Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Phytother Res ; 37(1): 77-88, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36054436

RESUMEN

Chronic acrylamide (ACR) intoxication causes typical pathology of axon degeneration. Moreover, sterile-α and toll/interleukin 1 receptor motif-containing protein 1 (SARM1), the central executioner of the programmed axonal destruction process under various insults, is up-regulated in ACR neuropathy. However, it remains unclear whether inhibitors targeting SARM1 are effective or not. Among all the pharmacological antagonists, berberine chloride (BBE), a natural phytochemical and the first identified non-competitive inhibitor of SARM1, attracts tremendous attention. Here, we observed the protection of 100 µM BBE against ACR-induced neurites injury (2 mM ACR, 24 hr) in vitro, and further evaluated the neuroprotective effect of BBE (100 mg/kg p.o. three times a week for 4 weeks) in ACR-intoxicated rats (40 mg/kg i.p. three times a week for 4 weeks). The expression of SARM1 was also detected. BBE intervention significantly inhibited the overexpression of SARM1, ameliorated axonal degeneration, alleviated pathological changes in the sciatic nerve and spinal cord, and improved neurobehavioral symptoms in ACR-poisoned rats. Thus, BBE exhibits a strong neuroprotective effect against the SARM1-dependent axon destruction in ACR neuropathy. Meanwhile, our study underscores the need for appropriate inhibitor selection in diverse situations that would benefit from blocking the SARM1-dependent axonal destruction pathway.


Asunto(s)
Berberina , Fármacos Neuroprotectores , Enfermedades del Sistema Nervioso Periférico , Ratas , Animales , Berberina/farmacología , Cloruros/metabolismo , Acrilamida/toxicidad , Fármacos Neuroprotectores/farmacología , Axones/metabolismo , Axones/patología
2.
Neurobiol Dis ; 171: 105808, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35779777

RESUMEN

Wallerian degeneration (WD) is a conserved axonal self-destruction program implicated in several neurological diseases. WD is driven by the degradation of the NAD+ synthesizing enzyme NMNAT2, the buildup of its substrate NMN, and the activation of the NAD+ degrading SARM1, eventually leading to axonal fragmentation. The regulation and amenability of these events to therapeutic interventions remain unclear. Here we explored pharmacological strategies that modulate NMN and NAD+ metabolism, namely the inhibition of the NMN-synthesizing enzyme NAMPT, activation of the nicotinic acid riboside (NaR) salvage pathway and inhibition of the NMNAT2-degrading DLK MAPK pathway in an axotomy model in vitro. Results show that NAMPT and DLK inhibition cause a significant but time-dependent delay of WD. These time-dependent effects are related to NMNAT2 degradation and changes in NMN and NAD+ levels. Supplementation of NAMPT inhibition with NaR has an enhanced effect that does not depend on timing of intervention and leads to robust protection up to 4 days. Additional DLK inhibition extends this even further to 6 days. Metabolite analyses reveal complex effects indicating that NAMPT and MAPK inhibition act by reducing NMN levels, ameliorating NAD+ loss and suppressing SARM1 activity. Finally, the axonal NAD+/NMN ratio is highly predictive of cADPR levels, extending previous cell-free evidence on the allosteric regulation of SARM1. Our findings establish a window of axon protection extending several hours following injury. Moreover, we show prolonged protection by mixed treatments combining MAPK and NAMPT inhibition that proceed via complex effects on NAD+ metabolism and inhibition of SARM1.


Asunto(s)
Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Nicotinamida-Nucleótido Adenililtransferasa , Degeneración Walleriana , Animales , Proteínas del Dominio Armadillo/metabolismo , Axones/patología , Proteínas del Citoesqueleto/metabolismo , Humanos , Mamíferos/metabolismo , NAD/metabolismo , Degeneración Nerviosa/patología , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Inhibidores de Proteínas Quinasas , Degeneración Walleriana/metabolismo
3.
Neurobiol Dis ; 170: 105751, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35569720

RESUMEN

Impaired bioenergetic capacity of the nervous system is thought to contribute to the pathogenesis of many neurodegenerative diseases (NDD). Since neuronal synapses are believed to be the major energy consumers in the nervous system, synaptic derangements resulting from energy deficits have been suggested to play a central role for the development of many of these disorders. However, long axons constitute the largest compartment of the neuronal network, require large amounts of energy, are metabolically and structurally highly vulnerable, and undergo early injurious stresses in many NDD. These stresses likely impose additional energy demands for continuous adaptations and repair processes, and may eventually overwhelm axonal maintenance mechanisms. Indeed, pathological axon degeneration (pAxD) is now recognized as an etiological focus in a wide array of NDD associated with bioenergetic abnormalities. In this paper I first discuss the recognition that a simple experimental model for pAxD is regulated by an auto-destruction program that exhausts distressed axons energetically. Provision of the energy substrate pyruvate robustly counteracts this axonal breakdown. Importantly, energy decline in axons is not only a consequence but also an initiator of this program. This opens the intriguing possibility that axon dysfunction and pAxD can be suppressed by preemptively energizing distressed axons. Second, I focus on the emerging concept that axons communicate energetically with their flanking glia. This axoglial metabolic coupling can help offset the axonal energy decline that activates the pAxD program but also jeopardize axon integrity as a result of perturbed glial metabolism. Third, I present compelling evidence that abnormal axonal energetics and compromised axoglial metabolic coupling accompany the activation of the pAxD auto-destruction pathway in models of glaucoma, a widespread neurodegenerative condition with pathogenic overlap to other common NDD. In conclusion, I propose a novel conceptual framework suggesting that therapeutic interventions focused on bioenergetic support of the nervous system should also address axons and their metabolic interactions with glia.


Asunto(s)
Axones , Enfermedades Neurodegenerativas , Axones/patología , Metabolismo Energético , Humanos , Enfermedades Neurodegenerativas/metabolismo , Neuroglía/metabolismo , Neuronas/patología
4.
Cell Mol Life Sci ; 79(4): 193, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35298717

RESUMEN

Aberrant insulin-like growth factor 1 (IGF-1) signaling has been proposed as a contributing factor to the development of neurodegenerative disorders including diabetic neuropathy, and delivery of exogenous IGF-1 has been explored as a treatment for Alzheimer's disease and amyotrophic lateral sclerosis. However, the role of autocrine/paracrine IGF-1 in neuroprotection has not been well established. We therefore used in vitro cell culture systems and animal models of diabetic neuropathy to characterize endogenous IGF-1 in sensory neurons and determine the factors regulating IGF-1 expression and/or affecting neuronal health. Single-cell RNA sequencing (scRNA-Seq) and in situ hybridization analyses revealed high expression of endogenous IGF-1 in non-peptidergic neurons and satellite glial cells (SGCs) of dorsal root ganglia (DRG). Brain cortex and DRG had higher IGF-1 gene expression than sciatic nerve. Bidirectional transport of IGF-1 along sensory nerves was observed. Despite no difference in IGF-1 receptor levels, IGF-1 gene expression was significantly (P < 0.05) reduced in liver and DRG from streptozotocin (STZ)-induced type 1 diabetic rats, Zucker diabetic fatty (ZDF) rats, mice on a high-fat/ high-sugar diet and db/db type 2 diabetic mice. Hyperglycemia suppressed IGF-1 gene expression in cultured DRG neurons and this was reversed by exogenous IGF-1 or the aldose reductase inhibitor sorbinil. Transcription factors, such as NFAT1 and CEBPß, were also less enriched at the IGF-1 promoter in DRG from diabetic rats vs control rats. CEBPß overexpression promoted neurite outgrowth and mitochondrial respiration, both of which were blunted by knocking down or blocking IGF-1. Suppression of endogenous IGF-1 in diabetes may contribute to neuropathy and its upregulation at the transcriptional level by CEBPß can be a promising therapeutic approach.


Asunto(s)
Envejecimiento/metabolismo , Axones/patología , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Metabolismo Energético , Factor I del Crecimiento Similar a la Insulina/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Anticuerpos Neutralizantes/farmacología , Axones/efectos de los fármacos , Axones/metabolismo , Secuencia de Bases , Proteína beta Potenciadora de Unión a CCAAT/genética , Respiración de la Célula/efectos de los fármacos , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Metabolismo Energético/efectos de los fármacos , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Glucólisis/efectos de los fármacos , Células HEK293 , Humanos , Factor I del Crecimiento Similar a la Insulina/genética , Hígado/metabolismo , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Factores de Transcripción NFATC/metabolismo , Proyección Neuronal/efectos de los fármacos , Polímeros/metabolismo , Regiones Promotoras Genéticas/genética , Transporte de Proteínas/efectos de los fármacos , Ratas Sprague-Dawley , Células Receptoras Sensoriales/patología , Transducción de Señal/efectos de los fármacos
5.
Biochim Biophys Acta Bioenerg ; 1863(5): 148545, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35339437

RESUMEN

Axons are the long, fragile, and energy-hungry projections of neurons that are challenging to sustain. Together with their associated glia, they form the bulk of the neuronal network. Pathological axon degeneration (pAxD) is a driver of irreversible neurological disability in a host of neurodegenerative conditions. Halting pAxD is therefore an attractive therapeutic strategy. Here we review recent work demonstrating that pAxD is regulated by an auto-destruction program that revolves around axonal bioenergetics. We then focus on the emerging concept that axonal and glial energy metabolism are intertwined. We anticipate that these discoveries will encourage the pursuit of new treatment strategies for neurodegeneration.


Asunto(s)
Enfermedades Neurodegenerativas , Degeneración Walleriana , Axones/metabolismo , Axones/patología , Metabolismo Energético , Humanos , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Degeneración Walleriana/metabolismo , Degeneración Walleriana/patología
6.
Brain Behav ; 12(2): e2494, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35084124

RESUMEN

OBJECTIVE: To determine whether serum neurofilament light chain (sNfL) levels are suppressed in patients with the clinically isolated syndrome (CIS) following narrowband ultraviolet B phototherapy (UVB-PT). METHODS: sNfL levels were measured using a sensitive single-molecule array assay at baseline and up to 12 months in 17 patients with CIS, 10 of whom received UVB-PT, and were compared with healthy control (HC) and early relapsing remitting multiple sclerosis (RRMS) group. sNfL levels were correlated with magnetic resonance imaging total lesion volume (LV) determined using icobrain version 4.4.1 and with clinical outcomes. RESULTS: Baseline median sNfL levels were significantly higher in the CIS (20.6 pg/mL, interquartile range [IQR] 13.7-161.4) and RRMS groups (36.6 pg/ml [IQR] 16.2-212.2) than in HC (10.7 pg/ml [IQR] 4.9-21.5) (p = .012 and p = .0002, respectively), and were strongly correlated with T2 and T1 LV at 12 months (r = .800; p = .014 and r = .833; p = .008, respectively) in the CIS group. Analysis of changes in sNfL levels over time in the CIS group showed a significant cumulative suppressive effect of UVB-PT in the first 3 months (UVB-PT -10.6% vs non-UVB-PT +58.3%; p = .04) following which the levels in the two groups converged and continued to fall. CONCLUSIONS: Our findings provide the basis for further studies to determine the utility of sNfL levels as a marker of neuro-axonal damage in CIS and early MS and for assessing the efficacy of new therapeutic interventions such as UVB-PT.


Asunto(s)
Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Axones/patología , Biomarcadores , Humanos , Filamentos Intermedios/patología , Esclerosis Múltiple/patología , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/radioterapia , Fototerapia
7.
Zhongguo Zhong Yao Za Zhi ; 46(23): 6139-6148, 2021 Dec.
Artículo en Chino | MEDLINE | ID: mdl-34951241

RESUMEN

When ischemia or hemorrhagic stroke occurs, astrocytes are activated by a variety of endogenous regulatory factors to become reactive astrocytes. Subsequently, reactive astrocytes proliferate, differentiate, and migrate around the lesion to form glial scar with the participation of microglia, neuron-glial antigen 2(NG2) glial cells, and extracellular matrix. The role of glial scars at different stages of stroke injury is different. At the middle and late stages of the injury, the secreted chondroitin sulfate proteoglycan and chondroitin sulfate are the main blockers of axon regeneration and nerve function recovery. Targeted regulation of glial scars is an important pathway for neurological rehabilitation after stroke. Chinese medicine has been verified to be effective in stroke rehabilitation in clinical practice, possibly because it has the functions of promoting blood resupply, anti-inflammation, anti-oxidative stress, inhibiting cell proliferation and differentiation, and benign intervention in glial scars. This study reviewed the pathological process and signaling mechanisms of glial scarring after stroke, as well as the intervention of traditional Chinese medicine upon glial scar, aiming to provide theoretical reference and research evidence for developing Chinese medicine against stroke in view of targeting glial scarring.


Asunto(s)
Gliosis , Accidente Cerebrovascular , Astrocitos , Axones/patología , Cicatriz/tratamiento farmacológico , Cicatriz/etiología , Cicatriz/patología , Gliosis/patología , Humanos , Medicina Tradicional China , Regeneración Nerviosa , Accidente Cerebrovascular/tratamiento farmacológico
8.
Mol Neurobiol ; 58(11): 5971-5985, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34432265

RESUMEN

The dopaminergic system plays an essential role in maintaining homeostasis between the central nervous system (CNS) and the immune system. Previous studies have associated imbalances in the dopaminergic system to the pathogenesis of multiple sclerosis (MS). Here, we examined the protein levels of dopaminergic receptors (D1R and D2R) in different phases of the experimental autoimmune encephalomyelitis (EAE) model. We also investigated if the treatment with pramipexole (PPX)-a dopamine D2/D3 receptor-preferring agonist-would be able to prevent EAE-induced motor and mood dysfunction, as well as its underlying mechanisms of action. We report that D2R immunocontent is upregulated in the spinal cord of EAE mice 14 days post-induction. Moreover, D1R and D2R immunocontents in lymph nodes and the oxidative damage in the spinal cord and striatum of EAE animals were significantly increased during the chronic phase. Also, during the pre-symptomatic phase, axonal damage in the spinal cord of EAE mice could already be found. Surprisingly, therapeutic treatment with PPX failed to inhibit the progression of EAE. Of note, PPX treatment inhibited EAE-induced depressive-like while failed to inhibit anhedonic-like behaviors. We observed that PPX treatment downregulated IL-1ß levels and increased BNDF content in the spinal cord after EAE induction. Herein, we show that a D2/D3 receptor-preferred agonist mitigated EAE-induced depressive-like behavior, which could serve as a new possibility for further clinical trials on treating depressive symptoms in MS patients. Thus, we infer that D2R participates in the crosstalk between CNS and immune system during autoimmune and neuroinflammatory response induced by EAE, mainly in the acute and chronic phase of the disease.


Asunto(s)
Encefalomielitis Autoinmune Experimental/metabolismo , Receptores de Dopamina D1/fisiología , Receptores de Dopamina D2/fisiología , Anhedonia/efectos de los fármacos , Anhedonia/fisiología , Animales , Axones/patología , Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Factor Neurotrófico Derivado del Encéfalo/genética , Cuerpo Estriado/metabolismo , Depresión/etiología , Depresión/prevención & control , Progresión de la Enfermedad , Evaluación Preclínica de Medicamentos , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/psicología , Femenino , Interleucina-1beta/biosíntesis , Interleucina-1beta/genética , Ganglios Linfáticos/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Estrés Oxidativo , Fragmentos de Péptidos/biosíntesis , Fragmentos de Péptidos/genética , Pramipexol/farmacología , Pramipexol/uso terapéutico , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D3/agonistas , Método Simple Ciego , Médula Espinal/metabolismo , Médula Espinal/patología
9.
J Ethnopharmacol ; 279: 114358, 2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34166736

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Trillium tschonoskii Maxim. is one of traditional Chinese medical herbs that has been utilized to treat brain damages and cephalalgia. The neuroprotective effect of total saponins from Trillium tschonoskii rhizome (TSTT) has been demonstrated efficacy in rats following ischemia. However, the axonal remodeling effect of TSTT and the detailed mechanisms after ischemic stroke have not been investigated. AIM OF THE STUDY: We aimed to estimate therapeutic role of TSTT in axonal remodeling using magnetic resonance imaging (MRI) technique, and explored possible mechanisms underlying this process followed by histological assays in ischemic rats. METHODS: Male Sprague-Dawley (SD) rats underwent permanently focal cerebral ischemia induced by occluding right permanent middle cerebral artery. TSTT was intragastrically administrated 6 h after surgery and once daily for consecutive 15 days. Neurological function was assessed by the motor deficit score and beam walking test. T2 relaxation mapping and diffusion tensor imaging (DTI) were applied for detecting cerebral tissues damages and microstructural integrity of axons. Luxol fast blue (LFB) and transmission electron microscope (TEM) were performed to evaluate histopathology in myelinated axons. Double immunofluorescent staining was conducted to assess oligodendrogenesis. Furthermore, the protein expressions regarding to axonal remodeling related signaling pathways were detected by Western blot assays. RESULTS: TSTT treatment (65, 33 mg/kg) markedly improved motor function after ischemic stroke. T2 mapping MRI demonstrated that TSTT decreased lesion volumes, and DTI further confirmed that TSTT preserved axonal microstructure of the sensorimotor cortex and internal capsule. Meanwhile, diffusion tensor tractography (DTT) showed that TSTT elevated correspondent density and length of fiber in the internal capsule. These MRI measurements were confirmed by histological examinations. Notably, TSTT significantly increased Ki67/NG2, Ki67/CNPase double-labeled cells along the boundary zone of ischemic cortex and striatum. Meanwhile, TSTT treatment up-regulated the phosphorylation level of Ser 9 in GSK-3ß, and down-regulated phosphorylated ß-catenin and CRMP-2 expression. CONCLUSION: Taken together, our findings indicated that TSTT (65, 33 mg/kg) enhanced post-stroke functional recovery, amplified endogenous oligodendrogenesis and promoted axonal regeneration. The beneficial role of TSTT might be correlated with GSK-3/ß-catenin/CRMP-2 modulating axonal reorganization after ischemic stroke.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Saponinas/farmacología , Trillium/química , Animales , Axones/patología , Isquemia Encefálica/fisiopatología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Accidente Cerebrovascular Isquémico/fisiopatología , Masculino , Proteínas del Tejido Nervioso/metabolismo , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/aislamiento & purificación , Fármacos Neuroprotectores/farmacología , Ratas , Ratas Sprague-Dawley , Recuperación de la Función/efectos de los fármacos , Rizoma , Saponinas/administración & dosificación , Saponinas/aislamiento & purificación , beta Catenina/metabolismo
10.
J Neurotrauma ; 38(18): 2622-2632, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-33913741

RESUMEN

Repeated mild traumatic brain injury (TBI) can cause persistent neuropathological effects and is a major risk factor for chronic traumatic encephalopathy. PUFAs (n-3 polyunsaturated fatty acids) were shown to improve acute TBI outcomes in single-injury models in most cases. In this study, we demonstrate positive effects of dietary n-3 PUFA on long-term neuropathological and functional outcome in a clinically relevant model of repeated mild TBI using the Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA). Adult mice, reared on n-3 PUFA adequate (higher n-3 PUFA) or deficient (lower n-3 PUFA) diets, were given a mild CHIMERA daily for 3 consecutive days. At 2 months after injury, visual function and spatial memory were evaluated. Glia cell activation was assessed by immunostaining using antibodies of ionized calcium-binding adaptor molecule 1 and glial fibrillary acidic protein, and axonal damage was examined using silver staining. Repeated CHIMERA (rCHIMERA)-induced gliosis was significantly suppressed in the optic tract, corpus callosum, and hippocampus of mice fed the n-3 PUFA adequate diet compared to the deficient diet group. Considerable axonal damage was detected in the optic tract after rCHIMERA, but the adequate diet group displayed less axonal damage compared to the deficient diet group. rCHIMERA induced a drastic reduction in N1 amplitude of the visual evoked potential in both diet groups and the a-wave amplitude of the electroretinogram in the deficient diet group. However, reduction of N1 and a-wave amplitude were less severe in the adequate diet group. The Morris water maze probe test indicated a significant decrease in the number of platform crossings in the deficient diet group compared to the adequate group. In summary, dietary n-3 PUFA can attenuate persistent glial cell activation and axonal damage and improve deficits in visual function and spatial memory after repeated mild TBI. These data support the neuroprotective potential of a higher n-3 PUFA diet in ameliorating the adverse outcome of repeated mild TBI.


Asunto(s)
Conmoción Encefálica/tratamiento farmacológico , Conmoción Encefálica/psicología , Dieta , Ácidos Grasos Omega-3/uso terapéutico , Enfermedades del Sistema Nervioso/etiología , Animales , Axones/patología , Ácidos Grasos Omega-3/metabolismo , Femenino , Inmunohistoquímica , Activación de Macrófagos , Masculino , Ratones Endogámicos C57BL , Enfermedades del Sistema Nervioso/patología , Enfermedades del Sistema Nervioso/psicología , Neuroglía/efectos de los fármacos , Tracto Óptico/patología , Embarazo , Recurrencia , Memoria Espacial , Resultado del Tratamiento , Visión Ocular
11.
J Neurosci ; 41(18): 3958-3965, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33795427

RESUMEN

Age-related hearing loss is the most prevalent sensory impairment in the older adult population and is related to noise-induced damage or age-related deterioration of the peripheral auditory system. Hearing loss may affect the central auditory pathway in the brain, which is a continuation of the peripheral auditory system located in the ear. A debilitating symptom that frequently co-occurs with hearing loss is tinnitus. Strikingly, investigations into the impact of acquired hearing loss, with and without tinnitus, on the human central auditory pathway are sparse. This study used diffusion-weighted imaging (DWI) to investigate changes in the largest central auditory tract, the acoustic radiation, related to hearing loss and tinnitus. Participants with hearing loss, with and without tinnitus, and a control group were included. Both conventional diffusion tensor analysis and higher-order fixel-based analysis were applied. The fixel-based analysis was used as a novel framework providing insight into the axonal density and macrostructural morphologic changes of the acoustic radiation in hearing loss and tinnitus. The results show tinnitus-related atrophy of the left acoustic radiation near the medial geniculate body. This finding may reflect a decrease in myelination of the auditory pathway, instigated by more profound peripheral deafferentation or reflecting a preexisting marker of tinnitus vulnerability. Furthermore, age was negatively correlated with the axonal density in the bilateral acoustic radiation. This loss of fiber density with age may contribute to poorer speech understanding observed in older adults.SIGNIFICANCE STATEMENT Age-related hearing loss is the most prevalent sensory impairment in the older adult population. Older individuals are subject to the cumulative effects of aging and noise exposure on the auditory system. A debilitating symptom that frequently co-occurs with hearing loss is tinnitus: the perception of a phantom sound. In this large DWI-study, we provide evidence that in hearing loss, the additional presence of tinnitus is related to degradation of the acoustic radiation. Additionally, older age was related to axonal loss in the acoustic radiation. It appears that older adults have the aggravating circumstances of age, hearing loss, and tinnitus on central auditory processing, which may partly be because of the observed deterioration of the acoustic radiation with age.


Asunto(s)
Pérdida Auditiva/patología , Acúfeno/patología , Estimulación Acústica , Adolescente , Adulto , Anciano , Envejecimiento/patología , Atrofia , Vías Auditivas/patología , Axones/patología , Imagen de Difusión Tensora , Femenino , Cuerpos Geniculados/patología , Pérdida Auditiva/complicaciones , Pruebas Auditivas , Humanos , Masculino , Persona de Mediana Edad , Vaina de Mielina/patología , Percepción del Habla , Acúfeno/complicaciones , Adulto Joven
12.
Artículo en Chino | WPRIM | ID: wpr-921772

RESUMEN

When ischemia or hemorrhagic stroke occurs, astrocytes are activated by a variety of endogenous regulatory factors to become reactive astrocytes. Subsequently, reactive astrocytes proliferate, differentiate, and migrate around the lesion to form glial scar with the participation of microglia, neuron-glial antigen 2(NG2) glial cells, and extracellular matrix. The role of glial scars at different stages of stroke injury is different. At the middle and late stages of the injury, the secreted chondroitin sulfate proteoglycan and chondroitin sulfate are the main blockers of axon regeneration and nerve function recovery. Targeted regulation of glial scars is an important pathway for neurological rehabilitation after stroke. Chinese medicine has been verified to be effective in stroke rehabilitation in clinical practice, possibly because it has the functions of promoting blood resupply, anti-inflammation, anti-oxidative stress, inhibiting cell proliferation and differentiation, and benign intervention in glial scars. This study reviewed the pathological process and signaling mechanisms of glial scarring after stroke, as well as the intervention of traditional Chinese medicine upon glial scar, aiming to provide theoretical reference and research evidence for developing Chinese medicine against stroke in view of targeting glial scarring.


Asunto(s)
Humanos , Astrocitos , Axones/patología , Cicatriz/patología , Gliosis/patología , Medicina Tradicional China , Regeneración Nerviosa , Accidente Cerebrovascular/tratamiento farmacológico
13.
Neurochem Int ; 141: 104890, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33122033

RESUMEN

Alzheimer's disease is a multifactorial neurodegenerative condition manifested through acute cognitive decline, amyloid plaque deposits and neurofibrillary tangles. Complete cure for this disease remains elusive as the conventional drugs address only a single molecular target while Alzheimer's disease involves a complex interplay of different sets of molecular targets and signaling networks. In this context, the possibility of employing multi-drug combinations to rescue neurons from the dysregulated metabolic changes is being actively investigated. The present work investigates a poly-herbal formulation, Brahmi Nei that has been traditionally used for anxiolytic disorders and immunomodulatory effects, for its efficiency in ameliorating cognitive decline through a combination of behavioral, biochemical, histopathological, gene and protein expression analyses. Our results reveal that the formulation shows excellent neuroregenerative properties, rescues neurons from inflammatory damage, reduces neuritic plaque deposits and improves working memory in rodent models with scopolamine-induced dementia. The microarray analysis shows that the formulation induces the expression of pro-survival pathways and positively modulates genes involved in memory consolidation, axonal growth and proliferation in a concentration-dependent manner with therapeutic concentrations restoring the normal conditions in the brain of the diseased animals. The neuritic spine morphology confirms the long-term memory potentiation through improved mushroom spine density, increased dendritic length and connectivity. Taken together, our study provides mechanistic evidence to prove that the traditional formulation can be a superior therapeutic strategy to treat cognitive decline when compared to the conventional mono-drug treatment.


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo/tratamiento farmacológico , Enfermedades del Sistema Nervioso Autónomo/psicología , Trastornos del Conocimiento/tratamiento farmacológico , Trastornos del Conocimiento/psicología , Medicina de Hierbas , Animales , Enfermedades del Sistema Nervioso Autónomo/complicaciones , Axones/efectos de los fármacos , Axones/patología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Trastornos del Conocimiento/etiología , Dendritas/efectos de los fármacos , Dendritas/ultraestructura , Relación Dosis-Respuesta a Droga , Combinación de Medicamentos , Composición de Medicamentos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Memoria a Corto Plazo/efectos de los fármacos , Regeneración Nerviosa/efectos de los fármacos , Neuritas/patología , Fitoterapia , Ratas , Ratas Wistar
14.
Sci Rep ; 10(1): 15472, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32963272

RESUMEN

Neuronal injury leads to rapid, programmed disintegration of axons distal to the site of lesion. Much like other forms of axon degeneration (e.g. developmental pruning, toxic insult from neurodegenerative disorder), Wallerian degeneration associated with injury is preceded by spheroid formation along axons. The mechanisms by which injury leads to formation of spheroids and whether these spheroids have a functional role in degeneration remain elusive. Here, using neonatal mouse primary sympathetic neurons, we investigate the roles of players previously implicated in the progression of Wallerian degeneration in injury-induced spheroid formation. We find that intra-axonal calcium flux is accompanied by actin-Rho dependent growth of calcium rich axonal spheroids that eventually rupture, releasing material to the extracellular space prior to catastrophic axon degeneration. Importantly, after injury, Sarm1-/- and DR6-/-, but not Wlds (excess NAD+) neurons, are capable of forming spheroids that eventually rupture, releasing their contents to the extracellular space to promote degeneration. Supplementation of exogenous NAD+ or expressing WLDs suppresses Rho-dependent spheroid formation and degeneration in response to injury. Moreover, injured or trophically deprived Sarm1-/- and DR6-/-, but not Wlds neurons, are resistant to degeneration induced by conditioned media collected from wild-type axons after spheroid rupture. Taken together, these findings place Rho-actin and NAD+ upstream of spheroid formation and may suggest that other mediators of degeneration, such as DR6 and SARM1, mediate post-spheroid rupture events that lead to catastrophic axon disassembly.


Asunto(s)
Proteínas del Dominio Armadillo/fisiología , Proteínas del Citoesqueleto/fisiología , Proteínas del Tejido Nervioso/fisiología , Enfermedades Neurodegenerativas/patología , Neuronas/patología , Receptores del Factor de Necrosis Tumoral/fisiología , Esferoides Celulares/patología , Degeneración Walleriana/fisiopatología , Animales , Axones/patología , Axotomía , Calcio/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo
15.
Mol Neurobiol ; 57(10): 4305-4321, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32700252

RESUMEN

Buyang Huanwu Decoction (BHD), a classic traditional Chinese medicine (TCM) formula, has been used for recovering neurological dysfunctions and treating post-stroke disability in China for 200 years. In the present study, we investigated the effects of BHD on inhibiting neuronal apoptosis, promoting proliferation and differentiation of neural stem cells (NSCs) and neurite formation and enhancing learning and memory functional recovery in an experimental rat ischemic stroke model. BHD significantly reduced infarct volume and decreased cell apoptosis in the ischemic brain. BHD enhanced neuronal cell viability in vitro. BHD dose-dependently promoted the proliferation of NSCs in ischemic rat brains in vivo. Moreover, BHD promoted neuronal and astrocyte differentiation in primary cultured NSCs in vitro. Water maze test revealed that BHD promoted the recovery of learning function but not memory functions in the transient ischemic rats. We then investigated the changes of the cellular signaling molecules by using two-dimension (2D) gel electrophoresis and focused on the PI3K/Akt/Bad and Jak2/Stat3/cyclin D1signaling pathway to uncover its underlying mechanisms for its neuroprotective and neurogenetic effects. BHD significantly upregulated the expression of p-PI3K, p-Akt, and p-Bad as well as the expression of p-Jak, p-Stat3, and cyclin D1 in vitro and in vivo. In addition, BHD upregulated Hes1 and downregulated cav-1 in vitro and in vivo. Taken together, these results suggest that BHD has neuroprotective effects and neurogenesis-promoting effects via activating PI3K/Akt/Bad and Jak2/Stat3/Cyclin D1 signaling pathways. Graphical Abstract Buyang Huanwu Decoction (BHD) activates the PI3K-AKT-BAD pathway in the ischemic brain for neuroprotection. BHD also activates JAK2/STAT3/Cyclin D1 signaling cascades for promoting neurogenesis in the hippocampus of post-ischemic brains. Moreover, BHD inhibits the expression of caveolin-1 and increases the expression of HES1 for promoting neuronal differentiation. The neuroprotective and neurogenesis-promoting effects in the hippocampus of post-ischemic brains promote learning ability.


Asunto(s)
Medicamentos Herbarios Chinos/uso terapéutico , Ataque Isquémico Transitorio/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Neurogénesis , Fármacos Neuroprotectores/uso terapéutico , Proteómica , Transducción de Señal , Proteínas 14-3-3/metabolismo , Animales , Apoptosis/efectos de los fármacos , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/patología , Axones/patología , Caveolina 1/metabolismo , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ciclina D1/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Receptores ErbB/metabolismo , Ataque Isquémico Transitorio/complicaciones , Ataque Isquémico Transitorio/patología , Ataque Isquémico Transitorio/fisiopatología , Accidente Cerebrovascular Isquémico/complicaciones , Accidente Cerebrovascular Isquémico/patología , Accidente Cerebrovascular Isquémico/fisiopatología , Janus Quinasa 2/metabolismo , Masculino , Memoria/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/patología , Neuritis/patología , Neurogénesis/efectos de los fármacos , Neuroprotección/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Células PC12 , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Recuperación de la Función/efectos de los fármacos , Daño por Reperfusión/complicaciones , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/patología , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción HES-1/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Xantenos/farmacología , Proteína Letal Asociada a bcl/metabolismo
16.
Biochim Biophys Acta Mol Basis Dis ; 1866(7): 165779, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32224154

RESUMEN

Oligodendrocytes not only produce myelin to facilitate nerve impulse conduction, but are also essential metabolic partners of the axon. Oligodendrocyte loss and myelin destruction, as occurs in multiple sclerosis (MS), leaves axons vulnerable to degeneration and permanent neurological deficits ensue. Many studies now propose that lifestyle factors such as diet may impact demyelinating conditions, including MS. Most prior reviews have focused on the regulatory role of diet in the inflammatory events that drive MS pathogenesis, however the potential for dietary factors to modulate oligodendrocyte biology, myelin injury and myelin regeneration remain poorly understood. Here we review the current evidence from clinical and animal model studies regarding the impact of diet or dietary factors on myelin integrity and other pathogenic features of MS. Some limited evidence exists that certain foods may decrease risk or influence the progression of MS, such as increased intake of fish or polyunsaturated fatty acids, caloric restriction and fasting-mimicking diets. In addition, evidence suggests adolescent obesity or insufficient vitamin D levels increase the risk for developing MS. However, no clear or consistent evidence exists that dietary components exacerbate disease progression. Cumulatively, current evidence highlights the need for more extensive clinical trials to validate dietary effects on MS and to identify diets or supplements that may be beneficial as food-based strategies in the management of MS alone or in combination with conventional disease modifying therapies.


Asunto(s)
Sistema Nervioso Central/metabolismo , Enfermedades Desmielinizantes/metabolismo , Esclerosis Múltiple/etiología , Vaina de Mielina/metabolismo , Animales , Axones/metabolismo , Axones/patología , Sistema Nervioso Central/lesiones , Sistema Nervioso Central/patología , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/patología , Suplementos Dietéticos , Modelos Animales de Enfermedad , Humanos , Esclerosis Múltiple/genética , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Vaina de Mielina/efectos de los fármacos , Regeneración Nerviosa/genética , Oligodendroglía/metabolismo , Oligodendroglía/patología
17.
Tissue Eng Regen Med ; 17(2): 237-251, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32036567

RESUMEN

BACKGROUND: Centella asiatica (L.) is a plant with neuroprotective and neuroregenerative properties; however, its effects on the neurodifferentiation of mesenchymal stem cells (MSCs) and on peripheral nerve injury are poorly explored. This study aimed to investigate the effects of C. asiatica (L.)-neurodifferentiated MSCs on the regeneration of peripheral nerve in a critical-size defect animal model. METHODS: Nerve conduit was developed using decellularised artery seeded with C. asiatica-neurodifferentiated MSCs (ndMSCs). A 1.5 cm sciatic nerve injury in Sprague-Dawley rat was bridged with reversed autograft (RA) (n = 3, the gold standard treatment), MSC-seeded conduit (MC) (n = 4) or ndMSC-seeded conduit (NC) (n = 4). Pinch test and nerve conduction study were performed every 2 weeks for a total of 12 weeks. At the 12th week, the conduits were examined by histology and transmission electron microscopy. RESULTS: NC implantation improved the rats' sensory sensitivity in a similar manner to RA. At the 12th week, nerve conduction velocity was the highest in NC compared with that of RA and MC. Axonal regeneration was enhanced in NC and RA as shown by the expression of myelin basic protein (MBP). The average number of myelinated axons was significantly higher in NC than in MC but significantly lower than in RA. The myelin sheath thickness was higher in NC than in MC but lower than in RA. CONCLUSION: NC showed promising effects on nerve regeneration and functional restoration similar to those of RA. These findings revealed the neuroregenerative properties of C. asiatica and its potential as an alternative strategy for the treatment of critical size nerve defect.


Asunto(s)
Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Triterpenos/farmacología , Animales , Axones/patología , Axones/fisiología , Centella , Modelos Animales de Enfermedad , Masculino , Músculo Esquelético/patología , Vaina de Mielina , Regeneración Nerviosa/efectos de los fármacos , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/patología , Extractos Vegetales , Ratas , Ratas Sprague-Dawley , Nervio Ciático/efectos de los fármacos , Nervio Ciático/lesiones , Trasplante Autólogo
18.
JCI Insight ; 5(3)2020 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-32051342

RESUMEN

Central poststroke pain (CPSP) is one of the neuropathic pain syndromes that can occur following stroke involving the somatosensory system. However, the underlying mechanism of CPSP remains largely unknown. Here, we established a CPSP mouse model by inducing a focal hemorrhage in the thalamic ventrobasal complex and confirmed the development of mechanical allodynia. In this model, microglial activation was observed in the somatosensory cortex, as well as in the injured thalamus. By using a CSF1 receptor inhibitor, we showed that microglial depletion effectively prevented allodynia development in our CPSP model. In the critical phase of allodynia development, c-fos-positive neurons increased in the somatosensory cortex, accompanied by ectopic axonal sprouting of the thalamocortical projection. Furthermore, microglial ablation attenuated both neuronal hyperactivity in the somatosensory cortex and circuit reorganization. These findings suggest that microglia play a crucial role in the development of CPSP pathophysiology by promoting sensory circuit reorganization.


Asunto(s)
Axones/patología , Hemorragia Cerebral/patología , Hiperalgesia/prevención & control , Microglía/patología , Tálamo/patología , Animales , Hemorragia Cerebral/complicaciones , Modelos Animales de Enfermedad , Ratones , Neuralgia/complicaciones
19.
J Clin Neurosci ; 72: 370-377, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31952974

RESUMEN

The aim of this study was to determine the curative effects of high-dose (100 mg/kg) melatonin on peripheral nerve injury. Forty male Wistar albino rats were randomized into four groups as sham, vehicle, melatonin, and ischemia and their right sciatic nerves were exposed. The process was terminated in the sham group. In the other groups, nerve injury was induced by clip compression. The vehicle group was intraperitoneally administered ethanol 0.1 cc (melatonin solvent), while the melatonin group was intraperitoneally administered a single dose of melatonin (100 mg/kg). Following the surgery, sciatic nerve functional index (SFI) was measured using walking track analysis on days 7, 14, and 21, and latency, amplitude, and muscle action potentials (MAP) field values were measured using electroneuromyography (ENMG) on day 21. Histopathologically, edema, axonal degeneration, myelin damage, and inflammatory response were evaluated in all groups. SFI values were noted to be statistically significantly different among the vehicle, melatonin, and ischemia groups, and the melatonin group showed a faster recovery. In the ENMG evaluations, higher amplitude and field values in the melatonin group indicated that melatonin accelerated peripheral nerve recovery. Histopathologically, although fibers with loss of myelin were identified in the melatonin group, the myelin sheath was preserved in general and the axonal structure was noted to be normal. A single injection of high-dose melatonin was found to preserve myelin sheath, prevent axonal loss, and accelerate functional recovery during the nerve regeneration in peripheral nerve injury.


Asunto(s)
Melatonina/uso terapéutico , Regeneración Nerviosa/efectos de los fármacos , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Nervio Ciático/lesiones , Nervio Ciático/fisiopatología , Animales , Axones/patología , Masculino , Vaina de Mielina/patología , Traumatismos de los Nervios Periféricos/patología , Traumatismos de los Nervios Periféricos/fisiopatología , Ratas , Ratas Wistar , Recuperación de la Función/fisiología , Nervio Ciático/patología
20.
Mol Neurobiol ; 57(4): 2048-2071, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31919777

RESUMEN

Folate supplementation in F0 mating rodents increases regeneration of injured spinal axons in vivo in 4 or more generations of progeny (F1-F4) in the absence of interval folate administration to the progeny. Transmission of the enhanced regeneration phenotype to untreated progeny parallels axonal growth in neuron culture after in vivo folate administration to the F0 ancestors alone, in correlation with differential patterns of genomic DNA methylation and RNA transcription in treated lineages. Enhanced axonal regeneration phenotypes are observed with diverse folate preparations and routes of administration, in outbred and inbred rodent strains, and in two rodent genera comprising rats and mice, and are reversed in F4-F5 progeny by pretreatment with DNA demethylating agents prior to phenotyping. Uniform transmission of the enhanced regeneration phenotype to progeny together with differential patterns of DNA methylation and RNA expression is consistent with a non-Mendelian mechanism. The capacity of an essential nutritional co-factor to induce a beneficial transgenerational phenotype in untreated offspring carries broad implications for the diagnosis, prevention, and treatment of inborn and acquired disorders.


Asunto(s)
Ácido Fólico/farmacología , Regeneración Nerviosa/efectos de los fármacos , Neuronas/fisiología , Administración Oral , Animales , Axones/efectos de los fármacos , Axones/patología , Azacitidina/farmacología , Metilación de ADN/genética , Femenino , Ácido Fólico/administración & dosificación , Genoma , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Inyecciones Intraperitoneales , Masculino , Neuronas/efectos de los fármacos , Fenotipo , Ratas Sprague-Dawley , Transcripción Genética/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA