genotypes on which H. hebetor had greater and approximately equal r compared with S. exigua. This finding indicates high capability of H. hebetor to be successfully employed against S. exigua on sugar beet genotypes which are extremely different in resistance to this pest.


Asunto(s)
Spodoptera/parasitología , Avispas/crecimiento & desarrollo , Avispas/fisiología , Animales , Beta vulgaris/genética , Agentes de Control Biológico , Femenino , Tablas de Vida , Masculino , Spodoptera/fisiología
8.
Commun Biol ; 2: 408, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31728419

RESUMEN

Angiosperms and their insect pollinators form a foundational symbiosis, evidence for which from the Cretaceous is mostly indirect, based on fossils of insect taxa that today are anthophilous, and of fossil insects and flowers that have apparent anthophilous and entomophilous specializations, respectively. We present exceptional direct evidence preserved in mid-Cretaceous Burmese amber, 100 mya, for feeding on pollen in the eudicot genus Tricolporoidites by a basal new aculeate wasp, Prosphex anthophilos, gen. et sp. nov., in the lineage that contains the ants, bees, and other stinging wasps. Plume of hundreds of pollen grains wafts from its mouth and an apparent pollen mass was detected by micro-CT in the buccal cavity: clear evidence that the wasp was foraging on the pollen. Eudicots today comprise nearly three-quarters of all angiosperm species. Prosphex feeding on Tricolporoidites supports the hypothesis that relatively small, generalized insect anthophiles were important pollinators of early angiosperms.


Asunto(s)
Polen , Avispas/fisiología , Ámbar/historia , Animales , Dieta/historia , Fósiles , Historia Antigua , Magnoliopsida/ultraestructura , Mianmar , Polen/ultraestructura , Polinización/fisiología , Preservación Biológica , Avispas/anatomía & histología , Avispas/clasificación , Microtomografía por Rayos X
9.
J Chem Ecol ; 45(11-12): 972-981, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31713110

RESUMEN

Microplitis croceipes is a solitary parasitoid that specializes on noctuid larvae of Helicoverpa zea and Heliothis virescens. Both the parasitoid and its hosts are naturally distributed across a large part of North America. When parasitoids deposit their eggs into hosts, venom and polydnaviruses (PDVs) are also injected into the caterpillars, which can suppress host immune responses, thus allowing parasitoid larvae to develop. In addition, PDVs can regulate host oral cues, such as glucose oxidase (GOX). The purpose of this study was to determine if parasitized caterpillars differentially induce plant defenses compared to non-parasitized caterpillars using two different caterpillar host/plant systems. Heliothis virescens caterpillars parasitized by M. croceipes had significantly lower salivary GOX activity than non-parasitized caterpillars, resulting in lower levels of tomato defense responses, which benefited parasitoid performance by increasing the growth rate of parasitized caterpillars. In tobacco plants, parasitized Helicoverpa zea caterpillars had lower GOX activity but induced higher plant defense responses. The higher tobacco defense responses negatively affected parasitoid performance by reducing the growth rate of parasitized caterpillars, causing longer developmental periods, and reduced cocoon mass and survival of parasitoids. These studies demonstrate a species-specific effect in different plant-insect systems. Based on these results, plant perception of insect herbivores can be affected by parasitoids and lead to positive or negative consequences to higher trophic levels depending upon the particular host-plant system.


Asunto(s)
Mariposas Nocturnas/fisiología , Nicotiana/parasitología , Solanum lycopersicum/parasitología , Avispas/fisiología , Animales , Femenino , Glucosa Deshidrogenasas/metabolismo , Glucosa Oxidasa/metabolismo , Interacciones Huésped-Parásitos , Larva/metabolismo , Solanum lycopersicum/metabolismo , Oviposición/fisiología , Parásitos , Enfermedades de las Plantas/parasitología , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Especificidad de la Especie , Nicotiana/metabolismo
10.
Am Nat ; 194(2): 183-193, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31318293

RESUMEN

Trait variation is central to our understanding of species interactions, and trait variation arising within species is increasingly recognized as an important component of community ecology. Ecologists generally consider intraspecific variation either among or within populations, yet these differences can interact to create patterns of species interactions. These differences can also affect species interactions by altering processes occurring at distinct scales. Specifically, intraspecific variation may shape species interactions simply by shifting a population's position along a trait-function map or by shifting the relationship between traits and their ecological function. I test these ideas by manipulating within- and among-population intraspecific variation in wild populations of a gall-forming insect before quantifying species interactions and phenotypic selection. Within- and among-population differences in gall size interact to affect attack rates by an enemy community, but among-population differences were far more consequential. Intraspecific differences shaped species interactions by both shifting the position of populations along the trait-function map and altering the relationship between traits and their function, with ultimate consequences for patterns of natural selection. I suggest that intraspecific variation can affect communities and natural selection by acting through individual- and population-level mechanisms.


Asunto(s)
Aves/fisiología , Selección Genética , Tephritidae/parasitología , Avispas/fisiología , Animales , Conducta Apetitiva , Biota , Color , Larva/parasitología , Tumores de Planta , Solidago/parasitología , Tephritidae/crecimiento & desarrollo
11.
Plant Biol (Stuttg) ; 21(1): 176-182, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30098096

RESUMEN

Mitrastemon yamamotoi is completely embedded within the tissues of its hosts, except during the reproductive stage, when aboveground parts emerge from host tissues. Its highly modified appearance has attracted attention of many botanists, but very little is known about the reproductive system. Floral visitors to M. yamamotoi were observed in southern Japan. Pollination experiments were conducted to determine the plant's self-compatibility and pollen limitation, as well as the contribution of diurnal and nocturnal visitors to fruit set and outcrossing. Mitrastemon yamamotoi is mainly pollinated by social wasps, but previously unnoticed pollinators (i.e. crickets and cockroaches) are also important, based on visitation frequency and pollen loads. Results of the pollination experiments suggest that nocturnal visitors, such as crickets and cockroaches, contribute to geitonogamous pollination, whereas diurnal visitors, such as social wasps, facilitate outcrossing. The unexpected pollinator assemblage of M. yamamotoi might be influenced by multiple factors, including the highly modified flowers that are produced close to the ground in dark understorey environments, the species' winter-flowering habit and the location of the study site (i.e. near the northern limit of the species' range). Considering that M. yamamotoi occurs widely in subtropical and tropical forests in Asia, additional studies are needed to assess pollinator assemblages of M. yamamotoi at other locations.


Asunto(s)
Cucarachas/fisiología , Ericaceae/fisiología , Gryllidae/fisiología , Polinización/fisiología , Conducta Social , Avispas/fisiología , Animales , Ritmo Circadiano/fisiología , Ericaceae/embriología , Flores/fisiología , Frutas/fisiología , Japón , Fitomejoramiento , Polen/fisiología
12.
Bull Entomol Res ; 109(2): 160-168, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29743126

RESUMEN

The importance of the right food source for the survival and reproduction of certain insect species is well documented. In the case of biocontrol agents, this is even more important in order to reach a high predation or parasitation performance. The egg parasitoid Telenomus laeviceps (Förster, 1861) (Hymenoptera: Scelionidae) is a promising candidate for mass release as a biological control agent of the cabbage moth Mamestra brassicae (Linnaeus, 1758) (Lepidoptera: Noctuidae). However, adult T. laeviceps need a sugar-rich food source to increase their parasitation performance and produce a good amount of female offspring. Released biocontrol agents were shown to benefit from conservation biocontrol, which includes the provision of selected flowers as nectar resources for beneficial insects. In Switzerland, Centaurea cyanus L. (Asteraceae), Fagopyrum esculentum Moench (Polygonaceae) and Vicia sativa L. (Fabaceae) are successfully implemented in the field to attract and promote natural enemies of different cabbage pests. In this study, we investigated the potential of these selected flowers to attract and promote T. laeviceps under laboratory conditions. In Y-tube olfactometer experiments, we first tested whether the three nectar providing plant species are attractive to T. laeviceps. Furthermore, we assessed their effects on survival and parasitation performance of adult T. laeviceps. We found that flowers of F. esculentum and C. cyanus were attractive in contrast to V. sativa. Also fecundity and the number of female offspring produced were higher for females kept on F. esculentum and C. cyanus than on V. sativa. In contrast, survival was similar on all treatments. Our findings present a further key step towards the implementation of T. laeviceps as a biocontrol agent.


Asunto(s)
Flores , Interacciones Huésped-Parásitos , Mariposas Nocturnas , Control Biológico de Vectores , Néctar de las Plantas/fisiología , Avispas/fisiología , Animales , Centaurea , Fagopyrum , Femenino , Masculino , Olfatometría , Vicia sativa
13.
J Evol Biol ; 31(11): 1732-1742, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30144355

RESUMEN

Pollination by sexual deception of male insects is perhaps one of the most remarkable cases of mimicry in the plant kingdom. However, understanding the influence of floral traits on pollinator behaviour in sexually deceptive plants is challenging, due to the risk of confounding changes in floral odour when manipulating morphology. Here, we investigated the floral traits influencing the sexual response of male Zaspilothynnus nigripes (Tiphiidae) wasps, a pollinator of two distantly related sexually deceptive orchids with contrasting floral architecture, Caladenia pectinata and Drakaea livida. In D. livida, the chemical sexual attractant is emitted from the labellum, whereas in C. pectinata, it is produced from the distal sepal tips, allowing manipulative experiments. When controlling for visual cues, there was no difference in long-distance attraction, although the floral odour of D. livida induced copulation more frequently than that of C. pectinata. The role of colour in pollinator sexual attraction was equivocal, indicating that colour may not be a strong constraint on the initial evolution of sexual deception. The frequency of wasp visitors landing on C. pectinata decreased when the amount of floral odour was reduced, but attempted copulation rates were enhanced when the source of floral odour was associated with the labellum. These latter variables may represent axes of selection that operate across many sexually deceptive species. Nonetheless, the observed variation in floral traits suggests flexibility among species in how sexual deception can be achieved.


Asunto(s)
Flores/fisiología , Orchidaceae/fisiología , Polinización/fisiología , Avispas/fisiología , Animales , Evolución Biológica , Masculino , Odorantes , Polen , Especificidad de la Especie
14.
Am Nat ; 192(1): E21-E36, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29897808

RESUMEN

Most studies of adaptive radiation in animals focus on resource competition as the primary driver of trait divergence. The roles of other ecological interactions in shaping divergent phenotypes during such radiations have received less attention. We evaluate natural enemies as primary agents of diversifying selection on the phenotypes of an actively diverging lineage of gall midges on tall goldenrod. In this system, the gall of the midge consists of a biotrophic fungal symbiont that develops on host-plant leaves and forms distinctly variable protective carapaces over midge larvae. Through field studies, we show that fungal gall morphology, which is induced by midges (i.e., it is an extended phenotype), is under directional and diversifying selection by parasitoid enemies. Overall, natural enemies disruptively select for either small or large galls, mainly along the axis of gall thickness. These results imply that predators are driving the evolution of phenotypic diversity in symbiotic defense traits in this system and that divergence in defensive morphology may provide ecological opportunities that help to fuel the adaptive radiation of this genus of midges on goldenrods. This enemy-driven phenotypic divergence in a diversifying lineage illustrates the potential importance of consumer-resource and symbiotic species interactions in adaptive radiation.


Asunto(s)
Ascomicetos/fisiología , Dípteros/genética , Tumores de Planta , Conducta Predatoria , Selección Genética , Animales , Evolución Biológica , Dípteros/microbiología , Larva/microbiología , Solidago/genética , Solidago/microbiología , Solidago/parasitología , Avispas/fisiología
15.
J Econ Entomol ; 111(3): 1048-1055, 2018 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-29529269

RESUMEN

Lethal and sublethal effects of refined soybean oil, imidacloprid, and abamectin on Tamarixia triozae (Burks; Hymenoptera: Eulophidae) were assessed after exposure of the eggs, larvae, and pupae of this parasitoid to three concentrations of these active substances: the LC50 for fourth-instar Bactericera cockerelli (Sulc.; Hemiptera: Triozidae) and 50% and 100% of the minimum field-registered concentration (MiFRC). Soybean oil caused 26-61% mortality in T. triozae eggs and 6-19% in larvae; mortality in both eggs and larvae was ≤19% for imidacloprid and 4-100% for abamectin. All three compounds caused <18% mortality of T. triozae pupae, with the exception of the abamectin 50% (47%) and 100% (72%) MiFRC. The mortality of larvae and pupae derived from treated eggs was ≤39% for all three insecticides, and that of pupae derived from treated larvae was ≤10%. In general, emergence of adults developed from treated eggs, larvae, and pupae was affected more by abamectin than by the other treatments. The proportion of females derived from all three development stages was not affected by treatment with the compounds, except when the parasitoid was treated as larvae with the soybean oil 100 and 50% MiFRC (66 and 68%, respectively) or when treated as pupae with the imidacloprid LC50 and 100% MiFRC (~60%). Female longevity was generally higher than that of males. The use of imidacloprid, soybean oil, and abamectin in combination with T. triozae for pest control may be effective when the parasitoid is in the pupal stage because this stage is less susceptible than other immature stages.


Asunto(s)
Interacciones Huésped-Parásitos/efectos de los fármacos , Insecticidas/toxicidad , Ivermectina/análogos & derivados , Neonicotinoides/toxicidad , Nitrocompuestos/toxicidad , Control Biológico de Vectores , Aceite de Soja/toxicidad , Avispas/efectos de los fármacos , Animales , Femenino , Hemípteros/crecimiento & desarrollo , Hemípteros/parasitología , Control de Insectos , Ivermectina/toxicidad , Larva/efectos de los fármacos , Masculino , Ninfa/crecimiento & desarrollo , Ninfa/parasitología , Óvulo/efectos de los fármacos , Pupa/efectos de los fármacos , Avispas/crecimiento & desarrollo , Avispas/fisiología
16.
Fitoterapia ; 126: 78-82, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28965764

RESUMEN

Until recently, (methylthio)phenols as natural products had only been reported from bacteria. Now, four representatives of this class of sulfurous aromatic compounds have been discovered as semiochemicals in the orchid Caladenia crebra, which secures pollination by sexual deception. In this case, field bioassays confirmed that a 10:1 blend of 2-(methylthio)benzene-1,4-diol (1) and 4-hydroxy-3-(methylthio)benzaldehyde (2) sexually attracts the male thynnine wasp Campylothynnus flavopictus (Tiphiidae:Thynnineae), the exclusive pollinator of C. crebra. Here we show with field bioassays that another undescribed species of Campylothynnus (sp. A) is strongly sexually attracted to a 1:1 blend of compounds 1 and 2, which elicits very high attempted copulation rates (88%). We also confirm that this Campylothynnus species is a pollinator of Caladenia attingens subsp. attingens. Chemical analysis of the flowers of this orchid revealed two (methylthio)phenols, compound 2 and 2-(methylthio)phenol (3), as candidate semiochemicals involved in pollinator attraction. Thus, (methylthio)phenols are likely to be more widely used than presently known. The confirmation of this Campylothynnus as a pollinator of C. attingens subsp. attingens at our study sites was unexpected, since elsewhere this orchid is pollinated by a different thynnine wasp (Thynnoides sp). In general, sexually deceptive Caladenia only use a single species of pollinator, and as such, this unusual case may offer a tractable study system for understanding the chemical basis of pollinator switching in sexually deceptive orchids.


Asunto(s)
Flores/química , Orchidaceae/química , Feromonas/química , Polinización , Avispas/fisiología , Animales , Australia , Masculino , Fenoles/química , Conducta Sexual Animal
17.
J Chem Ecol ; 43(5): 469-479, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28536987

RESUMEN

Ophrys flowers mimic sex pheromones of attractive females of their pollinators and attract males, which attempt to copulate with the flower and thereby pollinate it. Virgin females and orchid flowers are known to use the same chemical compounds in order to attract males. The composition of the sex pheromone and its floral analogue, however, vary between pollinator genera. Wasp-pollinated Ophrys species attract their pollinators by using polar hydroxy acids, whereas Andrena-pollinated species use a mixture of non-polar hydrocarbons. The phylogeny of Ophrys shows that its evolution was marked by episodes of rapid diversification coinciding with shifts to different pollinator groups: from wasps to Eucera and consequently to Andrena and other bees. To gain further insights, we studied pollinator attraction in O. leochroma in the context of intra- and inter-generic pollinator shifts, radiation, and diversification in the genus Ophrys. Our model species, O. leochroma, is pollinated by Eucera kullenbergi males and lies in the phylogeny between the wasp and Andrena-pollinated species; therefore, it is a remarkable point to understand pollinator shifts. We collected surface extracts of attractive E. kullenbergi females and labellum extracts of O. leochroma and analyzed them by using gas chromatography with electroantennographic detection (GC-EAD) and gas chromatography coupled with mass spectrometry (GC-MS). We also performed field bioassays. Our results show that O. leochroma mimics the sex pheromone of its pollinator's female by using aldehydes, alcohols, fatty acids, and non-polar compounds (hydrocarbons). Therefore, in terms of the chemistry of pollinator attraction, Eucera-pollinated Ophrys species might represent an intermediate stage between wasp- and Andrena-pollinated orchid species.


Asunto(s)
Abejas/fisiología , Orchidaceae/química , Polen/química , Avispas/fisiología , Animales , Cromatografía de Gases , Decepción , Femenino , Flores/química , Flores/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Masculino , Orchidaceae/clasificación , Orchidaceae/metabolismo , Filogenia , Polen/metabolismo , Atractivos Sexuales/análisis , Atractivos Sexuales/química
18.
J Ethnobiol Ethnomed ; 13(1): 13, 2017 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-28178988

RESUMEN

BACKGROUND: Domestication is an important and contested concept. Insects are used as food worldwide, and while some have been described as domesticated and even 'semi-domesticated', the assumptions and implications of this designation are not clear. The purpose of this paper is to explore these aspects of insect domestication, and broader debates in domestication studies, through the case of edible wasps in central rural Japan. METHODS: Both authors conducted ethnographic fieldwork with communities in central rural Japan. Fieldwork comprised participant observation, semi-structured interviews, quantitative surveys and a review of resources including the personal and public records of wasp collectors. RESULTS: The practice of keeping wasps in hive boxes has historical roots and has changed significantly within living memory. Current attempts to further develop the practice involve collectors' great efforts to keep new queens during their hibernation. Collectors have also tried, still without success, to keep wasps living within a human-made enclosure for their entire life cycle. These and other practices are costly in both time and money for collectors, who emphasise enjoyment as their primary motivation. At the same time, they also engage in practices such as pesticide use that they recognise as damaging to wasp ecology. CONCLUSIONS: These practices can be understood to some extent in domesticatory terms, and in terms of care. We develop a framework for understanding domesticatory practices of insect care, discuss how this case contributes to ongoing debates within domestication studies, and recommend further research to be pursued.


Asunto(s)
Domesticación , Alimentos , Avispas , Animales , Humanos , Entrevistas como Asunto , Japón , Larva , Estadios del Ciclo de Vida , Población Rural , Encuestas y Cuestionarios , Avispas/fisiología
19.
Insect Sci ; 24(6): 1015-1024, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28213920

RESUMEN

Intra- and interspecific variation in plant and insect traits can alter the strength and direction of insect-plant interactions, with outcomes modified by soil biotic and abiotic conditions. We used the potato aphid (Macrosiphum euphorbiae Thomas) feeding on cultivated Solanum tuberosum and wild Solanum berthaulti to study the impact of water availability and plant mutualistic arbuscular mycorrhizal (AM) fungi on aphid performance and susceptibility to a parasitoid wasp (Aphidius ervi Haliday). Plants were grown under glass with live or sterile AM fungal spores and supplied with sufficient or reduced water supply. Plants were infested with 1 of 3 genotypes of M. euphorbiae or maintained as aphid-free controls; aphid abundance was scored after 1 week, after which aphid susceptibility to A. ervi was assayed ex planta. Solanum tuberosum accumulated c. 20% more dry mass than S. berthaultii, and root mass of S. berthaultii was smallest under reduced water supply in the presence of AM fungi. Aphid abundance was lowest on S. berthaultii and highest for genotype "2" aphids; genotype "1" aphid density was particularly reduced on S. berthaultii. Aphid genotype "1" exhibited low susceptibility to parasitism and was attacked less frequently than the other two more susceptible aphid genotypes. Neither AM fungi nor water availability affected insect performance. Our study suggests a fitness trade-off in M. euphorbiae between parasitism resistance and aphid performance on poor quality Solanum hosts that warrants further exploration, and indicates the importance of accounting for genotype identity in determining the outcome of multitrophic interactions.


Asunto(s)
Áfidos/genética , Interacciones Huésped-Parásitos , Micorrizas/fisiología , Solanum tuberosum/fisiología , Avispas/fisiología , Animales , Áfidos/parasitología , Femenino , Herbivoria , Solanum tuberosum/microbiología , Agua/fisiología
20.
Artículo en Inglés | MEDLINE | ID: mdl-27887946

RESUMEN

We posed the hypothesis that inhibition of eicosanoid biosynthesis leads to increased lipid peroxidation in insects. Here we report that rearing the greater wax moth, Galleria mellonella, on media supplemented with selected inhibitors of eicosanoid biosynthesis throughout the larval, pupal and adult life led to major alterations in selected oxidative and antioxidative parameters of wax moth and its ectoparasitoid, Bracon hebetor. The highest dietary dexamethasone (Dex), esculetin (Esc) and phenidone (Phe) led to increased malondialdehyde (MDA) levels and to elevated catalase (CAT) and glutathione-S-transferase (GST) activities in all developmental stages of host larvae. Dietary Phe resulted in increased MDA levels, and CAT activity in G. mellonella adults by about 4-fold and about 2-fold, respectively. The Phe effect on GST activity in all stages of the wax moth was expressed in a dose-dependent manner, increased to 140nmol/mg protein/min in larvae. MDA levels were increased by over 30-fold in adult wasps reared on Dex- and Esc-treated hosts. CAT and GST activities were increased in adult parasitoids reared on Esc-and Phe-treated hosts. GST activity of Dex-treated parasitoid larvae increased from about 4 to over 30nmol/mg protein/min. Dietary Phe led to increased GST activity, by about 25-fold, in adult wasps. These data indicate that chronic inhibition of eicosanoid biosynthesis leads to increased oxidative stress, strongly supporting our hypothesis. The significance of this work lies in understanding the roles of eicosanoids in insect biology. Aside from other well-known eicosanoids actions, we propose that eicosanoids mediate reductions in oxidative stress.


Asunto(s)
Eicosanoides/metabolismo , Interacciones Huésped-Parásitos , Peroxidación de Lípido , Mariposas Nocturnas/parasitología , Avispas/fisiología , Animales , Catalasa/metabolismo , Eicosanoides/administración & dosificación , Glutatión Transferasa/metabolismo , Larva/crecimiento & desarrollo , Malondialdehído/metabolismo , Mariposas Nocturnas/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA